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Abstract: This paper proposes a two-stage maximum entropy prior to elicit uncertainty regarding
a multivariate interval constraint of the location parameter of a scale mixture of normal model.
Using Shannon’s entropy, this study demonstrates how the prior, obtained by using two stages of
a prior hierarchy, appropriately accounts for the information regarding the stochastic constraint and
suggests an objective measure of the degree of belief in the stochastic constraint. The study also
verifies that the proposed prior plays the role of bridging the gap between the canonical maximum
entropy prior of the parameter with no interval constraint and that with a certain multivariate
interval constraint. It is shown that the two-stage maximum entropy prior belongs to the family of
rectangle screened normal distributions that is conjugate for samples from a normal distribution.
Some properties of the prior density, useful for developing a Bayesian inference of the parameter
with the stochastic constraint, are provided. We also propose a hierarchical constrained scale mixture of
normal model (HCSMN), which uses the prior density to estimate the constrained location parameter
of a scale mixture of normal model and demonstrates the scope of its applicability.
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1. Introduction

Suppose yi’s are independent observations from a scale mixture of a p-variate normal distribution
with the p× 1 location parameter θ and known scale matrix. Then, a simple location model for the
p-variate observations with yi ∈ Rp is:

yi = θ+ εi, i = 1, . . . , n, (1)

where the distribution of the p× 1 vector variable εi is F ∈ F with:

F =
{

F : Np

(
0, κ(η)Λ

)
, η ∼ G(η) with κ(η) > 0, and η > 0

}
, (2)

where η is a mixing variable with the cdf G(η) and κ(η) is a suitably-chosen weight function.
Bayesian analysis of the model (1) begins with the specification of a prior distribution, which

represents the information about the uncertain parameter θ that is combined with the joint probability
distribution of yi’s to yield the posterior distribution. When there are no constraints on the location
parameter, then usual priors (e.g., Jeffreys invariant prior or an informative normal conjugate prior) can
be used, and posterior inference can be performed without any difficulty. In some practical situations,
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however, we may have prior information that θ have a multivariate interval constraint, and thus, the
value of θ needs to be located in a restricted space C ⊂ Rp, where C = (a, b) is a p-variate interval
with a = (a1, . . . , ap)> and b = (b1, . . . , bp)>. For the remainder of this paper, we use θ ∈ C to denote
the multivariate interval constraint:{

θ; ai ≤ θi ≤ bi, i = 1, . . . , p
}

, where θ = (θ1, . . . , θp)
>. (3)

When we have sufficient evidence that the constraint condition on the model (1) is true, then
a suitable restriction on the parameter space, such as using a truncated prior distribution, is expected.
See, e.g., [1–4], for various applications of the truncated prior distribution in Bayesian inference.
However, it is often the case that prior information about the constraint is not certain for Bayesian
inference. Further, even the observations from the assumed model (1) often do not provide strong
evidence that the constraint is true and, therefore, may appear to contradict the assumption of the
model associated with the constraint. In this case, it is expected that the uncertainty about the
constraint is taken into account in eliciting a prior distribution of θ. When the parameter constraint
is not certain for Bayesian estimation in the univariate normal location model, the seminal work
by [5] proposed the use of a two-stage hierarchical prior distribution by constructing a family
of skew densities based on the positively-truncated normal prior distribution. Generalizing the
framework of the prior hierarchy proposed by [5–10], among others, various priors were considered
for the Bayesian estimation of normal and scale mixture of normal models with uncertain interval
constraints. In particular, [7] obtained the prior of θ as the normal selection distribution (see,
e.g., [11]) and, thus, exploited the class of weighted normal distribution by [12] for reflecting
the uncertain prior belief on θ. On the other hand, there are situations to set up a prior density
of θ on the basis of information regarding the moments of the density, such as the mean and
covariance matrix. A useful method of dealing with this situation is through the concept of entropy
by [13,14]. Other general references where moment inequality constraints have been considered
include [15,16]. To the best of our knowledge, however, a formal method to set up a prior
density of θ, consistent with information regarding the moments of the density, as well as the
uncertain prior belief on the location parameter, has not previously been investigated in the literature.
Thus, such practical considerations motivate us to develop a prior density of θ, which is tackled in this paper.

As discussed by [17–20], the entropy has a direct relationship to information theory and measures
the amount of uncertainty inherent in the probability distribution. Using this property of the entropy,
we propose a two-stage hierarchical method for setting up the two-stage maximum entropy prior
density of θ. The method will enable us to elicit information regarding the moments of the prior
distribution, as well as the degree of belief in the constraint θ ∈ C. Furthermore, this paper also suggests
an objective method to measure the degree of belief regarding the multivariate interval constraint
accounted for by using the prior. We also propose a simple way of controlling the degree of belief
regarding the constraint of θ in Bayesian inference. This is done by investigating the relation between
the degree of belief and the enrichment of the hyper-parameters of the prior density. In this respect, the
study concerning the two-stage maximum entropy prior is interesting both from a theoretical and an
applied point of view. On the theoretical side, it develops yet another conjugate prior of constrained θ

based on the maximum entropy approach. The study provides several properties of the proposed prior,
which advocate the idea of two stages of a prior hierarchy to elicit information regarding the moments
of the prior and the stochastic constraint of θ. From the applied view point, the prior is especially
useful for a Bayesian subjective methodology for inequality constrained multivariate linear models.

The remainder of this paper is arranged as follows. In Section 2, we propose the two-stage
maximum entropy prior of θ by applying Boltzmann’s maximum entropy theorem (see, e.g., [21,22]) to
the frame of the two-stage prior hierarchy by [5]. We also suggest an objective measure of uncertainty
regarding the stochastic constraint of θ that is accounted for by the two-stage maximum entropy prior.
In Section 3, we briefly discuss the properties of the proposed prior of θ, which will be useful for
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the Bayesian analysis of θ subject to uncertainty regarding the multivariate interval constraint θ ∈ C.
Section 4 provides a hierarchical scale mixture of normal model of Equation (1) using the two-stage
prior, referred to as the hierarchical constrained scale mixture of normal model (HCSMN). Section 4 explores
the Bayesian estimation model (1) by deriving the posterior distributions of the unknown parameters
under the HCSMN and discusses the properties of the proposed measure of uncertainty that can be
explained in the context of the HCSMN. In Section 5, we compare the empirical performance of the
proposed prior based on synthetic data and real data applications with the HCSMN models for the
estimation of θ with a stochastic multivariate interval constraint. Finally, the concluding remarks along
with a discussion are provided in Section 6.

2. Two-Stage Maximum Entropy Prior

2.1. Maximum Entropy Prior

Sometimes, we have a situation in which partial prior information is available, outside of which it
is desirable to use a prior that is as non-informative as possible. Assume that we can specify the partial
information concerning θ in Equation (1) with continuous space Θ. That is:

E[tj(θ)] =
∫

Θ
tj(θ)π(θ)dθ = tj, j = 1, . . . , k. (4)

The maximum entropy prior can be obtained by choosing π(θ) that maximizes the entropy:

ξ(π) = −
∫

Θ
π(θ) log π(θ)dθ,

in the presence of the partial information in the form of Equation (4). A straightforward application of
the calculus of variation leads us to the following theorem.

Lemma 1. (Boltzmann’s maximum entropy theorem): The density π(θ) that maximizes ξ(π), subject to the
constraints E[tj(θ)] = tj, j = 1, . . . , k, takes the k-parameter exponential family form:

πmax(θ) ∝ exp
{

λ1t1(θ) + λ2t2(θ) · · ·+ λktk(θ)
}

, θ ∈ Θ, (5)

where λ1, λ2, . . . , λk can be determined, via the k-constraints, in terms of t1, . . . , tk.

Proof. See, [22] for the proof.

When the partial information is about the mean and covariance matrix of θ, outside of which it is
desired to use a prior that is as non-informative as possible, then the theorem yields the following result.

Corollary 1. As partial prior information, let the parameter θ = (θ1, . . . , θp)> have a probability distribution
on Rp with mean vector θ0 = (θ01, . . . , θ0p)

> and covariance matrix Σ, then the maximum entropy prior of
θ is:

πmax(θ) = (2π)−p/2|Σ|−1/2 exp
{
− 1

2
(θ− θ0)

>Σ−1(θ− θ0)
}

, θ ∈ Rp, (6)

a density of the Np(θ0, Σ) distribution.

Proof. According to Lemma 1, the partial information gives tj(θ) = θj and tj = θ0j for j = 1, . . . , p,
tp+1(θ) = tr

[
Σ−1(θ− θ0)(θ− θ0)

>] and tp+1 = p.
∫
Rp πmax(θ)dθ = 1 requires λ1 = · · · = λp = 0

and λp+1 < 0. Thus, the density πmax(θ) is proportional to exp
{
− λp+1tr

[
Σ−1(θ− θ0)(θ− θ0)

>]}.
Setting λp+1 = −tp+1/2p and obtaining the normalizing constant, then we see that the maximum
entropy prior of the parameter in Equation (1) is Equation (6).
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In practical situations, we sometimes have partial information about a multivariate interval
constraint (i.e., θ ∈ C) in addition to the first two moments as given in Corollary 1.

Corollary 2. Assume that the prior distribution of θ = (θ1, . . . , θp)> has the mean vector θ0 = (θ01, . . . , θ0p)
>

and covariance matrix Σ. Further assume, a priori, that the space of θ is constrained to a multivariate interval,
{θ; θ ∈ C} given in Equation (3). Then, a constrained maximum entropy prior of θ is given by:

πconst(θ) =
(2π)−p/2|Σ|−1/2 exp

{
− 1

2 (θ− θ0)
>Σ−1(θ− θ0)

}
Pr(θ ∈ C)

, θ ∈ C, (7)

a density of the Np(θ0, Σ)I(θ ∈ C) distribution, which is a p-dimensional truncated Np(θ0, Σ) distribution
with the space C.

Proof. The certain multivariate interval constraint, Pr(θ ∈ C) = 1, can be expressed in terms of
moment, E[I(θ ∈ C)] = 1. Upon applying Lemma 1 with tj(θ) = θj and tj = θ0j for j = 1, . . . , p,
tp+1(θ) = tr

[
Σ−1(θ − θ0)(θ − θ0)

>] and tp+1 = p, tp+2(θ) = I(θ ∈ C) and tp+2 = 1, and∫
C πconst(θ)dθ = 1, we see that λ1 = · · · = λp = 0, λp+1 < 0, λp+2 = 1, and πconst(θ) ∝

exp
{
−λp+1tr

[
Σ−1(θ− θ0)(θ− θ0)

>]}. Setting λp+1 = −1/2, and obtaining the normalizing constant,
we obtain Equation (7).

2.2. Two-Stage Maximum Entropy Prior

This subsection considers the case where the maximum entropy prior of θ has stochastic constraint
in the form of a multivariate interval, i.e., Pr(θ ∈ C) = γ, where C is defined by Equation (3) and
γ ∈ [γmax, 1]. Here, γmax is Pr(θ ∈ C) calculated by using the maximum entropy prior distribution in
Equation (6). We develop a two-stage prior of θ, denoted by πtwo(θ), which has a different formula
according to the degree of belief, γ, regarding the constraint.

Suppose we have only partial information about the covariance matrix, Ω2, of the parameter θ, in
the first stage of a prior elicitation. Then, for a given mean vector µ0, we may construct the maximum
entropy prior, Equation (6), so that the first stage maximum entropy prior will be πmax(θ|µ0), which is
the density of the Np(µ0, Ω2) distribution. In addition to the information, suppose we have collected
prior information about the unknown µ0, which gives a value of the mean vector θ0 and covariance
matrix Ω1, as well as a stochastic (or certain) constraint, indicating Pr(µ0 ∈ C) = 1. Then, in the
second stage of the prior elicitation, one can elicit the additional prior partial information by using the
constrained maximum entropy prior in Equation (7).

Analogous to the work of [5], we can specify all of the partial information about θ by following
two stages of the maximum entropy prior hierarchy over θ ∈ Rp :

πmax(θ|µ0) = φp(µ0, Ω2), (8)

πconst(µ0) = φp(θ0, Ω1)I(µ0 ∈ C), (9)

where φp(θ0, Ω1)I(µ0 ∈ C) is a truncated normal density, i.e., the density of the Np(θ0, Ω1)I(µ0 ∈ C)

variate, and Ω1 + Ω2 = Σ. Thus, the two stages of prior hierarchy are as follows. In the first stage,
given µ0, θ has a maximum entropy prior that is the Np(µ0, Ω2) distribution as in Equation (6). In the
second stage, µ0 has a distribution obtained by truncating the maximum entropy prior distribution to
elicit uncertainty about the prior information that θ ∈ C. It may be sensible to assume that the value of
θ0 is located in the multivariate interval C or in the centroid of the interval.

Definition 1. The marginal prior density of θ, obtained from the two stages of the maximum entropy prior
hierarchy Equations (8) and (9), is called as a two-stage maximum entropy prior of θ.
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Since Ω1 + Ω2 = Σ, if the constraint is completely certain (i.e., γ = 1), we may set Ω2 → O to get
the πconst(θ) from the two stages of maximum entropy prior, while the two-stage prior yields πmax(θ)

with γ = γmax for the case where Ω1 = O. Thus, the hyper-parameters Ω1 and Ω2 may need to be
assessed to achieve the degree of belief γ about the stochastic constraint. When Ω1 6= O and Ω2 6= O,
the above hierarchy of priors yields the following marginal prior of θ.

Lemma 2. The two stages of the prior hierarchy of Equations (8) and (9) yield the two-stage maximum entropy
prior distribution of θ given by:

πtwo(θ) =
φp(θ; θ0, Σ)Φ̄p(C; µ, Q)

Φ̄p(C; θ0, Ω1)
, θ ∈ Rp (10)

where φp(x; c, A) denotes the pdf of X ∼ Np(c, A) and Φ̄p(C; c, A) denotes a p-dimensional rectangle
probability of the distribution of X, i.e., P(X ∈ C), µ = θ0 + Ω1Σ−1(θ − θ0), Σ = Ω1 + Ω2 and
Q = (Ω−1

1 + Ω−1
2 )−1.

Proof.

πtwo(θ) =

∫
µ0∈C φp(θ; µ0, Ω2)φp(µ0; θ0, Ω1)dµ0

Pr(µ0 ∈ C)
,

=
φp(θ; θ0, Σ)

∫
µ0∈C φp(µ0; µ, Q)dµ0

Φ̄p(C; θ0, Ω1)
,

because µ = θ0 + Ω1Σ−1(θ− θ0) = θ + Ω2Σ−1(θ0 − θ) and θ>Ω−1
2 θ + θ>0 Ω−1

1 θ0 − µ>
(
Ω−1

2 θ +

Ω−1
1 θ0

)
= (θ− θ0)

>Σ−1(θ− θ0).

In fact, the density πtwo(θ) belongs to the family of rectangle screened multivariate normal (RSN)
distributions studied by [23].

Corollary 3. The distribution law of θ with the density in Equation (10) is:

θ
d
=

[
X2|X1 ∈ C

]
∼ RSNp(C; τ, Ψ), (11)

which is a p-dimensional RSN distribution with respective location and scale parameters τ and Ψ and the
rectangle screening space C. Here, the joint distribution of X1 and X2 is N2p(τ, Ψ), where τ = (θ>0 , θ>0 )

> and

Ψ =

(
Ω1 Ω1

Ω1 Σ

)
.

Proof. The density of [X2|X1 ∈ C] is:

πtwo(x2) =
φp
(

x2; θ0, Σ
) ∫

C φp
(
x1; µx1|x2

, Ωx1|x2

)
dx1∫

C φp
(
x1; θ0, Ω1

)
dx1

=
φp
(
x2; θ0, Σ

)
Φ̄p
(
C; µx1|x2

, Ωx1|x2

)
Φ̄p
(
C; θ0, Ω1

)
where µx1|x2

= θ0 + Ω1Σ−1(x2 − θ0) and Ωx1|x2
= Ω1 −Ω1Σ−1Ω1. By use of the binomial inverse

theorem (see, e.g., [24] p. 23), one can easily see that µx1|x2
and Ωx1|x2

are respectively equivalent to µ

and Q, in Equation (10), provided that x2 is changed to θ.
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According to [23], we see that the stochastic representation for the RSN vector θ ∼ RSNp(C; τ, Ψ) is:

θ
d
= θ0 + Y(α, β)

1 + Y2, (12)

where Y1 ∼ Np(0, Ω1) and Y2 ∼ Np(0, Ω2) are independent random vectors. Here, Y(α, β)
1

denotes a doubly-truncated multivariate normal random vector whose distribution is defined by

Y(α, β)
1

d
= [Y1|Y1 ∈ (α, β)] with α = a − θ0 and β = b − θ0. This representation enables us to

implement a one-for-one method for generating a random vector with the RSNp(C, τ, Ψ) distribution.

For generating the doubly-truncated multivariate normal vector Y(α, β)
1 , the R package tmvtnorm by [25]

can be used, where R is a computer language and an environment for statistical computing and graphics.

2.3. Entropy of a Maximum Entropy Prior

Suppose we have partial a priori information that we can specify values for the covariance matrices
Ω1 and Ω2, where Σ = Ω1 + Ω2.

2.3.1. Case 1: Two-stage Maximum Entropy Prior

When the two-stage maximum entropy prior πtwo(θ) is assumed for the prior distribution of θ,
its entropy is given by:

Ent(πtwo(θ)) = −
∫
Rp

πtwo(θ) log πtwo(θ)dθ

=
p
2

log(2π) + log Φ̄p(C; θ0, Ω1) +
1
2

tr
[
Σ−1Etwo

[
(θ− θ0)(θ− θ0)

>]]
+

1
2

log |Σ| − Etwo

[
log h(θ)

]
, (13)

where Σ = Ω1 + Ω2, h(θ) = Φ̄p
(
C; θ0 + Ω>1 Σ−1(θ− θ0), Ω1 −Ω>1 Σ−1Ω1

)
, and the Etwo denotes the

expectation with respect to the RSN distribution with the density πtwo(θ). Equation (12) shows that
E[θ] = θ0 + ξ, and Cov(θ) = Ω2 + H. Here, ξ = (ξ1, . . . , ξp)> and H = {hij}, i, j = 1, . . . , p, are
the mean vector and covariance matrix of the doubly-truncated multivariate normal random vector,
Y1 ∼ Np

(
0, Ω1

)
I
(
y1 ∈ (α, β)

)
. Readers are referred to [25] with the R package tmvtnorm and [26] with

the R package mvtnorm for implementing the respective calculations of doubly-truncated moments and
integrations. As seen in Equation (13), an analytic calculation of E

[
log h(θ)

]
involves a complicated

integration. Instead, by using a Monte Carlo integration, we may calculate it approximately.
According to Equation (12), it follows that the stochastic representation of the prior distribution
θ ∼ RSNp(C; τ, Ψ) with density πtwo(θ) is useful for generating θ’s from the prior distribution θ by
using the R packages mvtnorm and tmvtnorm and, hence, implementing the Monte Carlo integration.

2.3.2. Case 2: Constrained Maximum Entropy Prior

When the constrained maximum entropy prior πconst(θ) in Equation (7) is assumed for the prior
distribution of θ, its entropy is given by:

Ent(πconst(θ)) = −
∫

C
πconst(θ) log πconst(θ)dθ

=
p
2

log(2π) + log Φ̄p(C; θ0, Σ) +
1
2

log |Σ|

+
1
2

tr
(

Σ−1Econst

[
(θ− θ0)(θ− θ0)

>
])

.

The Econst denotes the expectation with respect to the doubly-truncated multivariate normal
distribution with the density πconst(θ), and its analytic calculation is not possible. Instead, the R
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packages tmvtnorm and mvtnorm are available for calculating the respective moment and integration in
the expression of Ent(πconst).

2.3.3. Case 3: Maximum Entropy Prior

On the other hand, if the maximum entropy prior πmax(θ) is assumed for the prior distribution of
the location parameter θ, its entropy is given by:

Ent(πmax(θ)) = −
∫
Rp

πmax(θ) log πmax(θ)dθ

=
p
2
+

p
2

log(2π) +
1
2

log |Σ|.

The following theorem asserts the relationship among the degrees of belief, accounted for by the
three priors, about the a priori uncertain constraint

{
θ; θ ∈ C

}
.

Theorem 1. The degrees of belief γmax, γtwo, and γconst about the a priori constraint
{

θ; θ ∈ C
}

, accounted
for by πmax(θ), πtwo(θ) and πconst(θ), have the following relation:

γmax ≤ γtwo ≤ γconst, (14)

provided that the parameters of πtwo(θ) in Equation (10) satisfy:

Φ̄2p
(
C∗; τ, Ψ

)
≥ Φ̄p

(
C; θ0, Ω1

)
Φ̄p
(
C; θ0, Σ

)
,

where C∗ = {x; x1 ∈ C, x2 ∈ C} denotes the 2p-variate interval of random vector X = (X>1 , X>2 )
>, the

equality γmax = γtwo holds for Ω1 = O, γtwo = γconst holds for Ω2 = O and γmax = γtwo = γconst holds
for C = Rp.

Proof. The conditions for equalities are straightforward from the stochastic representation in
Equation (12). Under the πmax(θ) in Equation (6),

γmax = Pr(θ ∈ C) = Φ̄p(C; θ0, Σ), γtwo =
∫

θ∈C
πtwo(θ)dθ =

Φ̄2p
(
C∗; τ, Ψ

)
Φ̄p
(
C; θ0, Ω1

) ,

because πtwo(θ) is the density of θ ∼ RSNp(C; τ, Ψ), and γconst =
∫

θ∈C πconst(θ)dθ = 1. Therefore, the
condition Φ̄2p

(
C∗; τ, Ψ

)
≥ Φ̄p

(
C; θ0, Ω1

)
Φ̄p
(
C; θ0, Σ

)
gives the inequality relation.

3. Properties

3.1. Objective Measure of Uncertainty

In constructing the two stages of prior hierarchy over θ ∈ Rp, the usual practice is to set the value
of θ0 as the centroid of the uncertain constrained multivariate interval C = (a, b). In this case, we have
the following result.

Corollary 4. In the case where the value of θ0 in πtwo(θ) is the centroid of the multivariate interval C,

γmax ≤ γtwo ≤ γconst. (15)

Proof. Equation (12) indicates that:

γtwo = Pr
(
Y1 + Y2 ∈ (α, β)| Y1 ∈ (α, β)

)
and γmax = Pr

(
Y1 + Y2 ∈ (α, β)

)
,
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where Y1 ∼ Np(0, Ω1) and Y2 ∼ Np(0, Ω2) are independent random vectors, α = a − θ0, and
β = b− θ0. When θ0 is the centroid of C, α = −β, and hence:

Pr
(
Y1 + Y2 ∈ (α, β), Y1 ∈ (α, β)

)
≥ Pr

(
Y1 + Y2 ∈ (α, β)

)
Pr
(
Y1 ∈ (α, β)

)
by the theorem of [27]. This leads to the first inequality, γmax ≤ γtwo. Since γconst = 1, we see that the
second inequality in Equation (15) holds.

The following are immediate from Theorem 1 and Corollary 4 : (i) The two-stage maximum
entropy prior achieves γtwo for the degree of belief about the uncertain multivariate interval constraint{

θ; θ ∈ C
}

, and its value satisfies γtwo ∈ [γmax, 1] if the condition in the theorem is satisfied. Note that
the equality γtwo = 1 holds for Ω2 = O; (ii) The degree of belief about the multivariate interval
constraint is a function of the covariance matrices Ω1 and Ω2. Thus, if we have the partial a priori
information that specifies values of the covariance matrices Ω1 and Ω2, the degree of belief γtwo,
associated with πtwo(θ), can be assessed.
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Figure 1. Graphs of the difference between p1 = γmax, p2 = γtwo and p3 = γconst. (a), (c), and (e) for
the difference between p3 and p2; (b), (d), and (f) for the difference between p2 and p1.
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Figure 1 compares the degrees of belief about the uncertain multivariate interval constraint{
θ; θ ∈ C

}
, accounted for by the three priors of θ. The figure is obtained in terms of δ ∈ [0, 1]

with Ω1 = δΣ and Ω2 = (1− δ)Σ, p = 3, C = (a, 21p + a) and θ0 = 0, where a = (−0.1× p)1p,
Σ = σ2(1 − ρ)Ip + σ2ρ1p1>p is an intra-class covariance matrix, and 1p denotes a p × 1 summing
vector whose every element is unity. When the constraint is changed to C = (−(21p + a),−a) in this
comparison, one can easily check that the degrees of belief do not change and give the same results
seen in Figure 1. The figure depicts exactly the same inequality relationship given in Theorem 1.
In comparison with γtwo and γconst = 1, we see that the degree of belief in the uncertain constraint,
accounted for by using πtwo(θ), becomes large as Ω2 → O (or equivalently Ω1 → Σ). In particular,
this tendency is more evident for small σ2 and large ρ values. Third, the difference in γtwo and γmax

in the right panel suggests that the difference becomes large as Ω2 tends to O. In particular, for fixed
values of δ and ρ, the figure shows that the difference increases as the value of σ2 decreases, while it
decreases as the value of ρ increases for fixed values of δ and σ2. Therefore, the figure confirms that the
two-stage maximum entropy prior πtwo(θ) accounts for the a priori uncertain constraint

{
θ; θ ∈ C

}
with the degree of belief γtwo ∈ [γmax, 1]. The figure also notes that the magnitude of γtwo depends
on both the first stage covariance Ω2 and the second stage covariance Ω1 in the two stages of prior
hierarchy in Equations (8) and (9). All other choices of the values of p, ρ, and C, satisfying the condition
in Theorem 1, produced similar graphics depicted in Figure 1, with the exception of the magnitude of
the differences among the degrees of belief.

3.2. Properties of the Entropy

The expected uncertainty in the multivariate interval constraint of the location parameter θ,{
θ; θ ∈ C

}
, accounted for by the two-stage prior πtwo(θ), is measured by its entropy Ent(πtwo(θ)),

and information about the constraint is defined by −Ent(πtwo(θ)). Thus, as considered by [20,28], the
difference between the Shannon measures of information, before and after applying the uncertain
constraint {θ; θ ∈ C}, can be explained by the following property.

Corollary 5. When θ0 is the centroid of the multivariate interval C,

Ent(πmax(θ)) ≥ Ent(πtwo(θ)) ≥ Ent(πconst(θ)), (16)

where Ent(πtwo(θ)) reduces to Ent(πmax(θ)) for Ω1 = O, while Ent(πtwo(θ)) is equal to Ent(πconst(θ))

for Ω2 = O. All of the equalities hold for C = Rp.

Proof. It is straightforward to check the equalities by using the stochastic representation in Equation (12).
Since πmax(θ) is the maximum entropy prior, it is sufficient to show that Ent(πtwo(θ)) ≥ Ent(πconst(θ)).
First, Σ −Ω1 = Ω2 > 0 implies that Φ̄p(C; θ0, Ω1) ≥ Φ̄p(C; θ0, Σ) by the lemma of [27]. Second,
γconst = Pr

(
Y1 + Y2 ∈ (α, β)| Y1 + Y2 ∈ (α, β)

)
≥ Pr

(
Y1 + Y2 ∈ (α, β)| Y1 ∈ (α, β)

)
= γtwo

by Corollary 4. This and the lemma of [27] indicate that Cov
(
Y1 + Y2| Y1 ∈ (α, β)

)
− Cov

(
Y1 +

Y2| Y1 + Y2 ∈ (α, β)
)

is a positive-semi-definite, and hence, tr
(

Σ−1Etwo

[
(θ− θ0)(θ− θ0)

>
])
≥

tr
(

Σ−1Econst

[
(θ− θ0)(θ− θ0)

>
])

by ([29], p. 54), where Etwo

[
(θ−θ0)(θ−θ0)

>
]
= Cov

(
Y1 +Y2|Y1 ∈

(α, β)
)

and Econst

[
(θ− θ0)(θ− θ0)

>
]
= Cov

(
Y1 + Y2| Y1 + Y2 ∈ (α, β)

)
for α = −β. These two results

give the inequality Ent(πtwo(θ)) ≥ Ent(πconst(θ)), because Etwo
[

log h(θ)
]
≤ 0.

Figure 2 depicts the difference between Ent(πmax(θ)), Ent(πtwo(θ)) and Ent(πconst(θ)) using
the same parameter values used in constructing Figure 1. Figure 2 coincides with the inequality
relation given in Corollary 5 and indicates the following consequences: (i) Even though θ0 is not the
centroid of the multivariate interval C, we see that Ent(πmax(θ)) > Ent(πtwo(θ)) > Ent(πconst(θ)) for
δ ∈ (0, 1). (ii) The difference Ent(πtwo(θ))− Ent(πconst(θ)) is a monotone decreasing function of δ,
while Ent(πmax(θ))− Ent(πtwo(θ)) is a monotone increasing function. (iii) The differences get bigger
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the larger σ2 becomes for δ ∈ (0, 1). This indicates that the entropy of πtwo(θ) is associated not only
with the covariance of the first stage prior Ω2, but that of the second stage prior Ω1 in Equations (8)
and (9), respectively. (iv) Upon comparing Figures 1 and 2, the entropy Ent(πtwo(θ)) is closely related
to the degree of belief γtwo, such that:

Ent(πtwo(θ)) = ctwo(1− γtwo),

where ctwo > 0 is obtained by using Equations (13) and (16) and 1−γtwo denotes the degree of uncertainty
in a priori information regarding the multivariate interval constraint

{
θ; θ ∈ C

}
elicited by πtwo(θ).

These consequences and Corollary 5 indicate that 1− γtwo stands between 1− γconst and 1− γmax.
Thus, the two-stage prior πtwo(θ) is useful for eliciting uncertain information about the multivariate
interval constraint. Theorem 1 and the above statements produce an objective method for eliciting the
stochastic constraint {θ; θ ∈ C} via πtwo(θ).
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Figure 2. Graphs of the entropy difference between E1 = Ent(πmax(θ)), E2 = Ent(πtwo(θ)) and
E3 = Ent(πconst(θ)) for different values of δ ∈ [0, 1]. (a), (c), and (e) for the difference between E2 and
E3; (b), (d), and (f) for the difference between E1 and E2.
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Corollary 6. Suppose the degree (1− γtwo) of uncertainty associated with the stochastic constraint {θ; θ ∈ C}
is given. An objective way of eliciting the prior information by using πtwo(θ) is to choose the covariance matrices
Ω1 and Ω2 in πtwo(θ), such that γtwo = Φ̄2p

(
C∗; τ, Ψ

)
/Φ̄p

(
C; θ0, Ω1

)
, where Σ = Ω1 + Ω2 is known and

Ω1 = δΣ with δ ∈ [0, 1].

Since γconst = 1, the degree of uncertainty ( 1− γtwo) is equal to γconst − γtwo. The left panel of
Figure 1 plots a graph of 1− γtwo against δ. The graph indicates that a δ value for πtwo(θ) can be easily
determined for given Σ, and the value is in inverse proportion to the degree of uncertainty regardless
of Σ.

3.3. Posterior Distribution

Suppose the distribution of the error vector in the model (1) belongs to the family of scale
mixture of normal distributions defined in Equation (2); then, the conditional distribution of the data
information from n = 1 is [y|η] ∼ Np(θ, κ(η)Λ). It is well known that the priors πmax(θ) and πconst(θ)

are conjugate priors for the location vector θ, provided that η and Λ are known. That is, conditional on
η, each prior satisfies the conjugate property that the prior and the posterior distributions of θ belong
to the same family of distributions. The following corollary provides that the conditional conjugate
property also applies to πtwo(θ).

Corollary 7. Let
[
y|η
]
∼ Np(θ, κ(η)Λ) with known Λ. Then, the two-stage maximum entropy prior πtwo(θ)

in Equation (10) yields the conditional posterior distribution of θ given by:[
θ|y, η

]
∼ RSNp(C; τ∗η , Ψ∗η), (17)

where Ω1 = δΣ, δ ∈ (0, 1), Σ = Ω1 + Ω2, Σ∗1η = δ(1− δ)Σ + δ2Σ∗η , Σ∗η =
(
κ(η)−1Λ−1 + Σ−1)−1,

τ∗η =

(
θ∗0η

θ∗η

)
, Ψ∗η =

(
Σ∗1η δΣ∗η
δΣ∗η Σ∗η

)
, θ∗0η = (1− δ)θ0 + δθ∗η , and θ∗η = Σ∗η

(
κ(η)−1Λ−1y+Σ−1θ0

)
.

Proof. When the two-stage prior πtwo(θ) in Equation (10) is used, the conditional posterior density of
θ given η is:

p(θ|y, η) ∝ φp(y; θ, κ(η)Λ)φp(θ; θ0, Σ)Φ̄p
(
C; µ, Q

)
/Φ̄p

(
C; θ0, Ω1

)
,

∝ φp(θ; θ∗η , Σ∗η)Φ̄p
(
C; µ∗η , Q∗η

)
,

in that Φ̄p
(
C; µ, Q

)
= Φ̄p

(
C; µ∗η , Q∗η

)
, where µ = θ0 + Ω1Σ−1(θ− θ0), µ∗η = θ∗0η + δ(θ− θ∗η) and

Q∗η = Σ∗1η − δ2Σ∗η . The last term of the proportional relations is a kernel of the RSNp(C; τ∗η , ψ∗η) density
defined by Corollary 3.

Corollaries 3 and 7 establish the conditional conjugate property of πtwo(θ) : Suppose the location
parameter θ is the normal mean vector, then the RSN prior distribution, i.e., πtwo(θ), yields the
conditional posterior distribution, which belongs to the class of RSN distributions as given in
Corollary 7. In the particular case where the distribution of η degenerates at κ(η) = 1, i.e., the model (1)
is a normal model, then the conditional conjugate property of πtwo(θ) reduces to the unconditional
conjugate property.

Using the relation between the distribution of Equation (11) and that of Equation (12), we can
obtain the stochastic representation for the conditional posterior RSN distribution in Equation (17) as follows.

Corollary 8. Conditional on the mixing variable η, the stochastic representation of
[
θ|y, η

]
∼ RSNp(C; τ∗η , Ψ∗η) is:

[θ|y, η]
d
= θ∗η + δΣ∗ηΣ∗−1

1η W
(α∗η,β∗η)
1 +

(
Σ∗η − δ2Σ∗ηΣ∗−1

1η Σ∗η
)1/2W2, (18)
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where W1 ∼ Np(0, Σ∗1η) and W2 ∼ Np(0, Ip) are independent and W
(α∗η,β∗η)
1

d
=
[
W1|W1 ∈ (α∗η, β∗η)

]
, where

α∗ = a− θ∗0η and β∗ = b− θ∗0η.

Proof. Suppose the distributions of X1 and X2 in Equation (11) changed to X1
d
= θ∗0η + W1 and

X2
d
= θ∗η + δΣ∗ηΣ∗−1

1η W1 +
(
Σ∗η − δ2Σ∗ηΣ∗−1

1η Σ∗η
)1/2W2. Then, the stochastic representation in Equation (12)

associated with the distribution
[
X2|X1 ∈ C

]
in Equation (11) gives the result.

4. Hierarchical Constrained Scale Mixture of Normal Model

For the model (1), if we are completely sure about a multivariate interval constraint on θ, a suitable
restriction on the parameter space θ ∈ Rp, such as using a truncated normal prior distribution, is
expected for eliciting the information. However, there are certain cases where we have a priori
information that the location parameter θ is highly likely to have a multivariate interval constraint, and
thus, the value of θ needs to be located with uncertainty in a restricted space {θ ∈ C}with C = (a, b).
Then, we cannot be sure about the constraint, and then, the constraint becomes stochastic (or uncertain),
as in our problem of interest. In this case, the uncertainty about the constraint must be taken into
account in the estimation procedure of the model (1). This section considers a hierarchical Bayesian
estimation of the scale mixture of normal models reflecting the uncertain prior belief on θ.

4.1. The Hierarchical Model

Let us consider a hierarchical constrained scale mixture of normal model (HCSMN) that uses the
hierarchy of the scale mixture of normal model (1) and includes the two stages of a prior hierarchy in
the following way: [

yi|ηi, Λ
]

= θ+ εi, εi ∼ Np(0, κ(ηi)Λ), i = 1, . . . , n, (19)

θ|µ0 ∼ Np(µ0, Ω2), independent of (ε1, · · · , εn)>,

µ0 ∼ Np(θ0, Ω1)I(µ0 ∈ C),

Λ ∼ W−1
p (D, d), d > 2p,

ηi
iid∼ g(η), i = 1, . . . , n,

where W−1
p (D, d) denotes the inverted Wishart distribution with positive definite scale matrix D and d

degrees of freedom whose pdf W−1
p (Λ; D, d) is:

W−1
p (Λ; D, d) ∝ |Λ|−d/2 exp

{
− 1

2
tr(Λ−1D)

}
,

Ω1 +Ω2 = Σ with Ω1 = δΣ, and δ ∈ [0, 1].

4.2. The Gibbs Sampler

Based on the HCSMN model structure with the likelihood and the prior distributions in
Equation (19), the joint posterior distribution of θ, Λ and η = (η1, . . . , ηn)> given the data {y1, . . . , yn} is:

p(θ, Λ, η | Data) ∝
n

∏
i=1
|κ(ηi)Λ|−1/2 exp

{
− 1

2
tr
[
Λ−1κ(ηi)

−1(yi − θ)(yi − θ)>
]}

× φp(θ; µ0, Ω2)φp(µ0; θ0, Ω1)I(µ0 ∈ C)

× |Λ|−d/2 exp
{
− 1

2
tr(Λ−1D)

} n

∏
i=1

gi(ηi), (20)
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where g(ηi)’s denote the densities of the mixing variables ηi’s. Note that the joint posterior of
Equation (20) is not simplified in an analytic form of the known density and, thus, intractable for
the posterior inference. Instead, we use the Gibbs sampler for the posterior inference. See [30] for
a reference. To run the Gibbs sampler, we need the following full conditional posterior distributions:

(i) The full conditional posterior densities of ηi’s are given by:

p(ηi| θ, Λ, yi) ∝ κ(ηi)
− p

2 exp

{
−(yi − θ)>Λ−1(yi − θ)

2κ(ηi)

}
g(ηi), i = 1, . . . , n, (21)

(ii) The full conditional distribution of θ is obtained by using the way analogous to the proof of
Corollary 7. It is: [

θ | Λ, η, Data
]
∼ RSNp

(
C; τpos, Ψpos

)
, (22)

where:

τpos =

(
τ0

τ1

)
, Ψpos

(
Ω∗0 δΩ∗

δΩ∗ Ω∗

)
, τ0 = (1− δ)θ0 + δτ1,

τ1 = Ω∗
(
Σ−1θ0 +∑n

i=1(κ(ηi)Λ)−1yi
)
, Ω∗ =

(
Σ−1 +∑n

i=1(κ(ηi)Λ)−1)−1, and Ω∗0 = δ(1− δ)Σ+ δ2Ω∗.
(iii) The full conditional posterior distribution of Λ is an inverse-Wishart distribution:[

Λ | θ, η, Data
]
∼W−1

p

(
V, m

)
, m > 2p, (23)

where V = D +∑n
i=1 κ(ηi)

−1(yi − θ)(yi − θ)> and m = n+ d.

4.3. Markov Chain Monte Carlo Sampling Scheme

When conducting a posterior inference of the HCSMN model, using the Gibbs sampling algorithm
with the full conditional posterior distributions of ηi’s, θ and Λ, the following points should be noted.

note 1: Variable ηi at κ(ηi) = 1, i.e., the HCN (hierarchical constrained normal) model with

εi
iid∼ Np(0, Λ), i = 1, . . . , n, the Gibbs sampler consists of two conditional distributions [θ |Λ, Data]

and [Λ |θ, Data]. To sample from the first full conditional posterior distribution, we can utilize the
stochastic representations of the RSN distribution in Corollary 8. The R package tmvtnorm and
the R package mvtnorm can be used to sample from the RSN distribution in Equation (22).

note 2: According to choice of the distribution ηi and the mixing function κ(ηi), the HCSMN model
may produce a different model other than the HCN model, such as hierarchical constrained
multivariate tν (HCtν), hierarchical constrained multivariate logit, hierarchical constrained
multivariate stable and hierarchical constrained multivariate exponential power models. See,
e.g., [31,32], for various distributions of ηi and corresponding function κ(ηi), which can be used
to construct the HCSMN model.

note 3: When the hierarchical constrained multivariate tν (HCtν) model is considered, the

hierarchy of the model in Equation (19) consists of εi
iid∼ Np(0, κ(ηi)Λ) with κ(ηi) = η−1

i and
ηi ∼ Gamma(ν/2, ν/2), i = 1, . . . , n. Thus, the Gibbs sampler comprises the conditional posterior
Equations (21)–(23). Under the HCtν model, the distribution of Equation (21) reduces to:

[ηi|θ, Λ, yi] ∼ Gamma(ν∗/2, h/2),

where ν∗ = p + ν and h = ν + (yi − θ)>Λ−1(yi − θ). To limit model complexity, we consider
only fixed ν, so that we can investigate different HCtν models. As suggested by [32], a uniform prior
on 1/ν (0 < 1/ν < 1) can be considered. However, this will bring additional computational burden.
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note 4: Except for the HCN and HCtν models, the Metropolis–Hastings algorithm within the
Gibbs sampler is used for estimating the HCSMN models, because the conditional posterior
densities Equation (20) do not have explicit forms of known distributions as in Equations (21)
and (22). See, e.g., [22], for the algorithm for sampling ηi from various mixing distributions, gi(ηi).
A general procedure for the algorithm is as follows: Given the current values Θ = {η, θ, Λ}, we
independently generate a candidate ηi from a proposal density q(η∗i |ηi) = gi(η

∗
i ), as suggested

by [33], which is used for a Metropolis–Hastings algorithm. Then, accept the candidate value
with the acceptance rate:

α(ηi, η∗i ) = min
{

p(Θ|η∗i )
p(Θ|ηi)

, 1
}

i = 1, . . . , n. Because the target density is proportional to p(Θ|ηi)gi(ηi) and
p(Θ|ηi) = φp(yi; θ, κ(ηi)Λ) is uniformly bounded for ηi > 0.

note 5: As noted from Equations (8) and (9), the second and third stage priors of the HCSMN
model in Equation (19) reduce to the two-stage prior πtwo(θ), eliciting the stochastic multivariate
interval constraint with degree of uncertainty 1− γtwo. Instead, if the maximum entropy prior
πmax(θ) and the constrained maximum entropy prior πconst(θ) are used for the HCSMN, then the
respective full conditional distributions of θ of the Gibbs sampler change from Equation (22) to:

[
θ | Λ, η, Data

]
∼ Np

(
τ1, Ω∗

)
for θ ∈ Rp and

[
θ | Λ, η, Data

]
∼ Np

(
τ1, Ω∗

)
I
(
θ ∈ C

)
,

where τ1 and Ω∗ are the same as given in Equation (22).

4.4. Bayes Estimation

For a simple example, let us consider the HCN model with known Λ. When we assume a stochastic
constraint {θ; θ ∈ C} obtained from a priori information, we may use the two-stage maximum entropy
prior πtwo(θ) defined by the second and third stages of the HCSMN model (19) with δ ∈ (0, 1), where
the value of δ is determined by using Corollary 6. This yields a Bayes estimate based on the two-stage
maximum entropy prior. Corollary 8 yields:

θ̂two = τ1 + δΩ∗Ω∗−1
0 E

[
θ∗tn
]
= τ1 + δΩ∗Ω∗−1

0 ζ (24)

and:

ζ = (ζ1, . . . , ζp)
> with ζi = w0i

φ(ui/w0i)− φ(vi/w0i)

Φ(vi/w0i)−Φ(ui/w0i)
, i = 1, . . . , p,

where θ∗tn ∼ Np(0, Ω∗0)I
(
θ∗tn ∈ (u, v)

)
, a truncated normal distribution with u = a− τ0 = (u1, . . . , up)>

and v = b− τ0 = (v1, . . . , vp)> and w0i denotes i-th diagonal element of Ω∗0. Here, τ1 and τ0 are the
same as those in Equation (22), and φ(·) denotes the univariate standard normal density function.
See [25,34] for the first moment of the truncated multivariate normal distribution and for a numerical
calculation of the posterior covariance matrix Cov

(
θ∗tn
)
, respectively.

On the other hand, when we have certainty about the constraint {θ; θ ∈ C}, we may use the
HCSMN model with δ = 1, which uses the constrained maximum entropy prior πconst(θ) instead of
πtwo(θ) in its hierarchy. This case gives the Bayes estimate:

θ̂const = E
[
θtn
]
= τ1 + ζ∗ (25)

and:

ζ∗ = (ζ∗1, . . . , ζ∗p)
> with ζ∗i = wi

φ(ai/wi)− φ(bi/wi)

Φ(bi/wi)−Φ(ai/wi)
, i = 1, . . . , p,

where θtn ∼ Np(τ1, Ω∗)I
(
θtn ∈ C

)
and wi denotes i-th diagonal element of Ω∗.
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On the contrary, when we have completely no a priori information about the constraint in the
space of θ, the HCSMN model with the maximum entropy prior πmax(θ) (equivalently, the HCSMN
model with δ = 0) may be used for the posterior inference. In this model, the Bayes estimate of the
location parameter is given by:

θ̂max = τ1. (26)

Comparing Equations (24) and (25) to Equation (26), we see that Equations (24) and (25) are the
same for δ = 1, and the last term in Equation (24) vanishes when we assume that there is no a priori
information about the stochastic constraint, {θ; θ ∈ C}. In this sense, the last term in Equation (24)
can be interpreted as a shrinkage effect of the HCSMN model with δ 6= 0. This effect makes the Bayes
estimator of θ shrink toward the stochastic constraint. In addition, we can calculate the difference
between the estimates in Equations (24) and (25):

Di f f = θ̂const− θ̂two = ζ∗− δΩ∗Ω∗−1
0 ζ.

This difference vector is a function of the degree of belief γtwo or δ ∈ (0, 1) for Equation (25) is
based on γconst = 1 and δ = 1 and Di f f = 0 for δ = 1. Thus, the difference represents a stochastic effect
of the multivariate interval constraint.

5. Numerical Illustrations

This section presents an empirical analysis of the proposed approach (using the HCSMN model) to
the stochastic multivariate interval constraint on the location model. We provide numerical simulation
results and a real data application comparing the proposed approach to the hierarchical Bayesian
approaches, which use usual priors, πmax(θ) and πconst(θ). For numerical implementations, we develop
our program written in R, which is available from the author upon request.

5.1. Simulation Study

To examine the performance of the HSCMN model for estimating the location parameter with
a stochastic multivariate interval constraint, we conduct a simulation study. The study is based
up 200 synthetic datasets for different sample sizes n = 20, 200 generated form each distribution
of N4(θ, Λ) and t4(θ, Λ, ν), a four-dimensional t with the location parameter θ, scale matrix Λ and
degrees of freedom ν = 5. For the simulation, we used the following choice of parameter values:
θ = (θ, θ, mθ, mθ)> and Λ = (1− ρ)I4 + ρ141>4 , where m = (−1)θ+1, ρ = 0.5, and θ = 1, 2.

To fit each of the 200 synthetic datasets (Dataset I) generated from the N4(θ, Λ) distribution, we
implemented the Markov chain Monte Carlo (MCMC) posterior simulation with the three different
HCN models with the multivariate interval constraint C = (a, b)>: the HCN models that use πtwo(θ),
πmax(θ), and πconst(θ). We denote these models by HCN(πtwo), HCN(πmax) and HCN(πconst). For each
dataset, MCMC posterior sampling was based on the first 10,000 posterior samples as the burn-in,
followed by a further 100,000 posterior samples with a thinning size of 10. Thus, the final MCMC
posterior samples with a size of 10,000 were obtained for each of the three HCN models. Exactly the
same MCMC posterior sampling scheme is applied to each of the 200 synthetic datasets (Dataset II) from
the t4(θ, Λ, ν) distribution based on the three HCtν models, HCtν(πtwo), HCtν(πmax) and HCtν(πconst).
To satisfy a subjective perspective of the hierarchical models, we set θ0 = 0, Σ = Ω1 +Ω2 = 0.5θI4, and
Ω1 = 0.85Σ to specify our information about the parameter θ, while we set D = 10−2I4 and d = 2p+ 5
to elicit no information about Λ (see, e.g., [32]). For the stochastic multivariate interval constraint, we
set a = −0.5θ14 and b = 0.5θ14, and this constraint gives the degree of belief γmax = 0.073 (or 0.217) and
γtwo = 0.394 (or 0.571) for θ = 1 (or 2). Note that the degree of belief in the constraint, accounted for by
πconst(θ), is γconst = 1 for all of the values of θ.

Summary statistics of the posterior samples of the location parameters (the mean and the standard
deviation of 200 posterior means of each parameter) along with the degrees of belief about the
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constraint C (γmax, γtwo and γconst) are listed in Table 1. For the sake of saving a space, we omit the
summary statistics regarding Λ from the table. The table indicates the followings: (i) The MCMC
method performs well in estimating the location parameters of all of the models considered. This can
be justified by the estimation results of the HCN(πmax) and HCtν(πmax) models. Specifically, in the
posterior estimation of θ, the data information tends to dominate the prior information about θ for the
large sample case (i.e., n = 200), while the latter tends to dominate the former for the small sample
case of n = 20. Furthermore, the convergence of the MCMC sampling algorithm was evident, and
a discussion about the convergence will be given in Subsection 5.2; (ii) The estimates of θ obtained from
the HCN(πtwo) and HCtν(πtwo) models are uniformly closer to the stochastic constraint θ ∈ C than
those from the HCN(πmax) and HCtν(πmax) models. This confirms that πtwo(θ) induces an obvious
shrinkage effect in Bayesian estimation of the location parameter with a stochastic multivariate interval
constraint; (iii) Comparing the estimates of θ obtained from the HCN(πtwo) (or HCtν(πtwo)) model to
those from the HCN(πconst) (or HCtν(πconst)) model, we see that the difference between their vector
values is significant. Thus, we can expect an apparent stochastic effect if we use πtwo(θ) in Bayesian
estimation of the location parameter with a stochastic multivariate interval constraint.

Table 1. Summaries of posterior samples of θ = (θ1, θ2, θ3, θ4)
> obtained by using three different priors;

πtwo(θ), πmax(θ) and πconst(θ). HCN, hierarchical constrained normal.

HCN(πmax) HCN(πtwo) HCN(πconst)
Dataset I (θ1 θ2 θ3 θ4) (θ1 θ2 θ3 θ4) (θ1 θ2 θ3 θ4)

n = 20
true 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

mean 0.853 0.862 0.869 0.857 0.525 0.530 0.542 0.549 0.141 0.112 0.139 0.121
s.d. 0.203 0.212 0.196 0.194 0.189 0.187 0.176 0.167 0.099 0.111 0.096 0.055

n = 200
true 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

mean 0.978 0.979 0.981 0.977 0.912 0.914 0.916 0.912 0.342 0.291 0.294 0.299
s.d. 0.073 0.072 0.074 0.068 0.060 0.067 0.069 0.064 0.037 0.058 0.077 0.064

n = 20
true 2.000 2.000 −2.000 −2.000 2.000 2.000 −2.000 −2.000 2.000 2.000 −2.000 −2.000

mean 1.837 1.846 −1.853 −1.842 1.306 1.314 −1.331 −1.349 0.599 0.501 −0.483 −0.493
s.d. 0.215 0.223 0.208 0.205 0.295 0.271 0.262 0.238 0.232 0.263 0.291 0.141

n = 200
true 2.000 2.000 −2.000 −2.000 2.000 2.000 −2.000 −2.000 2.000 2.000 −2.000 −2.000

mean 1.977 1.979 −1.980 −1.977 1.782 1.784 −1.785 −1.782 0.884 0.856 −0.795 −0.733
s.d. 0.074 0.072 0.074 0.068 0.068 0.065 0.068 0.062 0.029 0.051 0.068 0.062

HCt5(πtwo) HCt5(πmax) HCt5(πconst)
Dataset II (θ1 θ2 θ3 θ4) (θ1 θ2 θ3 θ4) (θ1 θ2 θ3 θ4)

n = 20
true 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

mean 0.681 0.691 0.688 0.774 0.332 0.368 0.403 0.361 0.155 0.157 0.158 0.161
s.d. 0.172 0.182 0.201 0.205 0.198 0.190 0.218 0.186 0.108 0.112 0.120 0.099

n = 200
true 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

mean 1.003 0.974 1.033 1.006 0.802 0.818 0.814 0.806 0.362 0.411 0.341 0.351
s.d. 0.175 0.178 0.172 0.199 0.061 0.065 0.070 0.081 0.048 0.052 0.039 0.047

n = 20
true 2.000 2.000 −2.000 −2.000 2.000 2.000 −2.000 −2.000 2.000 2.000 −2.000 −2.000

mean 1.724 1.763 −1.764 −1.675 0.886 0.874 −0.857 −0.924 0.415 0.428 −0.496 −0.489
s.d. 0.239 0.230 0.245 0.231 0.324 0.319 0.343 0.313 0.201 0.196 0.193 0.204

n = 200
true 2.000 2.000 −2.000 −2.000 2.000 2.000 −2.000 −2.000 2.000 2.000 −2.000 −2.000

mean 2.018 1.943 −1.991 −2.103 1.702 1.699 −1.715 −1.689 0.967 0.986 −0.965 −0.959
s.d. 0.079 0.082 0.081 0.073 0.096 0.099 0.091 0.089 0.053 0.049 0.047 0.045

5.2. Car Body Assembly Data Example

John and Wichern consider car body assembly data (accessible through www.prenhall.com/
statistics, [35]) obtained from a study of its sheet metal assembly process. A major automobile
manufacturer uses sensors that record the deviation from the nominal thickness (millimeters ×10−1) at
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a specific location on a car, which has the following levels: the deviation of the car body at the final stage
of assembly (Y1) and that at an early stage of assembly (Y2). The data consist of 50 pairs of observations
of (Y1, Y2), and they provide summary statistics as listed in Table 2. The tests given by ([36], p. 148),
using the measures of multivariate skewness and kurtosis, accept the bivariate normality of the joint
distribution of Y = (Y1, Y2)

>. The respective skewness and kurtosis are b1p = 0.074 and b2p = 7.337,
which give respective p-values of 0.954 (chi-square test for the skewness) and 0.721 (normal test for the
kurtosis), indicating the observation model for the dataset is:

yi = θ+ εi, i = 1, . . . , 50,

where εi
iid∼ N2(0, Λ), Λ = {λij}. The Shapiro–Wilk (S-W) test is also implemented to see the marginal

normality of each Yi, i = 1, 2. The test statistic values and corresponding p-values of the S-W test are
listed in Table 2.

Table 2. Summary statistics for the car body assembly data. S-W, Shapiro–Wilk.

Variable Mean s.d. S-W p-Value

Y1 −1.996 2.781 0.959 0.083
Y2 7.426 5.347 0.989 0.926

In practical situations, we may have information about the mean vector of the observation model
(i.e., mean deviation from the nominal thickness) from a past study of the sheet metal assembly process
or a quality control report of the automobile manufacturer. Suppose that the information about the
centroid of the mean deviation vector, θ = (θ1, θ2)

>, is (−1, 4)> with Cov(θ) = diag{1, 4}. Furthermore,
there is uncertain information that θ ∈ (a, b), where a = (−1.5, 3)> and b = (−0.5, 5)>. This paper
has proposed the two-stage maximum entropy prior πtwo(θ) to represent all of the information, which
is not available with the other priors, such as πmax(θ) and πconst(θ).

Using the three hierarchical models (i.e., the HCN(πmax), HCN(πtwo) and HCN(πconst) models),
we obtain 10,000 posterior samples from the MCMC sampling scheme based on each of the three models
with a 10 thinning period after a burn-in period of 10,000 samples. In estimating the Mote Carlo (MC)
error, we used the batch mean method method with 50 batches; see, e.g., [37] (pp. 39–40). For a formal
test for the convergence of the MCMC algorithm, we applied the Heidelberger–Welch diagnostic test
of [38] to single-chain MCMC runs and calculated the p-values of the test. For the posterior simulation,
we used the following choice of hyper-parameter values: θ0 = (−1, 4)>, Σ = Ω1 + Ω2 = 10I2,
Ω1 = δΣ, Ω2 = (1− δ)Σ, δ ∈ (0, 1), D = 10−2 I2 and d = 102 + 2p + 1. The posterior estimation and
the convergence test results are shown in Table 3. Note that Columns 7–9 of the table list the values
obtained from implementing the MCMC sampling for the posterior estimation of HCN(πtwo).

Table 3. The posterior estimates and the convergence test results.

δ γtwo Parameter HCN(πmax) HCN(πconst) HCN(πtwo) s.d. MC Error p-Value

θ1 −1.874 −1.321 −1.665 0.581 0.005 0.483
θ2 7.045 4.814 6.332 1.089 0.008 0.354

0.8 0.423 λ11 7.549 7.863 7.682 1.231 0.007 0.551
λ12 −4.632 −4.905 −4.819 1.631 0.005 0.671
λ22 26.872 25.021 27.351 4.926 0.013 0.352
θ1 −1.874 −1.321 −1.557 0.496 0.004 0.434
θ2 7.045 4.814 5.905 1.112 0.006 0.298

0.9 0.567 λ11 7.526 7.781 7.959 1.317 0.008 0.635
λ12 −4.726 −5.347 −4.989 1.546 0.006 0.712
λ22 27.587 25.347 28.012 4.836 0.012 0.384
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The small MC error values listed in Table 3 convince us of the convergence of the MCMC algorithm.
Furthermore, the p-values of the Heidelberger–Welch test for the stationarity of the single MCMC run
are larger than 0.1. Thus, both of the diagnostic checking methods advocate the convergence of the
proposed MCMC sampling scheme. Similar to Table 1, this table also shows that πtwo(θ) induces the
shrinkage and stochastic effects in the Bayesian estimation of θ with the uncertain multivariate interval
constraint: (i) From the comparison of the posterior estimates obtained from HCN(πtwo) with those
from HCN(πmax), we see that the estimates of θ1 and θ2, obtained from HCN(πtwo), shrink toward the
stochastic interval C. The magnitude of shrinkage effect induced by using the proposed prior πtwo(θ)

becomes more evident as the degree of belief in the interval constraint γtwo (or δ) gets larger; (ii) On the
other hand, we can see the stochastic effect of the prior πtwo(θ) by comparing the posterior estimate
of θ obtained from HCN(πtwo) with that from HCN(πconst). The stochastic effect can be measured
by the difference between the estimates, and we see that the difference becomes smaller as γtwo (or δ)
gets larger.

6. Conclusions

In this paper, we have proposed a two-stage maximum entropy prior πtwo(θ) of the location
parameter of a scale mixture of normal model. The prior is derived by using the two stages of
a prior hierarchy advocated by [5] to elicit a stochastic multivariate interval constraint, {θ; θ ∈ C}.
With regard to eliciting the stochastic constraint, the two-stage maximum entropy prior has the
following properties. (i) Theorem 1 and Corollary 4 indicate that the two-stage prior is flexible enough
to elicit all of the degrees of belief in the stochastic constraint; (ii) Corollary 4 confirms that the entropy
of the two-stage prior is commensurate with the uncertainty about the constraint {θ; θ ∈ C}; (iii) As
given in Corollary 6, the preceding two properties enable us to propose an objective way of eliciting
the uncertain prior information by using πtwo(θ). From the inferential view point: (i) the two-stage
prior for the normal mean vector has the conjugate property that the prior and posterior distributions
belong to the same family of the RSN distributions by [23]; (ii) the conjugate property enables us
to construct an analytically simple Gibbs sampler for the posterior inference of the model (1) with
unknown covariance matrix Λ; (iii) this paper also provides the HCSMN model, which is flexible
enough to elicit all of the types of stochastic constraints and the scale mixture for Bayesian inference of
the model (1). Based on the HCSMN model, the full conditional posterior distributions of unknown
parameters were derived, and the calculation of posterior summary was discussed by using the Gibbs
sampler and two numerical applications.

The methodological results of the Bayesian estimation procedure proposed in the paper can be
extended to other multivariate models that incorporate functional means, such as linear and nonlinear
regression models. For example, the seemingly unrelated regression (SUR) model and the factor
analysis model (see, e.g., [24]) can be explained in the same framework of the proposed HCSMN in
Equation (1). We hope to address these issues in the near future.
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