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Abstract: In many case-control genetic association studies, a secondary phenotype that may have
common genetic factors with disease status can be identified. When information on the secondary
phenotype is available only for the case group due to cost and different data sources, a fitting
linear regression model ignoring supplementary phenotype data may provide limited knowledge
regarding genetic association. We set up a joint model and use a Bayesian framework to estimate
and test the effect of genetic covariates on disease status considering the secondary phenotype as
an instrumental variable. The application of our proposed procedure is demonstrated through the
rheumatoid arthritis data provided by the 16th Genetic Analysis Workshop.

Keywords: genome-wide association study; Bayesian testing; secondary phenotype; Bayes factor;
case-control design; incomplete data

1. Introduction

Statistical analysis with regression models is a common approach for investigating the effects of
genetic and non-genetic covariates on a response outcome. Observations in such a study usually
involve a pre-specified disease trait, which could be either a continuous or categorical variable,
genetic markers, such as single nucleotide polymorphisms (SNPs), candidate genes and non-genetic
covariates of interest, such as age, ethnicity and environmental exposure. When the disease trait
is obtained as a continuous outcome variable, linear regression models are commonly used [1,2],
whereas logistic regression models, the Cochran–Armitage trend test and Pearson’s chi-squared test
are often used for the analysis of a binary disease trait [3,4]. In addition, the effects of genes (SNPs)
and covariates on the selected disease trait are often described through a multivariate linear or
generalized linear model. Through a set of latent biological phenotypes, Chatterjee et al. [5] described
a conceptual framework for modeling genetic associations and gene-gene and gene-environment
interactions in indirect-association studies with multivariate logistic regression models. Maity et al. [6]
extended the approaches proposed by Chatterjee et al. [5] to studies with repeated measures data and
developed a class of score tests in general semi-parametric regression models. Genetic studies may
also involve combined data from several case-control studies [7].

Recently, Wu et al. [8] proposed a joint regression model based on a two-step conditional
modeling approach. First, they modeled the effects of SNPs and non-genetic covariates on the
conditional probabilities for the categorical variable using a generalized linear model; second, based
on conditioning of the given levels of a categorical variable, they modeled the added effects of the
same SNPs and covariates on the conditional means of the continuous outcome using a general
linear regression model. However, they modeled the conditional mean of the continuous outcome
for given case and control groups separately; thus, their joint likelihood would not allow for the
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estimation of the effect of covariates on the continuous outcome measure in the control group when
the continuous outcomes are missing in the control group. Furthermore, He et al. [9] proposed
a Gaussian copula-based approach that could model the dependence between disease status and
secondary phenotypes.

As progress in computational power has been extended to genetic association studies, recent
studies have demonstrated the practical and theoretical advantages of using Bayesian approaches
for the assessment of associations [10]. Bayesian methods compute measures of evidence that
can be directly compared among SNPs within and across studies. In genome-wide association
studies (GWAS), the Bayes factor is a useful tool to support significant p-values and serves as a
better measure than p-values when results are compared across studies with different sample sizes.
Xu et al. [11] proposed a Bayes factor based on the Cochran–Armitage trend test that incorporates
situations of Hardy–Weinberg disequilibrium.

In this paper, we propose an instrumental regression model and develop a Bayesian estimation
and testing procedure involving the shared genetic associations with both continuous and binary
outcomes. We construct a joint-likelihood model for disease status and the continuous secondary
phenotype available for the case group. In particular, we incorporate the secondary phenotype
as an instrumental variable into the model and make use of the fact that the missing secondary
phenotypes are known to be larger (or smaller) for the control group than for the case group.
This is not an unreasonable assumption in practice, since the available phenotype is regarded
as an important surrogate clinical measurement in deciding the disease status. Under various
genetic models, estimation of the genetic associations and covariate effects are obtained by the
Bayesian method.

For the main results, we describe the real data and data structure in Sections 2 and 3, respectively.
We describe our model and the hypotheses to be tested in Section 4 and then explain the Bayesian
methodology and the corresponding testing procedures in Section 5. In Section 6, we present the
application of our method to the Genetic Analysis Workshop 16 (GAW16) rheumatoid arthritis (RA)
dataset. In Section 7, we provide concluding remarks with a brief discussion of the advantages and
limitations of our approach.

2. RA Genetic Data

Our example comes from a GWAS exploring the effect of genetic markers on certain diseases.
GWAS has emerged as an effective tool to identify a common polymorphism underlying complex
diseases, and the GAW16 RA data represent the initial batch of GWAS data from the North American
Rheumatoid Arthritis Consortium after removing duplicated and contaminated samples [12].

RA is a chronic inflammatory disease characterized by the destruction of the synovial joints,
resulting in severe disability, particularly in patients who remain refractory to available therapies.
The susceptibility to and severity of RA are determined by both genetic and environmental
factors [13]. A newly-identified autoantibody, anti-cyclic citrullinated peptide (anti-CCP), appears
to be highly specific for the disease and is a good predictor of erosive outcome [14]; elevations of
anti-CCP have been reported to predict increased risk for development of RA [15]. RA affection
is a dichotomous variable representing disease status, and anti-CCP level is a continuous trait.
Moreover, information of the gender of each patient is available as an independent covariate.

The GAW16 RA data are derived from a case-control study involving 868 RA-positive patients
(cases) and 1194 subjects from the New York Cancer Project, who were RA negative (controls), and the
dataset contains genotype data for more than 500,000 SNPs. Since anti-CCP antibodies are potentially
important surrogate markers for the diagnosis and prognosis of RA and larger anti-CCP values have
been linked to increased severity of RA [14], the GAW16 data contain anti-CCP measurements for the
RA-positive patients, but not for the RA-negative subjects.

For the purpose of illustration, we here present the results for a few selected SNPs on
chromosome 1. Among susceptibility genes on chromosome 1, PTPN22 has been shown to be
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associated with RA [16], and PADI4 has been identified to be associated with RA among Asians [17].
Alleles at the PTPN22 locus have been shown to confer an increased risk for RA [18]. In particular,
they reported that the R620W allele in SNP rs2476601 confers a 1.7-fold to 1.9-fold increased risk of
RA to heterozygotes and even higher risks to homozygous carriers.

After removing the SNPs that were excluded using standard GWAS quality-control procedures,
we obtained 34,195 SNPs on chromosome 1. Due to the skewness of the anti-CCP distribution, we
used the log-transformed anti-CCP values. For preliminary analysis, we screened each individual
SNP based on the results of logistic regression of RA status under an additive genetic model and
selected SNPs whose p-values were smaller than 10−5.83 (Bonferroni-corrected significance level).
In Table 1, we have tabulated the top 13 ranked SNPs that were screened from the preliminary
logistic analysis.

Table 1. The 13 most significant single nucleotide polymorphisms (SNPs) from the logistic regression
of rheumatoid arthritis status under the additive model.

Rank SNP p-value MAF *

1 rs9442372 10−15.95 0.430
2 rs2476601 10−10.93 0.084
3 rs6427128 10−7.70 0.129
4 rs2062629 10−7.52 0.140
5 rs356116 10−7.03 0.139
6 rs16861613 10−6.93 0.074
7 rs6671416 10−6.83 0.129
8 rs7524233 10−6.50 0.141
9 rs6598886 10−6.34 0.046

10 rs1046269 10−6.20 0.115
11 rs11578154 10−6.04 0.071
12 rs12027585 10−6.02 0.113
13 rs2986742 10−5.84 0.085

* MAF, minor allele frequency.

3. Data Structure

We consider the example of genetic association studies based on a case-control sample.
Let (D, W, G, Z) be the random variables for the traits, genetic markers and covariates being
considered, where D is a binary random variable indicating a certain disease or clinical status; W is the
actual value of the secondary phenotype, G = (G1, . . . , Gq)T ; q ≥ 1 is a vector of categorical variables
denoting the presence of genetic markers or SNPs; and Z = (Z1, . . . , Zp)T is an Rp-valued covariate
matrix for some p ≥ 1. Although G is generally a categorical variable, specific choices for G depend
on whether the biallelic genetic model is recessive, additive or dominant. In practice, we identify a
group of case subjects and select a certain number of control subjects matched with respect to other
important characteristics, such as gender or age. Suppose that the data consist of n independent and
identically distributed realizations of (D, W, G, Z), where the observation for the i-th case subject is
denoted by {(1, Wi, Gi, Zi), i = 1, . . . , r} and the observation for the j-th control subject is denoted
by {(0, Gi, Zi), i = r + 1, . . . , n}. Although Dis are observed for all subjects i = 1, . . . , n, because
of cost considerations or a situation in which the secondary phenotype W in the control group may
not have an important impact on the scientific objectives of the study, Wi may not be measured in
the control group. For instance, in our example, it is well known that high anti-CCP values are
associated with RA, and these values were measured for the case subjects. However, control group
data were obtained from a different source, i.e., the New York Cancer Project, and therefore, the
anti-CCP values are missing for the control subjects. On the other hand, the secondary phenotype
serves as an important surrogate measurement for disease status; therefore, we may assume that
there is a certain ordering in magnitude of the secondary phenotype values between the case group
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and the control group. Throughout this paper, we assume known information that W’s in the control
group are smaller than those in the case group. The opposite situation can be easily dealt with by
taking negative values of the secondary phenotype outcomes.

4. Model and Hypothesis

We consider two response outcomes, namely the binary disease status D and the continuous
secondary phenotype outcome W. In a classical logistic regression setup, the probability of having
a disease is determined by the covariates in the model. Here, we also evaluate the values of a
continuous secondary phenotype, which are used as a surrogate measure to determine the disease
status. The secondary phenotype W is deemed to be correlated with the disease status D and is also
explained by the covariates G and Z. Our approach relies on being able to identify a genetic variant
(SNP) that perturbs the secondary phenotype, which is measured with a random error parameter.
We assume that the genetic markers, as well as other non-genetic covariates, have some effect on
the secondary phenotype, which serves as an intermediate outcome that, in turn, affects the disease
status. For instance, because elevated anti-CCP antibody levels are associated with an increased
risk of RA, we assume that this relationship may be causal. Therefore, we investigated the effect of
covariates on RA status via their effect on the anti-CCP measurements as a secondary outcome. This
leads to the path diagram illustrated as follows.

(G, Z) −→ W −→ D

[Association diagram among variables]

We consider a joint regression model for (Di, Wi) with covariates {Gi, Zi} constructed by
modeling the conditional probability P(Di = 1|Wi, Gi, Zi) and the conditional mean of Wi, given
{Gi, Zi}. Using a logit model for the binary variable Di and a linear model for the continuous
secondary phenotype Wi, a generalized linear joint model is given as the following hierarchical model
based on P(D|W, G, Z) and P(W|G, Z):{

logit(P(Di = 1|Wi, Gi, Zi)) = β0 + βT
1 Gi + βT

2 Zi + βT
3 Wi

Wi = γ0 + γT
1 Gi + γT

2 Zi + εi,
(1)

where logit(p) = log(p/(1− p)). β1, β2 describe the genetic association of G and the covariate effect
of Z on the probability of having the disease, respectively. β3 describes the effect of the secondary
phenotype on the disease status. γ1 and γ2 describe the genetic association of G and the covariate
effect of Z on the secondary phenotype W, and εi is the mean zero random error with variance σ2.
I(A) is the indicator function of a set A, and the superscript T denotes the transpose of a vector
or a matrix. For each genetic marker, the covariate G is a variable that depends on the assumed
genetic model. Depending on the number of copies of the mutant allele at a particular SNP, we
have G = (G0, G1, G2) = (0, 1, 1) for a dominant genetic model, G = (G0, G1, G2) = (0, 0, 1) for a
recessive genetic model and G = (G0, G1, G2) = (0, 1, 2) for an additive genetic model [19]. Note
that a conditional approach can be directly connected to Gibbs sampling in view of the relationship
between the conditional distribution and joint distribution. However, Equation (1) is valid only when
evaluated in the population, as the test of γ1 in the second equation can be invalid in case-only
data, because of the missingness of the secondary phenotype in the control group. In addition,
assuming that the gene and other covariates affect the disease status via a secondary phenotype, i.e.,
P(D|W, G, Z) = P(D|W), the logit model can be simplified as follows:

logit(P(Di = 1|Wi)) = β0 + βT
1 Wi. (2)
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When W is observed for every individual, the regression coefficients in Model (1) can be
estimated and tested using the maximum likelihood method. However, W values for the entire
control set are only known in that they are lower in control subjects than in case subjects. If the
case-control samples are obtained by 1-1 matching, then, as an example, half of the W values for the
entire sample would be missing. Hence, we consider a hierarchical approach and propose Bayesian
Gibbs sampling to incorporate the available information from the high correlation with disease, but
only partially-observed secondary phenotype values for the case group.

An important assumption of our modeling approach is that the disease is categorized by the
binary trait D, and the disease severity is measured by the secondary phenotype W for the case
group. The parameter β1 describes the associations of Gi with the disease categories, whereas
γ1 describes the genetic associations of the genetic component Gi with disease severity. Thus, to
evaluate the associations of Gi with disease categories and severity, we test the following null and
alternative hypotheses:

Hβ
0 : β1 = 0 versus Hβ

1 : β1 6= 0

Hγ
0 : γ1 = 0 versus Hγ

1 : γ1 6= 0 ,
(3)

where 0 denotes the column vector of appropriate length. Testing Hβ
0 vs. Hβ

1 tests the effect of the
secondary phenotype on the disease status, and testing Hγ

0 vs. Hγ
1 tests the existence of a genetic

effect on the secondary phenotype.

5. Bayesian Testing

Based on the hierarchical approach, the corresponding joint likelihood function can be written
as L(β0, β1, γ0, γ1, γ2, σ2) = ∏n

i=1 pr(Di|Wi, β0, β1)pr(Wi|γ0, γ1, γ2, σ2). For r case subjects, we have
that pr(Di|Wi, β0, β1) = pr(Di = 1|Wi, β0, β1), and for the remaining n− r control subjects, we have
that pr(Di|Wi, β0, β1) = pr(Di = 0|Wm

i , β0, β1), where Wm
i is the missing phenotype for i-th subjects

in the control group. Using similar representation for pr(Wi|γ0, γ1, γ2, σ2), the joint likelihood can be
written as:

L(β0, β1, γ0, γ1, γ2, σ2) =
n

∏
i=1

pr(Di|Wi, β0, β1)pr(Wi|γ0, γ1, γ2, σ2)

=
r

∏
i=1

pr(Di = 1|Wi, β0, β1)
Di

n

∏
i=r+1

pr(Di = 0|Wm
i , β0, β1)

1−Di

×
r

∏
i=1

pr(Wi|γ0, γ1, γ2, σ2)
n

∏
i=r+1

pr(Wm
i |γ0, γ1, γ2, σ2)

=
n

∏
i=1

(
1

1 + exp(β0 + β1Wi)

)Di
(

exp(β0 + β1Wm
i )

1 + exp(β0 + β1Wm
i )

)1−Di

×
r

∏
i=1

1
σ
√

2π
exp

(
−
(Wi − γ0 − γT

1 Gi − γT
2 Zi)

2

2σ2

)

×
n

∏
i=r+1

1
σ
√

2π
exp

(
−
(Wm

i − γ0 − γT
1 Gi − γT

2 Zi)
2

2σ2

)
,

(4)

where r is the number of case subjects and Wm denotes the unobserved secondary phenotype, i.e., a
collection of secondary phenotypes for control subjects. However, under the conditional approach,
the corresponding joint likelihood function cannot be expressed as an explicit form.

It has been demonstrated that hierarchical Bayesian models are well suited to the analysis of
complicated augmentation problems. We consider a hierarchical model with obvious conditional
independence assumptions corresponding to the representation of a genetic association model, which
can be outlined as follows:
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• [D | W, β0, β1]: logit(P(Di = 1|Wi) = β0 + β1Wi .
• [W|G, Z, γ0, γ1, γ2]: Wi = γ0 + γT

1 Gi + γT
2 Zi + εi, where εi

iid∼ N(0, σ2) .
• [β0, β1]: β0 and β1 are independent, and β0 has an improper uniform prior; we set a relatively

strong prior for β1 to have anti-CCP values within the normal range for the control group.
• [γ0, γ1, γ2, σ2] : γ0, γ1 and γ2 are independent and have improper, uniform priors, and σ2 has a

diffuse inverse gamma distribution.

In Bayesian model selection or a testing problem, use of the Bayes factor under proper priors or
informative priors has been very successful. A summary number, which may be singled out for its
clarity, is the Bayes factor [20,21]. A Bayes factor is a Bayesian alternative to frequentist hypothesis
testing that is most often used for the comparison of multiple models. One reason for computing
the Bayes factor is that it is based on weighing the alternative models by the posterior evidence in
favor of each of them. Such evidence is not measured by the p-value of a classical hypothesis test.
A small p-value provides some evidence against a null hypothesis [20,22], but a large p-value does
not provide evidence in favor of the null. A second reason for computing the Bayes factor is that it can
be used when comparing non-nested models. This makes the Bayes factor particularly suitable for
use in constrained mixture models, where alternative models are non-nested [23]. In order to test the
genetic association, we computed the Bayes factor from the Markov chain-Monte Carlo simulation of
the posterior distribution.

Suppose that hypotheses Hβ
0 : β1 = 0 vs. Hβ

1 : β1 6= 0 and Hγ
0 : γ1 = 0 vs. Hγ

1 : γ1 6= 0 are
under consideration for each genetic covariate (SNP). We let θi = (Wm, β0, β1, γ0, γ1, γ2, σ2) denote
the unknown parameter under the hypothesis Hi, i = 0, 1. With observed data x = (D, W \Wm),
we have probability density function fi(x|θi), obtained from (4), under hypothesis Hi for i = 0, 1.
Let πi(θi) be the prior distribution of hypothesis Hi, and let pi be the prior probability of hypothesis
Hi. Then, the Bayes factor of hypothesis H1 to hypothesis H0 is defined by:

B10 =
f1(x|θ1)π1(θ1)dθ1

f0(x|θ0)π0(θ0)dθ0
=

m1(x)
m0(x)

. (5)

In addition, the posterior distribution that the hypothesis H0 is true is:

P(H0|x) =
(

1

∑
j=0

pj

p0
Bj0

)−1

=
p0 + p1B10

p0
. (6)

6. RA Data Revisited

We next applied the hierarchical Bayesian approach to the RA data introduced in Section 2. As
a preparatory step, we take the log transformation on anti-CCP (W) to reduce the skewness of the
quantitative phenotype values. The posterior distribution of each parameter in Model (5) is obtained
by Markov chain-Monte Carlo simulation, and Bayes factors for testing the hypotheses in (3) are
calculated. The results are based on 10,000 samples after 10,000 burn-in iterations for each SNP. Table 2
summarizes the posterior mean and standard deviation of model parameters for each individual SNP
presented in Table 1. In Table 2, SNPs are reordered by the magnitude of the Bayes factor for testing
the null hypothesis H0 : γ1 = 0. The Bayes factors for testing the null hypothesis H0 : γ1 = 0 for
each SNP are quite different from each other, whereas the Bayes factors for testing the null hypothesis
H0 : β1 = 0 are quite similar; therefore, we ranked the SNPs by the Bayes factor for testing H0 :
γ1 = 0. Bayes factor means the ratio of marginal likelihood under the null hypothesis and marginal
likelihood under the alternative hypothesis. Kass et al. [21] propose the interpretation that a Bayes
factor greater than three means “positive” evidence; a Bayes factor greater than 20 means “strong”
evidence; and Bayes a factor greater than 150 means “very strong” evidence.

Very large Bayes factors (BFs) are not unexpected, because we have selected the top ranked
13 SNPs in the preliminary analysis. As explained in the Introduction, our setup is that secondary
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phenotypes are completely missing in the control group due to different sources of data. In such a
case, we cannot apply regression analysis, and we proposed the Bayesian approach as a reasonable
option to model the data. We present the analysis of the RA data primarily as an example illustrating
the potential of the Bayesian approach based on joint likelihood when secondary phenotypes are
completely missing in the control group, except the knowledge that secondary phenotype values are
lower for the control group than in the case group.

Table 2. Estimated coefficients and standard errors of model parameters for the 13 most significant
single nucleotide polymorphisms (SNPs) from the logistic regression under the additive genetic
model. log(BF) is log of the Bayes factor for testing H0 : γ1 = 0.

Rank SNP β0 β1 γ0 γ1 γ2 log(BF) γ∗1

1 rs9442372 −5.183 0.112 3.862 −1.183 0.612 >500 −0.170
(0.299) (0.008) (0.082) (0.083) (0.105) (0.132)

2 rs2986742 −5.602 0.150 1.912 −1.747 2.013 >500 −0.135
(0.394) (0.012) (0.236) (0.101) (0.235) (0.130)

3 rs12027585 −6.574 0.174 4.061 −0.884 −0.841 477.02 −0.254
(0.420) (0.013) (0.067) (0.076) (0.149) (0.124)

4 rs1046269 −5.393 0.133 4.112 −1.864 −0.443 424.66 −0.143
(0.351) (0.010) (0.083) (0.095) (0.197) (0.120)

5 rs6671416 −5.441 0.142 4.173 −1.872 −1.044 400.90 −0.241
(0.363) (0.010) (0.084) (0.097) (0.180) (0.108)

6 rs356116 −7.482 0.235 3.781 −1.291 −1.636 354.24 −0.123
(0.659) (0.022) (0.085) (0.098) (0.185) (0.111)

7 rs6598886 −4.153 0.083 2.544 −2.048 1.756 334.60 −0.201
(0.220) (0.005) (0.312) (0.093) (0.312) (0.092)

8 rs16861613 −4.562 0.102 4.037 −1.638 −2.283 315.28 −0.173
(0.259) (0.006) (0.081) (0.095) (0.248) (0.110)

9 rs11578154 −5.353 0.135 4.083 −1.393 −1.557 299.98 −0.153
(0.339) (0.009) (0.074) (0.086) (0.227) (0.109)

10 rs6427128 −5.792 0.123 4.222 −0.638 −0.472 191.15 −0.207
(0.327) (0.008) (0.057) (0.065) (0.127) (0.109)

11 rs2062629 −8.913 0.265 3.981 −0.469 −1.013 189.78 −0.125
(0.623) (0.021) (0.061) (0.069) (0.131) (0.103)

12 rs7524233 −4.861 0.104 4.213 −0.888 0.244 160.42 −0.218
(0.251) (0.006) (0.059) (0.067) (0.127) (0.104)

13 rs2476601 −8.080 0.234 3.932 −0.809 0.786 17.12 −0.166
(0.563) (0.018) (0.062) (0.071) (0.137) (0.102)

γ∗1 , Estimated coefficients and standard errors for the second model in (1) using the case data only.

For a comparison with the analysis using only available data, we fit the second model of
Model (1) using the case data only. We cannot fit the first logistic regression model because Wi’s,
i.e., secondary phenotypes, are completely missing for the control group. When we compare the
estimated coefficients and standard errors for γ1 and γ∗1 in Table 2, we observe that the estimated
coefficients have the same sign, but significances seem to be higher for our approach.

Furthermore, our method allows for the generation of missing secondary phenotype outcomes
in the control group. The reference ranges for blood tests of anti-citrullinated protein antibodies
is less than 20 for RA-negative individuals [24]. We used a strong prior for β1 to incorporate the
available knowledge on the missing phenotype values for the control group. Figure 1 shows the box
plots of Wi’s for the case group and the control group for the top two-ranked SNPs: “rs9442372”
and “rs2986742”. The median of observed anti-CCP values for the case group was 135, and the
medians of missing anti-CCP values for the control group were 14.37 and 2.853 for “rs9442372” and
“rs2986742”, respectively.
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Figure 1. Box plots of anti-cyclic citrullinated peptide (CCP) values of the case (Y = 1) and control
(Y = 0) groups for the two top-ranked single nucleotide polymorphisms: “rs9442372” (upper panel)
and “rs2986742” (lower panel).

In Table 3, we provide the highest posterior credible sets for β1 and γ1, which represent the effect
of the secondary phenotype on the disease status and the genetic effect on the secondary phenotype,
respectively. In Bayesian inference, “credible set” terms are generally used instead of “confidence
interval”. Actually, a credible set can be obtained by posterior distribution. The highest posterior
density interval is defined by (L, U) minimizing the length of interval satisfying P(L < θ < U|data) =
1− α.

Posterior density distributions of β1 and γ1 for the top two ranked SNPs, “rs9442372” and
“rs2986742”, are plotted in Figures 2 and 3. For example, for the top ranked SNP “rs9442372”, the
posterior means for β1 and γ1 are 0.113 and −1.193, respectively. The positive posterior mean for β1

implies that knowing the anti-CCP values seems to increase the chance of RA. The magnitude of the
posterior mean for γ1 implies that the SNP exerts quite a large genetic effect on the anti-CCP value.
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Table 3. Highest posterior density credible sets for the parameters of interest (β1, γ1).

Rank SNP β1 γ1

1 rs9442372 (0.110, 0.115) (−1.210,−1.175)
2 rs2986742 (0.146, 0.155) (−1.802,−1.692)
3 rs12027585 (0.171, 0.182) (−0.906,−0.862)
4 rs1046269 (0.131, 0.138) (−1.888,−1.840)
5 rs6671416 (0.135, 0.142) (−1.900,−1.843)
6 rs356116 (0.219, 0.240) (−1.345,−1.236)
7 rs6598886 (0.083, 0.085) (−2.074,−2.021)
8 rs16861613 (0.100, 0.103) (−1.686− 1.590)
9 rs11578154 (0.130, 0.135) (−1.426,−1.360)

10 rs6427128 (0.120, 0.125) (−0.650,−0.625)
11 rs2062629 (0.251, 0.274) (−0.499,−0.438)
12 rs7524233 (0.094, 0.097) (−0.901,−0.874)
13 rs2476601 (0.225, 0.242) (−0.825,−0.793)
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Figure 2. Posterior distribution of β1 (upper panel) and γ1 (lower panel) for single nucleotide
polymorphism “rs9442372”, which has the largest Bayes factor.
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Figure 3. Posterior distribution of β1 (upper panel) and γ1 (lower panel) for single nucleotide
polymorphism “rs2986742”, which has the second largest Bayes factor.

7. Discussion

When information on the secondary phenotype is available only for the case group due to
cost and different data sources in genome-wide association studies, it is not feasible to fit a linear
regression incorporating stratum-specific missing data. On the other hand, fitting a linear regression
model ignoring supplementary phenotype data may provide limited knowledge regarding genetic
association. In this paper, we have considered Bayesian genetic association testing when only
partial secondary continuous phenotype trait values are available and investigated the genetic effects
on disease status through the intermediate secondary phenotype. We illustrate the use of Bayes
factors in GWAS for selected SNPs whose p-values from logistic regression are highly significant.
Using a Bayesian approach for inference, available but incomplete information is reflected in the
model through the prior established on the parameter. For example, we set a strong prior on β1

to make use of the knowledge that the partially-observed anti-CCP values are lower for the control
group than the case group. In addition, we were able to incorporate the partially-observed secondary
outcomes related to the disease in the model and generated the missing outcomes in the control group.

Our setup is that secondary phenotypes are completely missing in the control group due to
different sources of data. In such a case, we cannot apply regression analysis, and we proposed the
Bayesian approach as a reasonable option to model the data. We present the analysis of the RA data
primarily as an example illustrating the potential of the Bayesian approach based on joint likelihood
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when secondary phenotypes are completely missing in the control group, except the knowledge that
secondary phenotype values are lower for the control group than in the case group. Our approach
can be applicable to the whole genome-wide association study. The running time per SNP was about
480 s per 20,000 iterations using R Version 3.1.3 on a personal computer (Intel Core I-7 at 3.40 GHZ).

With the liability threshold model, Falconer [25] supposed that there is a hypothetical
and continuous attribute, which he referred to as the individual’s “liability” to the disease
of interest, and all individuals above a certain threshold are affected with the disease. This
notion of liability is similar to a latent variable in statistics, and his assumption is limited
to normally distributed liability with equal variance for the case and the control groups.
However, our motivation was to model “mediated pleiotropy”, where a causal gene affects
one phenotype (anti-CCP) that lies on the causal path to another phenotype (RA status), and
thus, an association occurs between the observed gene and both phenotypes. There are
multivariate analyses jointly analyzing more than one phenotype in a unified framework and
test for the association of multiple phenotypes with a genetic variant, for example multivariate
analysis of variance (MANOVA). However, MANOVA or other ordinary regression approaches
cannot handle the case when the first phenotype is not available for the whole control group.
Our approach handles such a case, and the Bayesian framework allows us to test the association
between a genetic variant and the phenotype of interest making use of partial information on the
missing phenotypes in the control group. We present the results based on real data analysis to
illustrate the potential of the Bayesian approach proposed in this paper. The signal presented in
our table should be interpreted with caution, and it would be nice to validate it using independent
data sample.

In genome-wide association studies, there is a variety of efforts to recruit more study subjects,
because we need to test for a huge number of genetic variants with a rather small number of subjects
compared to the number of SNPs. This may include collecting data at both population and family
levels and combining data from different resources. Ascertainment bias happens when there is
more intensive screening for the outcome among the affected than among the unaffected. Then, the
case-control ratio in the available sample does not necessarily represent the prevalence of the disease
at the population level due to the way the data are collected. There are several attempts to explore or
explicitly incorporate ascertainment bias, for example conducting sensitivity analysis or conditional
likelihood approach (Lachance and Tishkoff [26] and Haghighi and Hodge [27]). We leave the issue
of incorporating ascertainment bias in Bayesian framework as future work.

The use of a fully-Bayesian approach for hypothesis testing eliminates the difficulties of
constructing estimators, because no estimation is required; instead, hypothesis tests are obtained
directly from the likelihood, with nuisance parameters integrated out. If parameter estimates are
required, they can be obtained from the posterior distribution as posterior means and credible
intervals, as demonstrated in this article.

The Bayes factor is a summary measure that provides an alternative to the p-value for the ranking
of associations or the flagging of associations as significant. Andrews [28] showed the relationship
between the Bayes factors and Wald, likelihood ratio and score statistics under quite general priors.
Instead of reporting p-values, whose interpretation depends on the sample size, we recommend
reporting Bayes factors with p-values. For a given test statistic, p-values only measure significance,
whereas Bayes factors integrate both the significance and the sample size to detect an association.
One benefit of reporting Bayes factors is that they are more appropriate measures than p-values when
comparing results across GWAS with different sample sizes, which is a frequent situation in GWAS
for common diseases.

The case subjects that we made available for our analysis comprise independent individuals
who have met the American College of Rheumatology criteria for rheumatoid arthritis. These cases
comprise a single member of 445 sib-pairs that were studied as a part of the North American
Rheumatoid Arthritic Consortium and an additional 423 cases who were not selected for family
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history. The cases were recruited from across the United States. Cases are predominantly of Northern
European origin. The control subjects, derived from the New York Cancer Projects, were enrolled in
the New York metropolitan area. These controls are enriched for individuals of Southern European
or Ashkenazi Jewish ancestry compared to cases [12]. The problem of non-random ascertainment
has been usually dealt with by formulating a conditional likelihood, which leads to the removal
of some individuals from the study in order to avoid an outcome-dependent ascertainment bias.
With our data, we did not think that our results are affected by case-control ascertainment, because
the unrelated control group was obtained quite independently from the case subjects. Population
stratification due to different ancestries within Europe might exist in our case-control data, and
incorporating such stratification in the analysis is beyond the scope of this paper.
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