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Abstract: While many efforts have been devoted to optimizing the power output for a finite-time
thermodynamic process, thermodynamic optimization under realistic situations is not necessarily
concerned with power alone; rather, it may be of great relevance to optimize generic objective
functions that are combinations of power, entropy production, and/or efficiency. One can optimize
the objective function for a given model; generally the obtained results are strongly model
dependent. However, if the thermodynamic process in question is operated in the linear response
regime, then we show in this work that it is possible to adopt a unified approach to optimizing the
objective function, thanks to Onsager’s theory of linear irreversible thermodynamics. A dissipation
bound is derived, and based on it, the efficiency associated with the optimization problem, which
is universal in the linear response regime and irrespective of model details, can be obtained in a
unified way. Our results are in good agreement with previous findings. Moreover, we unveil that
the ratio between the stopping time of a finite-time process and the optimized duration time plays a
pivotal role in determining the corresponding efficiency in the case of linear response.

Keywords: thermodynamic optimization; efficiency; dissipation bound; linear response;
stopping time

1. Introduction

Classical thermodynamics mainly deals with quasistatic processes in which energy dissipation
is negligible, and this leads to the Carnot efficiency ηC = 1− Tc/Th, which sets an upper bound for
extracting work from two heat reservoirs with temperatures Th (the hot one) and Tc (the cold one),
respectively. For a fixed amount of heat Qh absorbed from the hot reservoir, the work output W cannot
exceed ηCQh. However, the Carnot efficiency can only be achieved for quasistatic processes, that is to
say, the power output of such a process is vanishing. Thus, for any realistic thermodynamic process
that is conducted within a finite time, the Carnot efficiency should not be the objective to pursue,
and in fact people have proposed objective functions other than efficiency to optimize. For example,
the power output is often taken as the objective, and the efficiency at maximum power for various
kinds of heat engines and heat transfer laws have been investigated following the work of Curzon and
Ahlborn [1], in which a bound of efficiency similar to ηC was found to be ηCA = 1−

√
Tc/Th. Recently,

investigations on maximum efficiency at a given power and on the controlling protocol for engines to
achieve the optimal performance have also attracted much interest [2–7]. Besides the power output,
there are other suggested objective functions such as (i) the so-called ecological function [8], which
is defined as P − Tcσ, where P is the power output and σ is the entropy production rate of the
two heat reservoirs, and the associated efficiency when the ecological function is optimized is well
approximated as (ηC + ηCA)/2 for endoreversible Carnot engines; (ii) a trade-off function [9], which
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is defined to be proportional to ηP with η being the thermodynamic efficiency, and for low-dissipation
engines the corresponding efficiency at maximum trade-off is in the range [2ηC/3, (3−

√
9− 8ηC)/2].

In fact, the choice of the objective function is somewhat arbitrary, but typically, the objective function
is a combination of P, σ, and η, and the corresponding optimized process lies somewhere in the
range between the quasistatic process with no dissipation and the process with maximum power
output [10].

For a given model, one can optimize the chosen objective function and obtain the corresponding
efficiency. Not surprisingly, it seems that the results are totally model dependent. This is partly
due to the fact that the second law of thermodynamics is an inequality rather than an equality, and
we lack universally held deterministic equations to describe generic nonequilibrium thermodynamic
processes. However, in the regime of linear irreversible thermodynamics, it is possible to treat
the power-efficiency issue as a general thermodynamic problem [11], and one can actually obtain
theoretical results that are stronger than the Guoy-Stodola theorem [12], thanks to Onsager’s
theory [13]. Van den Broeck in his seminal work [14] formulated the work-extraction process in
terms of generalized fluxes and forces, and by assuming the linear dependence of fluxes on forces, he
managed to find the efficiency at maximum power is indeed bounded from above by ηVdB = ηC/2,
which is achieved for a finite-time process without heat leakage between two heat reservoirs. This
result is universal in the sense that it depends neither on the types of heat engines nor on the heat
transfer laws [15,16]. The only assumption is that during the whole process, the overall system of two
heat reservoirs plus the working fluid is operated in the linear response regime, where the Onsager’s
theory is known to be valid. Note to the first order of ηC, the two efficiencies ηCA and ηVdB are
essentially the same. The universality of ηVdB is also evident in other models, which include quite
unconventional microscopic heat engines constructed by a Brownian particle in an optical trap [17] or
Feynman’s ratchet device [18]. Efficiencies at maximum power in these cases also coincide with ηVdB
up to the order of O(ηC) [19].

Inspired by the universal result of ηVdB, which is obtained with the objective function being
the power output, one may wonder whether it is possible to obtain similar universal results for
other objective functions in the linear response regime. The answer is yes. In this work, we will
first show there exists a dissipation bound for finite-time work-extraction processes in the linear
response regime. Then, we will show how such a dissipation bound can be used to solve, in a
unified way, generic optimization problems in which objective functions are combinations of P, σ,
and η. The corresponding efficiency at the optimized objective function is found to be universally
determined by the ratio between the stopping time of the process and the optimized duration time.
Two concrete examples are presented in which objective functions are of the form mP − nTcσ and
Pmηn, respectively. The results obtained in this work are in good agreement with previous findings.

2. Onsager’s Theory for Work-Extraction Processes

Let us consider a generic engine working in a nonequilibrium steady state: as an amount of heat
dQh is absorbed from the hot reservoir, for a period of dt time, the work output is Pdt with P being the
power, and the amount of heat discharged into the cold reservoir is dQc. (The results obtained in this
work are also valid for periodically working engines.) According to the first law of thermodynamics,
we have

Pdt = dQh − dQc. (1)

As heat is absorbed, the entropy of the hot reservoir is decreased: dSh = −dQh/Th, while the
entropy of the cold reservoir is increased due to heat discharge: dSc = dQc/Tc. Thus, the entropy
production rate of the overall system is

σ =
dSh
dt

+
dSc

dt
. (2)
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Combining these results and noting the definition of ηC, one readily gets:

P = ηC Jh − Tcσ, (3)

where Jh = dQh/dt. Since ηC Jh = d(ηCQh)/dt = Ẇrev, where Wrev is the work output of a
reversible process, Equation (3) is thus essentially the so-called Guoy-Stodola theorem, which states
that the energy dissipation rate during the process is equal to Tcσ. This result is exact; however, we
have little knowledge about σ under generic nonequilibrium situations. Onsager’s theory of linear
irreversible thermodynamics provides more information of σ that we can use to advance our analysis.
In Onsager’s theory, it is crucial to express σ as a summation of generalized fluxes and forces. Let us
rewrite Equation (3) as

σ =
ηC

Tc
Jh −

P
Tc

. (4)

One common choice of a generalized force is X2 ≡ T−1
c − T−1

h = ηC/Tc and its associated flux is
J2 ≡ Jh. Therefore, if one requires −P/Tc = J1X1, then σ can be expressed as

σ = J1X1 + J2X2. (5)

It is worth stressing that despite the mathematical equivalence between this form and
Equation (4), expressing σ in terms of generalized forces and fluxes paves the way to naturally
resort to Onsager’s theory for the analysis of the thermodynamic optimization problem here. The
definitions of J1 and X1 typically depend on the specific model in question [20], however, no matter
how they are defined, we can formally write

P = −Tc J1X1. (6)

Actually, expressing P as in Equation (6) is an important move to obtain Equation (5), and
to place the optimization problem within the framework of linear irreversible thermodynamics
that allows a unified approach developed in this work. Onsager’s reciprocal relations establish
connections between the generalized fluxes and forces [13,14]:

J1 = L11X1 + L12X2,

J2 = L21X1 + L22X2, (7)

where Lij’s are Onsager’s coefficients, which are functions of Th and Tc, but do not explicitly depend
on J1 or J2. The exact forms of Lij’s can be obtained for some specific model, as exemplified in [21].
The nonnegativity of σ requires L11 ≥ 0, L22 ≥ 0, and L11L22 − L12L21 ≥ 0. Also, L12 = L21 holds
due to the microscopically reversible dynamics of the system; this fact can be derived from the linear
response theory in statistical physics [22]. A particularly important quantity that reflects to what
degree J1 and J2 are correlated is defined as q ≡ L12/

√
L11L22 [23]. Experimentally, q is determined

by various factors of a given system [23]. For example, when an osmionic battery is employed to
generate electric current, two generalized fluxes are the electric current and the transmembrane salt
flow, and q is affected by such factors as salt permeability, electrical conductance, etc. Obviously,
−1 ≤ q ≤ 1. If q = 0, then J1 and J2 are totally decoupled; while if |q| = 1, then J1 and J2 are
extremely strongly coupled, hence the name the tight-coupling condition referring to this case. One
physical implication of the tight-coupling condition is that J2 is proportional to J1, and if J1 approaches
zero, then J2 must also vanish. In other words, under the tight-coupling condition, it is impossible to
have a vanishing power output (recall that P is proportional to J1 in magnitude) when there is a finite
J2; J2 is always exploited as much as possible to output power and there is no direct heat transfer
between two heat reservoirs. If there is a direct contact between two reservoirs, then |q| will be less
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than 1. Consequently, for all possible realizations of a finite-time process whose duration is τ, the one
with the tight-coupling condition |q| = 1 being fulfilled dissipates the least amount of energy.

Since we consider two heat reservoirs with fixed temperatures Th and Tc, respectively, the
generalized force X2 is fixed. Also, the total amount of heat absorbed from the hot reservoir is
prescribed to be Qh. The only adjustable parameter of the finite-time process is the heat flux J2,
and to seek an optimal process is essentially to find an optimized J2. While, mathematically it seems
more convenient to present the results of this work with duration τ, and τ is uniquely determined by
J2 as τ = Qh/J2. Therefore, we will equivalently take τ as the parameter to optimize.

To more clearly see the fact that X1 and J1 are fixed once J2 or τ is given, we write, based on
Equation (7), X1 and J1 in terms of X2 and J2 as

X1 =
1

L21
(J2 − L22X2),

J1 =
L11

L22
J2 +

(
L12 −

L11L22

L21

)
X2. (8)

Therefore, for given Th and Tc, the whole thermodynamic process as described by generalized
fluxes and forces can be determined by J2 alone, because Lij’s and X2 as functions of Th and Tc are all
fixed. Moreover, for 0 < q2 ≤ 1, P can be rewritten as

P = −Tc

[
1

q2L22
J2
2 +

(
1− 2

q2

)
J2X2 +

(
1
q2 − 1

)
L22X2

2

]
. (9)

Similarly, σ can also be cast into the form

σ =
1

q2L22
J2
2 +

(
2− 2

q2

)
J2X2 +

(
1
q2 − 1

)
L22X2

2 . (10)

3. Dissipation Bound

We are now in a position to show that Equation (10) actually implies a dissipation bound for
a finite-time work-extraction process. Such a bound was noticed [24–26] in the case of finite-sized
reservoirs with temperature variations [11,27], while in the following we will show for infinite
reservoirs with fixed temperatures, the bound can be obtained in a more straightforward way. First,
let us note the fact that σ will be increased as q2 is decreased for a fixed J2, that is:(

∂σ

∂q2

)
J2

= − (J2 − L22X2)
2

L22

1
q4 < 0. (11)

This is consistent with the physical meaning of q2: the smaller the gap between q2 and 1, the
more efficiently the heat flux J2 is utilized to output power, and the less of J2 is wasted due to direct
heat transfer between two reservoirs. The minimum value of σ for a given J2 is thus achieved for
q2 = 1, i.e., under the tight-coupling condition. In this case, by setting q2 = 1 in Equation (10), σ is
simplified to be

σ =
J2
2

L22
. (12)

This is the expression of σ when the tight-coupling condition is fulfilled, inserting which into
Equation (3) and noting the definition of J2 and its link with τ, we have

W(τ) ≡ Pτ = ηCQh − Tc
Q2

h
L22τ

. (13)



Entropy 2016, 18, 161 5 of 10

W(τ) is defined to be the work output for a finite-time process with duration τ when the
tight-coupling condition is satisfied. W(τ) actually is the maximum work output for a finite-time
process with duration τ, as the tight-coupling condition rules out any direct heat leakage between
two reservoirs. The term ηCQh is just the maximum work output Wrev for a reversible process, and the
term TcQ2

h/L22τ represents the unavoidable energy dissipation for a finite-time process. In particular,
the dissipated energy is inversely proportional to τ. We define

Φ ≡ TcQ2
h/L22. (14)

Φ is a function of Tc, Qh, and L22, and L22 itself is a function of Th and Tc. If Th and Tc are fixed
and Qh is prescribed, as is the case considered in this work, then Φ is a constant independent of the
duration τ. We argue that Φ/τ is the lower bound of energy dissipation for a process that takes τ

time to absorb Qh amount of heat and output work. This is simply because, as stated above, W(τ) is
the maximum work output for a fixed J2, and the work output W(q2, τ) for processes with q2 < 1 will
be less than W(τ):

W(q2, τ) ≤W(τ) = ηCQh −
Φ
τ

. (15)

In other words, the dissipated energy εdiss ≡ ηCQh −W(q2, τ) generally should be greater than
Φ/τ, that is:

εdissτ ≥ Φ. (16)

It is also worth noting that Φ = Tcστ2 = Tc∆S(τ)τ, where ∆S(τ) is the increase of the system’s
entropy under the tight-coupling condition, which is thus also the minimum entropy production for
a finite-time process with duration τ. Assume for a process with q2 < 1, the entropy production is
∆S(q2, τ), the inequality Equation (16) can also be written as

εdiss = Tc∆S(q2, τ) ≥ Tc∆S(τ) =
Φ
τ

. (17)

This result is stronger than the Guoy-Stodola theorem, which states that the dissipated energy
εdiss is equal to the product of Tc and entropy production ∆S for generic nonequilibrium processes.
However, the value of εdiss cannot be determined by the Guoy-Stodola theorem alone. While for
linear response where Onsager’s theory can be applied, we can actually gain more information about
εdiss; the dissipation bound Φ helps to set a lower bound for εdiss, which is inversely proportional
to the duration τ. A strongly relevant result that the lower bound of dissipated availability for a
finite-time process scales as 1/τ was elegantly obtained from a geometric interpretation of the
evolution of thermodynamical systems [28].

The optimal power output for a fixed τ is P(τ) = W(τ)/τ. By letting ∂P(τ)/∂τ = 0,
we obtain an optimized duration in terms of Φ as τ∗ = 2Φ/ηCQc, which maximizes the global
power output P(τ∗) = (ηCQh)

2/4Φ = η2
CL22/4Tc. Note that L22/TcTh serves as the thermal

conductivity κ [14], and if we consider κ to be weakly temperature dependent and can be taken as a
constant, then P(τ∗) ∼ η2

CTh/4. For comparison, the classical Curzon-Ahlborn result of maximized
power PCA ∼ η2

CATh [1]. To the first order in ηC, P(τ∗) can be the same as PCA when proper model
parameters are chosen.

Actually, the existence of Φ is important to the analysis of finite-time processes in the linear
response regime. By taking advantage of Φ, the optimization of generic objective functions other
than the power output is greatly simplified, and can be treated in a unified way.
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4. Unified Approach to Optimizing Generic Objective Functions by Using Φ

As stated above, although a large body of research focused on maximizing power output or
minimizing entropy production for finite-time processes, the selection of the objective function to
optimize is not unique and may depend on one’s own judgement [10]. The ecological function [8]
and the trade-off function [9] are two examples. In fact, since one cannot simultaneously maximize
power output (achieved for a finite-time process) and minimize entropy production (achieved only
when the process is quasistatic), or maximize power output and maximize thermodynamic efficiency,
we argue that typically a reasonable objective function F, which is a combination of P, σ, and η,
should take on the form that (

∂F
∂P

)
σ

> 0, and
(

∂F
∂σ

)
P
< 0,

or
(

∂F
∂P

)
η

> 0, and
(

∂F
∂η

)
P
> 0. (18)

That is to say, one typically seeks conditional optimization of F with the presence of some
constraints. This is actually the situation somewhat closer to realistic thermodynamic operations
where many technical and/or economical factors need to be taken into account.

To be concrete, we will quantitatively study two situations in the following to show how such
optimization problems can be solved in a unified way by using Φ. First, we optimize a generic
objective function of the form F = mP − nTcσ, and then we consider the case F = Pmηn, where
m and n are given positive constants. Lastly, more general cases are also investigated and a universal
result for reasonable objective functions is unveiled.

4.1. Case I: F = mP− nTcσ

To optimize objective functions of the form F = mP − nTcσ for a finite-time process with
duration τ, we aim to find the optimized heat flux J∗2 , or, equivalently, the optimized duration τ∗.
Also, the associated efficiency will be calculated. These can be done in a straightforward way based
on the knowledge of Φ. First of all, note Equation (3) and let us rewrite F as

F = mηC J2 − (m + n)Tcσ. (19)

Notice Equation (11), we have(
∂F
∂q2

)
J2

= −(m + n)Tc

(
∂σ

∂q2

)
J2

> 0. (20)

Therefore, F is globally maximized when the tight-coupling condition q2 = 1 is satisfied. And in
this case, we can further rewrite F as

F = m
ηCQh

τ
− (m + n)

Φ
τ2 . (21)

Then by setting ∂F/∂τ = 0, and denoting λ = Φ/ηCQh, we obtain

τ∗ = 2λ
m + n

m
. (22)

The corresponding efficiency is η∗ ≡ η(τ∗) = P(τ∗)/J2(τ
∗). Note Equation (3), η∗ can be

computed as

η∗ = ηC −
Tcσ(τ∗)

J2(τ∗)
= ηC −

Φ
Qhτ∗

= ηC

(
1− λ

τ∗

)
=

m + 2n
2(m + n)

ηC. (23)
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In Figure 1, we plot for Case I the rescaled efficiency η∗/ηC at the optimized objective function
F(τ∗) as a function of the ratio m/n (solid line, with filled square indicating the result for the
ecological function).
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Figure 1. The rescaled efficiency η∗/ηC at optimized F(τ∗) is plotted as a function of the ratio m/n for
both Cases I and II. In particular, the results for the ecological function (η∗/ηC = 3/4) and the trade-off
function (η∗/ηC = 2/3) are marked by filled square and filled circle, respectively. As m/n → 0, the
objective function is essentially efficiency, and η∗/ηC → 1, i.e., the Carnot efficiency ηC is approached.
While as m/n→ ∞, the objective function is essentially power output, and η∗/ηC → 1/2, i.e., the Van
den Broeck efficiency ηVdB is approached. Note, the classical Curzon-Ahlborn efficiency ηCA → ηVdB

for linear response.

It is interesting to see three special cases:

• m/n→ ∞: To optimize F is essentially to optimize P. The optimized duration is τ∗ = 2λ, and the
corresponding efficiency is η∗ = ηC/2 = ηVdB, consistent with previous results [14]. In particular,
the stopping time of the process is τstop = τ∗/2 = λ = Φ/ηCQh, whose physical meaning is
clearly demonstrated that a process operated with such a duration will dissipate the amount of
energy Φ/τstop that equals ηCQh; such a process does not output any work at all.

• m/n → 0: To optimize F is essentially to minimize σ, and it is not surprising that we obtain a
quasistatic process that takes τ∗ → ∞ to finish, and the Carnot efficiency is naturally restored in
this case, i.e., η∗ = ηC.

• m/n = 1: The objective function in this case is equivalent to the ecological function. The optimized
duration is τ∗ = 4λ, and the associated efficiency is 3ηC/4. These are also consistent with the
previous results [8] to the first order of ηC (in the linear response regime).

4.2. Case II: F = Pmηn

Similar to the case studied above, in order to optimize F = Pmηn, we need to find the optimal
duration τ∗. Also note Equations (3) and (11), and η = P/J2, we can see(

∂F
∂q2

)
J2

= −Tc(m + n)
Pm+n−1

Jn
2

(
∂σ

∂q2

)
J2

> 0. (24)

So F is also maximized when the tight-coupling condition q2 = 1 is satisfied, and we can in this
case rewrite F in terms of Φ and τ as

F =

(
ηCQh

τ − Φ
τ2

)m+n

(
ηCQh

τ

)n . (25)
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By letting ∂F/∂τ = 0, we obtain the optimized duration τ∗ as

τ∗ =
(2m + n)λ

m
, (26)

where λ = Φ/ηCQh as defined above. And the corresponding efficiency η∗ for maximized F is

η∗ = ηC

(
1− λ

τ∗

)
=

m + n
2m + n

ηC. (27)

In Figure 1, we also plot for Case II the rescaled efficiency η∗/ηC at the optimized objective
function F(τ∗) as a function of the ratio m/n (dashed line, with filled circle denoting the result for the
trade-off function).

There are also three special cases worth noting:

• m/n→ ∞: To optimize F is also essentially to optimize P. The optimized duration is τ∗ = 2λ, and
the corresponding efficiency is again η∗ = ηC/2 = ηVdB [14]. With a stopping time τstop = λ, the
process does not output any work.

• m/n → 0: To optimize F is essentially to maximize η, or, equivalently, to minimize σ, and we
obtain a quasistatic process that takes τ∗ → ∞ to finish, and the Carnot efficiency is also restored
in this case.

• m/n = 1: The objective function in this case is equivalent to the trade-off function. The optimized
duration is τ∗ = 3λ, and the associated efficiency is 2ηC/3. These are also consistent with the
previous results when the linear response regime is concerned [9].

4.3. Generic Cases

As for the generic cases, questions we are facing are: What kind of generic objective functions
can we deal with in a unified way? Then, what results can we expect to be universally held for linear
response? Note in either of the above two illustrative examples, the objective function is a function of
P and σ or P and η, implying optimization is performed under some imposed constraints. In each case
F is optimized when there is no direct heat leakage between two heat reservoirs, i.e., the optimization
of F is achieved when the tight-coupling condition is satisfied. Under such a condition, Φ is helpful
in the analysis of the optimization problem. In line with the above two cases, while from a broader
perspective and an energy-saving point of view, we argue that a general F should at least satisfy(

∂F
∂q2

)
J2

> 0. (28)

We thus rule out objective functions that are optimized, for example, when the entropy
production is maximized during a process. This requirement is actually consistent with Equation (18),
but it is more physically meaningful, and one of its implications is: If it is possible to achieve the
tight-coupling condition q2 = 1, then a globally optimized F is expected, otherwise, we can consider
the local optimal F under a given q2 < 1. In the latter case, the corresponding optimized efficiency
is generally less than that in the former case, because the heat leakage inevitably leads to the waste
of heat flux and brings about extra entropy production. While if the tight-coupling condition can be
fulfilled, then one can take advantage of Φ to solve for the optimized process whose corresponding
efficiency serves as an upper bound for q2 < 1: η∗(q2 < 1) < η∗(q2 = 1). For simplicity, η∗(q2 = 1)
is denoted η∗ throughout this work. As a result of the above reasoning, we know a unified approach
to the optimization problems for linear response can be performed by taking advantage of Φ if the
tight-coupling condition can be satisfied, and the resultant efficiency is a globally optimal one for
reasonably chosen objective functions.

We have shown above how η∗ can be obtained for two specific choices of F. It is straightforward
to adopt the same method to more generic situations as long as F is explicitly given. The procedures
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are: First, we rewrite F as a function of J2 and σ with other parameters like Qh, Th, and Tc being
prescribed or fixed. Then we replace J2 by Qh/τ, and Tcσ by Φ/τ2, respectively. Note that now F is
only a function of τ. By setting ∂F/∂τ = 0, we obtain the optimized duration τ∗. Finally, as for the
corresponding efficiency η∗, we know that

η∗ =
P(τ∗)
J2(τ∗)

=
ηC J2(τ

∗)− Tcσ(τ∗)

J2(τ∗)
= ηC −

Φ/τ∗2

Qh/τ∗
= ηC

(
1− Φ

ηCQhτ∗

)
= ηC

(
1− λ

τ∗

)
, (29)

as already shown in Equations (23) and (27). Note that the physical meaning of λ is the stopping time
of the process, we thus have a formally universal result:

η∗ = ηC

(
1−

τstop

τ∗

)
. (30)

This result physically clearly demonstrates how the efficiency of a desired process is related
to the ratio between the stopping time of the process and the optimized duration. For a process
with minimum entropy production, τstop/τ∗ → 0, while for one with maximum power output,
τstop/τ∗ = 1/2. Since these two cases typically represent two extremes of optimization problems,
generally the resultant η∗ lies in the range between ηC/2 and ηC. Equation (30) is thus one universal
result that holds for reasonably chosen objective functions in the linear response regime. The
universality of Equation (30) has two meanings: First, it is formally valid for various choices of
reasonable objective functions F; second, as long as a specific F is chosen, different models or heat
transfer laws will not alter η∗ in the linear response regime. The latter point is due to the generality
of Onsager’s theory of linear irreversible thermodynamics. When F is chosen to be P, ηVdB is the
universal efficiency, as already evidenced for various models [14,18,19]. Similarly, when F is generic,
one can still expect a universal efficiency η∗ as given by Equation (30), irrespective of model details.

5. Conclusions

In this work, we show that within the framework of linear irreversible thermodynamics,
there exists a lower bound of dissipation Φ (Equation (14)) for finite-time heat-work conversion
processes, which is achieved when there is no direct heat leakage between two heat reservoirs and
the tight-coupling condition is fulfilled. By taking advantage of Φ, we manage to optimize generic
objective functions in a unified way. Two specific forms of objective functions are quantitatively
analyzed, and a good agreement with previous results is obtained for either case in the linear response
regime. For more general cases, we unveil a universal expression of efficiency for the optimized
process (Equation (30)), in which the ratio between the stopping time and the optimized duration
time of the process determines the corresponding efficiency. In a word, we present a unified approach
to optimizing generic objective functions for linear response, and the corresponding efficiency is
obtained universally.

Our work thus establishes a basis on which various thermodynamic processes can be treated in
a simple and direct way. The results thus obtained are exact to the first order of ηC, which provide a
starting point for further investigations concerning model-dependent nonlinear response effects [26].
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