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Abstract: We show that the general framework proposed by Kleihaus et al. (2015) for the
study of asymptotically flat vacuum black objects with k + 1 equal magnitude angular momenta
in D ≥ 5 spacetime dimensions (with 0 ≤ k ≤

[D−5
2
]
) can be extended to the case of

Einstein–Maxwell-dilaton (EMd) theory. This framework can describe black holes with spherical
horizon topology, the simplest solutions corresponding to a class of electrically charged (dilatonic)
Myers–Perry black holes. Balanced charged black objects with Sn+1 × S2k+1 horizon topology can
also be studied (with D = 2k + n + 4). Black rings correspond to the case k = 0, while the solutions
with k > 0 are black ringoids. The basic properties of EMd solutions are discussed for the special case
of a Kaluza–Klein value of the dilaton coupling constant. We argue that all features of these solutions
can be derived from those of the vacuum seed configurations.

Keywords: black holes; higher dimensions; Einstein–Maxwell-dilaton theory

1. Introduction

The study of black hole (BH) solutions in more than D = 4 dimensions is a subject of long
standing interest in General Relativity. A seminal result in this area was the discovery of the D = 5
black ring (BR) by Emparan and Reall [1,2]. The D > 5 generalizations of the BR were constructed
in [3] within an approximation scheme, and fully non-perturbatively in [4,5] (although for D = 6, 7
only). In contrast to the Myers–Perry (MP) BHs [6], which have a spherical horizon topology being
natural higher dimensional generalizations of the D = 4 Kerr solution [7], the BRs have an event
horizon of SD−3 × S1 topology, and possess no four-dimensional counterpart.

The rapid developments following the discovery in [1,2] have revealed the existence of a “zoo”
of higher dimensional solutions with various topologies of the event horizon (a review of the
existing results can be found in [8–10]). In five dimensions a variety of BR solutions with (Abelian)
gauge fields and scalars are known in closed form [11]. (See also the Einstein–Maxwell numerical
solutions in [12].) However, most of the activity in this area concerns the pure Einstein gravity case
without matter fields. In particular, to our knowledge, there is no non-perturbative construction of
non-vacuum, singularity-free D > 5 black objects with a non-spherical horizon topology. (Note that
the balanced Einstein–Maxwell BHs with S2 × SD−4 event horizon topology constructed in [13] are
not asymptotically flat.)

The main purpose of this work is to propose a general framework for the study of a class of
asymptotically flat black objects in Einstein–Maxwell-dilaton (EMd) theory for a number D ≥ 5 of
spacetime dimensions. These black objects possess k + 1 equal magnitude angular momenta and can
describe MP-like BHs with spherical horizon topology or balanced black objects with Sn+1 × S2k+1
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horizon topology (with D = 2k + n + 4 and 0 ≤ k ≤
[D−5

2
]
). In the absence of matter fields, this

framework reduces to that employed in [14] to study BRs (k = 0) and black ringoids (k > 0). Here, we
show that the approach in [14] can be extended to the EMd case.

Moreover, for a special value of the dilaton coupling constant, all solutions in [14] can be extended
to the EMd case in a straightforward way by using a generation technique. This approach has the
advantage to easily provide a window into the elusive general EMd case; also, we expect some of the
solutions’ properties to be generic.

2. The Framework

2.1. The Action and Field Equations

The action of the D-dimensional EMd theory is (G = 1):

S =
1

16π

∫
dDx

√
−g
(

R− 1
2

Φ,µΦ,µ − 1
4

e−2aΦFµνFµν

)
, (1)

where a is the dilaton coupling constant and Fµν = ∂µ Aν − ∂ν Aµ. The field equations consist of the
Einstein equations

Rµν −
1
2

Rgµν =
1
2

Tµν , (2)

with the stress-energy tensor

Tµν = ∂µΦ∂νΦ− 1
2

gµν∂τΦ∂τΦ + e−2aΦ
(

Fµτ Fν
τ − 1

4
gµνFτβFτβ

)
,

the Maxwell equations
∇µ

(
e−2aΦFµν

)
= 0 , (3)

and the dilaton equation

∇2Φ = − a
2

e−2aΦFµνFµν . (4)

2.2. The Ansatz

Following [14], we consider the metric Ansatz

ds2 = f1(r, θ)
(

dr2 + ∆(r)dθ2
)
+ f2(r, θ)dΩ2

n − f0(r, θ)dt2 (5)

+ f3(r, θ)
(
dψ +A−W(r, θ)dt

)2
+ f4(r, θ)dΣ2

k ,

which describes the geometry of black objects with k + 1 equal magnitude angular momenta in D ≥ 5
spacetime dimensions (with D = 2k + n + 4). The above choice of the Ansatz becomes transparent
when considering the Minkowski spacetime limit of Equation (5). This background metric is recovered
for f0 = f1 = 1, f2 = r2 cos2 θ, f3 = f4 = r2 sin2 θ, W = 0 and ∆(r) = r2:

ds2 = dr2 + r2(dθ2 + cos2 θdΩ2
n + sin2 θdΩ2

2k+1)− dt2, (6)

where 0 ≤ r < ∞, 0 ≤ θ ≤ π/2 and t is the time coordinate. In addition, dΩ2
n is the metric on the

round n−dimensional sphere, while the metric of a (2k + 1)-dimensional sphere is written as an S1

fibration over the complex projective space CPk,

dΩ2
2k+1 = (dψ +A)2 + dΣ2

k , (7)

where dΣ2
k is the metric on the unit CPk space and A = Aidxi is its Kähler form. The fiber is

parameterized by the coordinate ψ, which has period 2π. In addition, the term dΣ2
k is absent in
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Equation (5) for k = 0 (in which case A = 0). However, the general relations exhibited below are still
valid in that case, see [14].

A gauge field Ansatz compatible with the symmetries of the line element Equation (5) reads

A = At(r, θ)dt + Aψ(r, θ)(dψ +A) , (8)

while the dilaton Φ is

Φ = Φ(r, θ). (9)

2.3. Boundary Conditions and Quantities of Interest

In this approach, the dependence of the coordinates on the S2k+1 and Sn parts of the metric
factorizes, such that the problem is effectively codimension-2. As a result, the information on the
solutions is encoded in the metric functions ( fi, W) (with i = 0, . . . , 4), the gauge potentials (At, Aψ)

and the dilaton Φ. (Note that the function ∆(r) which enters Equation (5) is an input “background”
function which is chosen for convenience by using the residual metric gauge freedom. The numerical
solutions have ∆(r) = r2).

Then, the resulting EMd equations of motion form a set of nine coupled nonlinear partial
differential equations (PDEs) in terms of (r, θ) only, which are solved subject to the boundary conditions
given below. Note that the metric functions should satisfy a number of extra boundary conditions
which guarantee the regularity of the solutions (e.g., the constancy of the Hawking temperature on the
horizon, see the discussion in [14]).

The range of the θ-coordinate is [0, π/2], while rH ≤ r < ∞. The event horizon is located at
r = rH > 0, the metric of a spatial cross-section of the horizon being:

dσ2 = f1(rH , θ)r2
Hdθ2 + f2(rH , θ)dΩ2

n + f3(rH , θ)(dψ +A)2 + f4(rH , θ)dΣ2
k . (10)

At r = rH , the following boundary conditions are satisfied

f0 = 0, rH∂r f1 + 2 f1 = ∂r f2 = ∂r f3 = 0, W = ΩH , ∂r Aψ = 0, At + ΩH Aψ = ΦH , ∂rΦ = 0. (11)

As r → ∞, the Minkowski spacetime background is recovered, with vanishing matter fields,
which implies

f0 = f1 = 1, f2 = r2 cos2 θ, f3 = f4 = r2 sin2 θ, W = 0, At = Aψ = Φ = 0. (12)

At θ = π/2, we impose

∂θ f0 = ∂θ f1 = f2 = ∂θ f3 = ∂θ f4 = ∂θW = 0, ∂θ At = Aψ = 0, ∂θΦ = 0 . (13)

The boundary conditions at θ = 0 are more complicated, depending on the event horizon topology.
In the simplest case of solutions with a spherical horizon topology, one imposes

∂θ f0 = ∂θ f1 = ∂θ f2 = f3 = f4 = ∂θW = 0, ∂θ At = Aψ = 0, ∂θΦ = 0 . (14)

However, as discussed at length in [14], the metric Ansatz Equation (5) allows as well for
an Sn+1 × S2k+1 horizon topology. Such solutions possess a new input parameter R0 > rH (which
provides a rough measure for the size of the Sn+1 sphere on the horizon), with

∂θ f0 = ∂θ f1 = f2 = ∂θ f3 = ∂θ f4 = ∂θW = 0, ∂θ At = ∂θ Aψ = 0, ∂θΦ = 0, (15)

for rH < r ≤ R0, while, for rH > R0, the boundary conditions are given by Equation (14). Thus, for
such solutions, the functions f3, f4 multiplying the S2k+1 part of the horizon metric (10) are strictly
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positive and finite for any r ≤ R0, while f2 ∼ sin2 2θ and thus vanishes at both θ = 0 and θ = π/2.
However, the Sn+1 and S2k+1 parts in Equation (10) are not round spheres. To obtain a measure for
the deformation of the Sn+1 sphere, we consider the ratio Le/Lp, where Le is the circumference at the
equator (θ = π/4, where the sphere is fattest), and Lp the circumference along the poles,

Le = 2π
√

f2(rH , π/4), Lp = 2
∫ π/2

0
dθ rH

√
f1(rH , θ) . (16)

A possible estimate for the deformation of the sphere S2k+1 in Equation (10) is given by the ratio
R(in)

2k+1/R(out)
2k+1, where

R(in)
2k+1 =

(
f3(rH , 0) f 2k

4 (rH , 0)
) 1

2(2k+1) , R(out)
2k+1 =

(
f3(rH , π/2) f 2k

4 (rH , π/2)
) 1

2(2k+1) . (17)

The expressions of the event horizon area AH , Hawking temperature TH , event horizon velocity
ΩH and the horizon electrostatic potential ΦH of the solutions are similar for any horizon topology
and read

AH = rHV(n)V(2k+1)

∫ π/2

0
dθ
√

f1 f n
2 f3 f 2k

4

∣∣∣∣∣
r=rH

, (18)

TH =
1

2π
lim

r→rH

1
(r− rH)

√
f0

f1
, ΩH = W

∣∣
r=rH

, ΦH = (At + ΩH Aψ)
∣∣
r=rH

,

where V(p) is the area of the unit Sp sphere. In addition, one can see that the Killing vector
ξ = ∂/∂t + ΩH∂/∂ψ is orthogonal and null on the horizon.

The global charges of the system are the mass M, the angular momenta Ji and the electric
charge QE. They are read from the large−r asymptotics of the metric functions and electric potential,
gtt = −1 + Ct

rD−3 + . . . , gψt = − f3W =
Cψ

rD−3 sin2 θ + . . . , At =
Q

rD−3 + . . . , with

M =
(D− 2)V(D−2)

16π
Ct, J1 = · · · = Jk+1 =

V(D−2)

8π
Cψ = J, QE =

(D− 2)V(D−2)

16π
Q. (19)

For any horizon topology, these black objects satisfy the Smarr relation

(D− 3)M = (D− 2)
(
TH

AH
4

+ (k + 1)ΩH J
)
+ (D− 3)QEΦH , (20)

and the 1st law

dM =
1
4

THdAH + (k + 1)ΩHdJ + ΦHdQE. (21)

In the canonical ensemble, we study solutions holding the temperature TH , the electric charge
QE and the angular momentum J fixed. The associated thermodynamic potential is the Helmholtz
free energy: F = M− 1

4 TH AH . Black objects in a grand canonical ensemble are also of interest, in
which case we keep the temperature TH , the chemical potential ΦH and the event horizon velocity ΩH
fixed. In this case, the thermodynamics are obtained from the Gibbs potential: G =M− 1

4 TH AH −
(k + 1)ΩH J −ΦHQE.

Following the usual convention in the literature, we fix the overall scale of the solutions by fixing
their massM. Then, the solutions are characterized by a set of reduced dimensionless quantities,
obtained by dividing out an appropriate power ofM:

j = cj
J

M
D−2
D−3

, aH = ca
AH

M
D−2
D−3

, wH = cwΩHM
1

D−3 , tH = ctTHM
1

D−3 , q =
QE
M (22)
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with the coefficients

cj =
(D− 2)

D−2
D−3

(16π)
1

D−3 2
D−2
D−3

1 + k√
(D− 3)(2k + 1)

(V(n+1)V(2k+1))
1

D−3 ,

ca =
2

2
D−3

(16π)
D−2
D−3

(D− 2)
D−2
D−3

√
D− 2k− 4

D− 3
(V(n+1)V(2k+1))

1
D−3 ,

cw =
2

1
D−3

(D− 2)
1

D−3

√
D− 3
2k + 1

(16π)
1

D−3

(V(n+1)V(2k+1))
1

D−3
,

ct =
(D− 4)

√
D− 3

2
2(D−2)

D−3 (D− 2)
1

D−3

(16π)
D−2
D−3

(D− 2k− 4)
3
2 (V(n+1)V(2k+1))

1
D−3

.

For completeness, let us mention that the charged solutions possess also a magnetic moment
µ and a dilaton charge Qd. These quantities are read again from the far field behavior of the fields,
Aψ = − µ

(D−3)V(D−2)rD−3 + . . . , Φ = − Qd
(D−3)V(D−2)rD−3 + . . . , and do not enter their thermodynamic

description. In addition, as usual with charged spinning solutions, a gyromagnetic ratio is defined as:

g =
2µM
QE J

. (23)

3. Solutions—The Kaluza–Klein Case

The only vacuum solutions which can be written within the Ansatz Equation (5) and are known
in closed form are the MP BHs and the D = 5 BR spinning in a single plane. Apart from that, the
References [4,5,12,14] gave numerical evidence for the existence of BRs and black ringoids for several
values of D > 5.

Given the above formulation of the problem, EMd generalizations of these configurations can
be constructed numerically, by employing the numerical scheme developed in [14] for the vacuum
case (see also [15,16]). Indeed, charged MP BHs were considered in [17], while BR solutions have been
studied in [12], in both cases for D = 5 spacetime dimensions and a pure Einstein–Maxwell theory. By
using a similar approach, we have found (preliminary) numerical evidence for the existence of D = 7,
k = 1 balanced black ringoids, again in the Einstein–Maxwell theory.

However, a numerical investigation of the generic EMd solutions is a complicated task beyond
the purposes of this work. In what follows, we shall restrict ourselves to the special case of an EMd
model with a Kaluza–Klein value of the dilaton coupling constant a,

a =
D− 1√

2(D− 1)(D− 2)
. (24)

In this limit, the EMd solutions can be generated by using the (vacuum) Einstein black objects as
seeds. (A similar approach has been used in [18,19] to study the MP BHs in EMd theory with a dilaton
coupling constant given by Equation (24) and D = 5 BRs and black Saturns have been constructed
in [20,21], in the same model.) The procedure is well known in the literature and works as follows:
we first embed the D-dimensional vacuum solutions into a (D + 1) spacetime with a trivial extra
coordinate U,

ds2
D+1 = dU2 + ds2 . (25)
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Then, we perform a boost in the t-U plane with t→ t cosh α + U sinh α, U → U cosh α + t sinh α.
In the next step, we consider the following parametrization of the resulting in a (D + 1)-dimensional
boosted metric:

ds2
D+1 = e

2√
2(D−1)(D−2)

Φ
gµνdxµdxν + e

− 2(D−2)√
2(D−1)(D−2)

Φ
(dU + Aνdxν)2 , (26)

which allows for a straightforward reduction to D-dimensions with respect to the Killing vector
∂/∂U. Then, gµν, Aρ, and Φ are identified with the D-dimensional metric, the D-dimensional Maxwell
potential, and the dilaton function, respectively. In addition, they satisfy the EMd Equations (2)–(4) in
D spacetime dimensions.

Considering a vacuum Einstein gravity solution described by the metric Ansatz Equation (5),
a direct computation leads to the following expression of the EMd solution:

f0 =

[
1 + (1− f (0)0 + f (0)3 W(0)2) sinh2 α

] 1
D−2

1 + (1− f (0)0 ) sinh2 α
f (0)0 , (27)

( f1; f2; f4) =
[
1 + (1− f (0)0 + f (0)3 W(0)2) sinh2 α

] 1
D−2

( f (0)1 ; f (0)2 ; f (0)4 ) ,

f3 =
1 + (1− f (0)0 ) sinh2 α[

1 + (1− f (0)0 + f (0)3 W(0)2) sinh2 α
] D−3

D−2
f (0)3 , W =

cosh α

1 + (1− f (0)0 ) sinh2 α
W(0) ,

together with

At =
(1− f (0)0 + f (0)3 W(0)2) sinh α cosh α

1 + (1− f (0)0 + f (0)3 W(0)2) sinh2 α
, (28)

Aψ = −
f (0)3 W(0) sinh α

1 + (1− f (0)0 + f (0)3 W(0)2) sinh2 α
,

Φ = − 1
2(D− 2)

√
2(D− 1)(D− 2) log

(
1 + (1− f (0)0 + f (0)3 W(0)2) sinh2 α

)
,

where the superscript (0) stands for the pure Einstein gravity seed metric. One can easily see that
these functions satisfy the boundary conditions (Equations (11)–(15)), since the seed solution is also
subject to the same set of conditions.

For both the MP BHs and D = 5 BR seed solutions, it is straightforward to write down the
corresponding closed form EMd generalizations. For example, in the MP case, one replaces in
Equations (27) and (28) the following expression of the vacuum seed configuration [14]:

f (0)0 =
∆(r)

(r2 + a2)P(r, θ)
, f (0)1 =

r2 + a2 cos2 θ

∆(r)
, f (0)2 = r2 cos2 θ,

f (0)3 = (r2 + a2) sin2 θP(r, θ), f (0)4 = (r2 + a2) sin2 θ, (29)

W(0) =
M

rD−(2k+5)
a

(r2 + a2)k+1(r2 + a2 cos2 θ)P(r, θ)
,

M, a being two input parameters and

∆(r) = (r2 + a2)

(
1− M

rD−(2k+5)(r2 + a2)k+1

)
, P(r, θ) = 1 +

M
rD−(2k+5)

a2 sin2 θ

(r2 + a2)k+1(r2 + a2 cos2 θ)
,

where a different choice for ∆ is employed.



Entropy 2016, 18, 187 7 of 15

Having derived the expressions of the geometry and matter functions, it is straightforward to
study all properties of the solutions. For example, in Figure 1, we show the quantities Le/Lp and

R(in)
2k+1/R(out)

2k+1 which encode the deformation of the horizon (see Equations (16) and (17)) for D = 5, 6, 7
black ring(oid)s and several values of the boosting parameter α. One can see that the charged solutions
share the pattern of the neutral ones, being shifted to smaller values of j. For example, in the D = 5 case,
the hole inside the ring shrinks to zero while the outer radius goes to infinity as a critical configuration
is approached. (All results for MP BHs and D = 5 BRs shown in the plots in this work are found by
using the closed form expression of the vacuum seed solutions. For D = 5 BRs, a comparison between
the exact solution and the numerically generated one can be found in Appendix B of [16].)

 0

 0.5

 1

 0  1  2

L
e/

L
p

j

D=5

 0

 0.5

 1

 0  1  2

 

j

R1
(in)

/R1
(out)

(a)

 0.5

 1

 0  1  2

L
e/

L
p

j

D=6
 0

 0.5

 1

 0  1  2

 

j

R1
(in)

/R1
(out)

(b)

Figure 1. Cont.
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 0.5

 1

 0  1  2

L
e/

L
p

j

D=7

 0.5

 1

 0  1

 

j

R3
(in)

R3
(out)

(c)

Figure 1. The ratios Le/Lp and R(in)
2k+1/R(out)

2k+1, which encode the deformation of the horizon, are shown
vs. the reduced angular momentum j for (a) D = 5, (b) D = 6 black ring solutions and (c) D = 7
charged black ringoids in EMd theory. The red curves correspond to the vacuum solutions. The other
curves are for charged solutions with the boosting parameters (from right to left) α = 0.5, 1, 1.5 and 2.

Moreover, for both closed form and numerical solutions, the quantities which enter the first law
result from those of the corresponding vacuum seed configurations. A direct computation leads to

M =

(
1 +

D− 3
D− 2

sinh2 α

)
M(0), J = cosh α J(0), ΩH =

1
cosh α

Ω(0)
H ,

TH =
1

cosh α
T(0)

H , AH = cosh α A(0)
H , QE =

D− 3
D− 2

sinh α cosh αM(0), ΦH = tanh α,
(30)

and

j =

(
D− 2

D− 2 + (D− 3) sinh2 α

) D−2
D−3

cosh α j(0), aH =

(
D− 2

D− 2 + (D− 3) sinh2 α

) D−2
D−3

cosh α a(0)H ,

tH =

(
1 +

(D− 3)
(D− 2)

sinh2 α

) 1
D−3 1

cosh α
t(0)H , wH =

(
1 +

(D− 3)
(D− 2)

sinh2 α

) 1
D−3 1

cosh α
w(0)

H , (31)

and q =
(D− 3) sinh α cosh α

D− 2 + (D− 3) sinh2 α

for the scaled variables.
One can see that the boosting parameter α is a monotonic function of the horizon electrostatic

potential ΦH (or, equally, is uniquely fixed by the reduced charge q). In addition, given a massM,
the electric charge QE cannot be arbitrarily large, with q ≤ 1. The limit α → ∞ corresponds to
singular black objects, with j → 0, aH → 0 and q → 1. Moreover, one can show that the Gibbs
potential of the charged solutions equals that of the seed vacuum configurations G = G(0), while
F = F(0) + D−3

D−2 sinh2 αM(0).
It follows that, for any finite α, some basic thermodynamic properties of these EMd solutions are

qualitatively similar to the vacuum seed case. For example, as shown in Figures 2–4, the (j, aH) and
(j, tH) diagrams of the charged solutions have the same shape for any value of q. However, the curves
in the phase diagram get shifted to lower aH and j as the charge parameter q is increased.
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Figure 2. (a) The reduced area aH , (b) the reduced temperature tH and (c) the reduced angular
velocity wH are shown vs. the reduced angular momentum j for D = 5 charged black rings (BR) and
Myers–Perry (MP) black holes.
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Figure 3. Same as Figure 2 for D = 6 dimensions. (a) the reduced area aH ; (b) the reduced
temperature tH ; (c) the reduced angular velocity wH .
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Figure 4. Same as Figure 2 for charged black ringoids (Br) and Myers–Perry (MP) black holes in
D = 7 dimensions (both with two equal magnitude angular momenta). (a) the reduced area aH ;
(b) the reduced temperature tH ; (c) the reduced angular velocity wH .
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In addition, a generic property of the solutions is the occurrence of a cusp in the aH(j) black
ring(oid) diagram, where a branch of “fat” black ring(oid) solutions emerges, with the existence of a
minimally spinning solution. A comparison of the results (with the set of MP-like solutions included),
suggests that, similar to the vacuum case, the k ≥ 1 black ringoids with S2 × S2k+1 horizon topology
are the natural counterparts of the D = 5 BRs. As noticed in [21], the branch of “fat” D = 5 charged
BRs ends in a limiting singular solution with aH = 0 and nonzero j. The same configuration is also
approached by the charged MP BHs with maximal j. The existing data strongly suggest that this is
the picture also for the D = 7 charged Br and MP solutions. (It is interesting to note that, similar to
the vacuum case, the reduced angular momentum j is bounded from above for charged MP BHs with
k + 1 equal magnitude angular momenta in D = 2k + 5 only.)

However, a different pattern is found for D = 6 solutions. There, the charged “fat” BRs exhibit
a different limiting behavior; similar to the vacuum case, they end in a critical merger configuration [3],
where a branch of “pinched” BHs is approached in a horizon topology changing transition. The
“pinched” BHs possess a spherical horizon topology and can also be studied within the framework
in Section 2. Such solutions have been constructed in [5] (in the vacuum case), branching off from
a critical MP solution along the stationary zero-mode perturbation of the Gregory–Laflamme-like
instability [22,23]. The results in [5] together with Equations (27) and (28) show that the critical merger
EMd solution has a finite, nonzero area, while the temperature stays also finite and nonzero.

The (area-temperature-charge) diagram of the MP, BRs and black ringoids is shown in Figures 5–7
(in principle, the equation of state T(AH , QE) can be deduced from there). One can notice that the
five-dimensional case is special, since, as q→ 1, tH → t(0)H ≥ 0 for D = 5, while tH → 0 for D > 5.

Finally, let us mention that, for any event horizon topology, the gyromagnetic ratio (Equation (23))
has a remarkable simple expression in terms of α only,

g = D− 3 +
1

cosh2 α
, (32)

and varies between D− 3 (for maximally charged solutions q = 1, i.e. α→ ∞) and D− 2 (for solutions
with an infinitesimally small charge q→ 0, i.e., α→ 0). Note that this is consistent with the general
results obtained in [24].
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 0

 0.5

 1

q

 0

 0.5

 1
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 0
 1

 2

tH

 0

 0.5

 1

(a) (b)

Figure 5. The (area-temperature-charge) diagram is shown for charged Myers–Perry black holes
(a) and black rings (b) in D = 5 dimensions. All quantities are normalized with respect to the mass of
the black objects.
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Figure 6. Same as Figure 5 for D = 6 solutions.
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Figure 7. Same as Figure 5 for D = 7 charged Myers–Perry black holes (a) and black ringoids (b).

4. Conclusions

Fifteen years after the discovery of the BR by Emparan and Reall [1,2], the study of BHs with
a non-spherical horizon topology continues to be a source of excitement in higher dimensional General
Relativity. However, most of the black objects with a nonspherical horizon topology studied in the
literature describe vacuum configurations only. (Higher-dimensional rotating BHs in Einstein gravity
coupled to a 2-form or 3-form field strength and to a dilaton with arbitrary coupling have been studied
in [19]. These solutions are constructed within the blackfold approach and describe charged MP BHs
and various black objects with a non-spherical horizon topology.) Moreover, it is worth noticing that,
even for the case of an event horizon with spherical topology, very few solutions with matter fields
are known in closed form. (For example, the higher dimensional generalization of the Kerr–Newman
solution is only known numerically [17,25–27].)

The main purpose of this work was to generalize the non-perturbative framework used in [14] for
the study of several classes of vacuum black objects with k + 1 equal angular momenta, to the case
of Einstein–Maxwell-dilaton theory. Our results show that, similar to the pure Einstein gravity case,
for the general dilaton coupling constant, the problem reduces to solving a set of coupled PDEs with
suitable boundary conditions on a rectangular domain, employing an adequate numerical scheme [14].

As a preliminary step before considering the generic case, we have studied solutions of EMd
theory with the Kaluza–Klein value of the dilaton coupling constant. In this special limit, the action
in D dimensions is obtained by reducing the D + 1 dimensional vacuum Einstein action, while the
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solutions are found by embedding the D dimensional vacuum solutions in D + 1 dimensions and
boosting in the extra direction.

The resulting EMd solutions are asymptotically flat, and either possess a regular horizon of
spherical topology (and thus represent charged generalizations of MP BHs), or an Sn+1 × S2k+1

topology (and thus represent charged BRs and black ringoids). These black objects are characterized by
their global charges: their mass, their k+ 1 equal magnitude angular momenta, and their electric charge.

As mentioned above, these results were obtained only for a particular value of the dilaton coupling
constant. Note that an extension of the generating technique in Section 3 can be used to construct
(toroidally compactified) heterotic string theory generalizations of the vacuum black objects within
the Ansatz Equation (5). In that case, an approach to obtain the charged solutions from the neutral
ones was presented in [28]. Again, the properties of the new configurations can be derived from the
corresponding vacuum solutions. It remains a challenge to generalize EMd solutions to arbitrary
values of the dilaton coupling constant, including the pure Einstein–Maxwell case. The construction of
more general configurations (e.g., higher dimensional generalizations of the D = 5 dipole BRs [29],
solutions with a Chern–Simons term or black objects coupled with a p-form field (with p > 2)) is
another important open question, just like the inclusion of a cosmological constant. We hope to return
elsewhere with a systematic study of these aspects.
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