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Abstract: Extracting information from social media has become a major focus of companies and
researchers in recent years. Aside from the study of the social aspects, it has also been found feasible
to exploit the collaborative strength of crowds to help solve classical machine learning problems like
object recognition. In this work, we focus on the generally underappreciated problem of building
effective datasets for training classifiers by automatically assembling data from social media. We detail
some of the challenges of this approach and outline a framework that uses expanded search queries
to retrieve more qualified data. In particular, we concentrate on collaboratively tagged media on
the social platform Flickr, and on the problem of image classification to evaluate our approach.
Finally, we describe a novel entropy-based method to incorporate an information-theoretic principle
to guide our framework. Experimental validation against well-known public datasets shows the
viability of this approach and marks an improvement over the state of the art in terms of simplicity
and performance.
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1. Introduction

The last decade has seen an explosive growth of on-line media-sharing communities, with a
consequential drastic increase in multimedia resources freely available on the web for companies
and researchers to study in detail. Far bigger in volume than anyone could collect or assemble, this
mass of data voluntarily supplied by millions of people is also difficult to organize and understand.
Innovative methods have recently been used to automate these tasks, so much so that news coverage
is talking about artificial intelligence finally becoming mainstream.

Aside from machine learning tools becoming useful to the public at large in a very visible way,
their success also lies in how social media has helped by providing a critical mass of data for their
training and validation. In particular, there has been a remarkable step forward in image classification
and object recognition (especially face recognition)—classical machine learning problems. There is
a wealth of complex information buried in the data, with clues provided by the suppliers, the social
media users, but extracting this information is difficult because such clues are often inaccurate, wrong,
or ambiguous. In other words, the data is largely unstructured and loosely labeled (see Figure 1).
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Figure 1. Montage of a few images returned by a simple search for “sofa” on Flickr. Most of these are
not representative of the sofa class, either because they are marginally or loosely related (e.g., people
sitting on sofas, or sofas present in the background).

One way to deal with these challenges is to select more narrow and qualified data from a larger
pool. In this work, we focus on the problem of building effective training sets for object recognition,
with the larger goal of providing an automated framework for generating ad-hoc classifiers. This is
a generally important problem, although less appealing than themes like feature design and model
learning. Mostly studied in the past [1], crowd-funding platforms like the Amazon Mechanical Turk [2]
are symbolic of the way forward. However, these approaches still require a considerable effort by the
researchers, both in temporal and monetary terms, and are generally restricted to a few categories. A
notable exception is the ImageNet project [3], which mirrors the taxonomy of Wordnet [4], with more
than 100,000 synsets (meaningful concepts represented as synonym sets). Unfortunately, many of the
less-used synsets contain very few images, thus making their use as training sets generally unfeasible.

Our approach towards building training sets focuses on the study of textual tags (short labels)
provided by the users when sharing their images (for example, on Flickr [5]). These cues to the image
content are recognized to be often unreliable, since they are freely entered and not associated to any
ontology or structured categorization. Moreover, there are often complex motivations involved in the
labeling [6,7], and therefore tags do not necessarily always describe the content of the images [8]: on
Flickr, which is often used by photography lovers, many tags note the camera device (by brand and
model) and the photo shoot setup (lighting and effects). In the framework we propose, our strategy is
based on the mechanism of query expansion [9], which first builds statistics of the tags associated with a
given target class, then filters this list to remove potentially noisy tags, and finally uses the remaining
tags to qualify multiple search queries that assemble the eventual training set.

Compared to other approaches in the literature, our framework is simple but effective, giving
excellent results that are validated on different image classification datasets, like Pascal Visual Object
Classes (VOC) [10,11] and ImageNet [12]. Although there are some drawbacks, which we discuss in
the experimental section, it highlights very clearly how useful the wisdom of the crowds is: with a set
of images collected automatically in 15–20 min, we obtained more than 81% of average precision on
the Pascal VOC 2012 classification problem. We also improve on OPTIMOL [13], which exploits the
visual content of the images. Finally, we introduce a novel tags selection method based on the Shannon
entropy that incorporates information-theoretic principles in our framework, and show its viability
experimentally. In future works, we envision an improved framework informed not only by metadata
information, but also visual and textual cues, in order to develop a theory of visual knowledge.

The rest of the paper is organized as follows: Section 2 presents some related literature
and remainders for the query expansion strategy; Section 3 describes our framework, while
Section 4 discusses validation experiments. Finally, conclusions and directions for future work are
presented in Section 5.
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2. State of the Art

Metadata-rich social media have been used quite often in recent years to improve on traditional
recognition tasks: for example, in [14], Flickr groups are used to learn accurate image similarities.
They have become a viable alternative to harvesting data from the web at large [15–17]. Like the
comparable works dealing with the automatic generation of training sets [13,15,18,19], our approach
focuses on the task of capturing a range of diverse but consistent picture representatives for a given
visual concept (like dog, car, etc.). In other words, our idea is to design a system that creates visual
synsets [3], like in ImageNet, but with minimal intervention, and fast, dynamic, and customizable
structure (for concepts outside WordNet [20]).

In [13,18], the approach exploits seed images, manually selected or retrieved by an image search
engine, as a set of trusted representatives for an object class, and then iteratively enlarges this set by
learning a class model and using it to evaluate and add new images to the set. It aims at mimicking
how humans build knowledge incrementally, but it also shares one weakness, namely that noisy and
misleading seed images may derail the process, causing it to reinforce an erroneous characterization.

Thus, one challenge is reducing possible false positive images. Since widely-used search engines
like Google are queried using textual keywords, it is possible to indirectly control the image retrieval
by using qualified keywords [15] or bi-grams containing the entity of interest [19]. In this last work,
a search keyword (plus an hyperonymy specifying the context) is used to generate a set of bi-grams,
each one of them addressing a specific semantic aspect of the visual concept. The bi-grams are
produced by looking at Google Ngrams (See https://books.google.com/ngrams/info), individuating
those additional terms that are visual adjectives (where the “visual” characteristics are found by
WordNet), present participles (found by basic natural language processing methods), and hyponymy.
These bi-grams, ordered by their original frequency in the Ngrams repository or uniformly weighted,
are used to create specific sets of images (or classifiers) that once pooled together give the final dataset
(or classifier). Selecting visually-representative keywords is an important issue that is not easy to solve:
in [21], the visually-representative tags are identified by their high use for images similar in content.
An alternative to using human intelligence to define visual knowledge is to mine the web [16,17] for
this information.

All of these automatic approaches rely on indexing methods, like the Google image search,
which are not open source, meaning that one step of the collection consists in a black box, where the
cues used to gather images are hidden and changing over time (due to advancements in the search
engine and addition of new indexed content). As a consequence, the performance of such approaches
may vary considerably, with no guarantee of repeatability.

3. Proposed Framework

Our framework exploits the fact that images on a media-sharing platform like Flickr can be labeled
with multiple keywords, called tags. These are free-form text strings, but are generally short and mostly
made of one word. Their intended use is to help navigating and searching collections of photographs,
but there are often meaningless tags, shortcut tags, tags in languages different than English, etc. In other
words, tags are noisy labels that might be misleading regarding the image content [8].

When performing image searches on Flickr, there is a variety of parameters that can be set. In our
framework, we use the search by tags mode, where we can specify one or more tags to be required in
the retrieved images (and, additionally, one or more tags we require not to be present). The default
behavior of the Flickr search engine is to return the images sorted by relevance, where it is unclear
how exactly the sorting is achieved. In other words, it acts as a less than fully reliable oracle.

The goal of our approach is to generate a training dataset of images for a given target object,
of which we only know the name. We consider a dataset generated by assembling the images retrieved
using the object name to be the baseline against which to compare. It is simple to do, performs reasonably
well on some objects due to the Flickr oracle, but is prone to include misleading images and fails to
take into account the noisy nature of tags. We contrast this to the informed choices in our framework.
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3.1. Class Dictionaries

We call a class dictionary the collection of all tags associated with a given target object.
Specifically, given a target object name x, a simple search on Flickr returns a set of images
flickr(x) = {Ik}, each accompanied by a set Wk = tags(Ik) containing the associated tags.
The collection of all tags T =

⋃
k Wk then represents a crowd-based semantic characterization

of the target class. For each word wi ∈ T, we also collect its frequency of use fi. Since the raw list often
contains undesirable strings, we use a sequence of preprocessing steps to prune it: converting all tags
to lower case, splitting space-delimited multi-words, removing numerical tags, non-English words
and stopwords.

After obtaining the set Tclean of pruned tags, we consider two different types of dictionaries:
the full class dictionary DF and the keyword position class dictionary DKP. The former simply contains
all tags (DF = Tclean), while the latter includes only the tags that appear before the object keyword in a
given image tags list; that is, Wk is cut short when the class keyword is found. This choice is inspired
by the fact that users tend to annotate dominant objects first [22], so we assume that tags earlier in a
list are more likely to be about the prominent objects in an image.

3.2. Dictionary Filters

The next step in our framework is the selection of a limited number of relevant tags from the class
dictionaries in order to perform query expansion. We consider the following different strategies to
determine a list of N tags E = {wi}N

i=1.

• Frequency filter: this strategy simply sorts the full class dictionary in descending order of
frequency fi and then takes the first N tags, presumably indicative of widely shared visual
semantics. Thus, concepts that are unrelated or occasionally related by context are ignored because
they are lower in the ranking. For example, “Marie” might be used as a tag for an image of a dog,
representing its owner, but its frequency in a large collection of images most likely will be low, as it
is very situational. On the other hand, “Saint Bernard” might be higher in rank, as it is the name of
a dog breed. The importance of tags by their frequencies is used in many applications [23–25].

• Keyword Position filter: similar to the previous filter, but starting from the keyword position class
dictionary. The tags are sorted and the first N in the ranking are kept.

• Quality filter: here we exploit a semantic oracle developed in [26], which is essentially a list
of 150 English terms considered by linguistic researchers to be “semantically rich and general”,
covering a wide variety of descriptions for different entities. The quality filter takes the intersection
between the full class dictionary and the oracle list, and keeps the first N tags when sorting
by frequency.

• Noun filter: this filter intersects the full class dictionary with a set of nouns that are in the hyponym
sets of the given keyword, or in its immediate hyperonym set (found by the help of WordNet).
Again, the remaining tags are sorted and the first N in the ranking are kept.

3.2.1. Entropy-Based Selection

All the dictionary filters described above follow the same principle for ordering and selecting the
best tags: higher frequency of use. However, this principle does not take into account the interplay
between the different tags. Simply put, they are not independently associated with pictures, but often
their presence is correlated and inter-dependent.

If we model the presence or absence of a tag t as a Bernoulli random variable yt, where yt = 1 if
the tag is associated with a given image, then a simple selection based on tag frequencies corresponds
to sorting the tags in descending order of probability P(yt = 1), or, more precisely P(yt = 1|x),
the probability conditioned to the search being about a specific class x. This particular conditioning
can be dropped from the equations if we deal, as we do, with each class independently.

In fact, each image with multiple tags can be seen as a probabilistic event, representing a sample
of the joint probability distribution p(yt1 , yt2 , . . .) of all the possible tags. Considering only the
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marginal probabilities p(yt) neglects to take into account the dependency between tags. For example,
in an extreme case, two high probability tags that are always used together would both be chosen
by frequency selection, but only one would bring in valuable information, and the other would
be superfluous. Since it is not feasible to consider all possible tags, we can limit ourselves
to the m tags most associated with a certain class, and thus study the joint probability mass
function p(yt1 , yt2 , . . . , ytm).

The most interesting issue at this point is which of the m tags brings in the most information?
The information-theoretic answer is the random variable with the highest entropy (see [27] for related
issues). For the Bernoulli variable yt, the Shannon entropy is given by

H(yt) = −pt log2 pt − (1− pt) log2(1− pt) (1)

where pt = P(yt = 1) and the entropy are measured in bits. This entropy is a concave function of pt,
with a maximum for pt = 0.5 and zero when pt = 0 or pt = 1. Thus, tags appearing half of the time
contain more information than frequent or rare tags. For example, if a tag is always associated with a
certain class, then it is generally useless for expanded searches (it will return roughly the same results).

Once we select the first tag t1 with maximal entropy, the next most informative one is given by
relative entropy:

H(yt|yt1) = − ∑
(yt ,yt1 )

p(yt, yt1) log2 p(yt|yt1) (2)

yt2 = arg max
yt

H(yt|yt1) (3)

where p(yt, yt1) is the joint probability mass function of selectable variable yt and the already chosen
variable yt1 , and p(yt|yt1) is their conditional probability mass function.

In general, given a set Zk = {yt1 , yt2 , . . . , ytk} of k selected tags, we can select the next tag with

H(yt|Zk) = − ∑
(yt ,Zk)

p(yt, Zk) log2 p(yt|Zk) (4)

ytk+1 = arg max
yt

H(yt|Zk) (5)

After every selection, the relative entropy of the remaining variables will be reduced, so that
we can stop the selection process either because we reach a given number of selected tags, or the
relative entropy gets lower than a certain threshold. Both of these stopping criteria solve the only
real issue with these calculations, which is that the state space (yt, Zk) grows exponentially, as 2k+1.
Experimentally, we rarely went beyond k = 15, where the state space has 32,768 possible combinations
for the presence/absence of tags (it takes a few minutes to calculate on a desktop).

An important property of the relative entropy is the chain rule:

H(yt2 , yt1) = H(yt2 |yt1) + H(yt1)

H(yt3 , yt2 , yt1) = H(yt3 |yt2 , yt1) + H(yt2 , yt1)

. . . = . . .

H(ytk+1 , Zk) = H(ytk+1 |Zk) + H(Zk).

(6)

By this rule, we can calculate the total entropy of the final selection of tags as the sum of all
the relative entropies calculated at each step and the initial marginal entropy of the first choice.
In the end we have a list of N tags ranked by how informative they are, together with a measure
hi = H(yti |Zi−1)/H(ZN) of their informativeness, obtained by normalizing each tag’s entropy by the
total entropy.
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3.3. Query Expansion

With a list of N tags selected according to their relevance, the final step in our framework is the
generation of expanded image search queries for downloading the training set pictures. Each expanded
query is a straightforward request to the social media platform to retrieve pictures that are tagged both
with the original class keyword x and the given tag t. For example, in Flickr, an advanced search with a
comma delimited sequence “x, t” in all tag mode (meaning all terms must be used as tags) returns only
images tagged with both x and t. Depending on the search engine capabilities and other contextual
necessities (we discuss a few in the experiments), it is possible to use more complex queries to discard
some images at the source.

Thus, for each of the N tags ti, let Vi = flickr(x, ti) be the images returned by an expanded query.
Since each of these requests to the social media platform are done independently, it is likely that some
pictures will be returned multiple times, depending on how large the image pool is and how the search
engine ranks the returns. An easy workaround is to discard the duplicates, as they will introduce
biases for the classifiers. The entropy-based selection method tends to reduce the number of duplicates,
as it takes into account the inter-dependency between tags.

Finally, the training set for class x is made by assembling all the images
⋃N

i=1 Vi of the expanded
queries. Details about the total cardinality of the training set and the cardinality of each set Vi can be
chosen depending on the experimental setup.

4. Experiments

In the previous section, we have outlined how our proposed framework can assemble training sets
of pictures for image classification from social media platforms like Flickr. A qualitative assessment
only goes so far in validating the effectiveness of the results (see the end of the article and the
Supplementary Material). For a quantitative evaluation, in the first set of experiments we follow
the methodology of [19], called simply Semantic Trainer, for testing classification performances and
generalization capabilities. A second set of experiments follows the methodology of OPTIMOL [18].
Finally, the last set of experiments shows the viability of the novel entropy-based selection method.

4.1. Comparison against the Semantic Trainer

The Semantic Trainer approach tests image datasets by the conventional route of extracting
features and training classifiers. These are then tested against the Pascal VOC 2012 image classification
task [10]. In particular, using the MatConvNet toolbox (v1.0-beta17) [28], a convolutional neural
network (CNN) [29] pre-trained on ImageNet is used to extract a 4096-dimensional feature vector
for each image (from the FC7 layer of the network). Then, linear support vector machines (SVM) are
trained on these features to learn class models, using the features from the class images as positives
and the remaining features from the other classes as negatives. Finally, the classifiers are tested on
the features extracted from the Pascal VOC 2012 validation datasets, and the interpolated average
precision (AP) values are calculated (see [19] for further details).

Since Pascal VOC 2012 contains 20 class datasets, two of which the Semantic Trainer was unable
to process, we also focus on the 18 remaining classes: aeroplane, bicycle, bird, boat, bottle, bus, car, cat,
chair, cow, dog, horse, motorbike, person, sheep, sofa, train, and tv monitor. In the first set of experiments,
we compare the performance of our strategies (except the entropy-based selection) against the strategies
of the Semantic Trainer (see Table 1). For each of the 18 classes, following our framework, we first create
class dictionaries from 500 tagged images retrieved by a simple search, and then select N = 10 tags
according to our dictionary filters. Using query expansion, we assemble a dataset of images with the
same cardinality as the Pascal VOC 2012 ones (to keep it fair), and uniformly split between queries.
That is, each query contributes to 1/10 of the images in the final dataset.

In Table 1, we report the performances of the frequency filter (freq-f ), the quality filter (qual-f ),
the keyword filter (keyw-f ), and the noun filter (noun-f ) against the simple search (Flickr) and the
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Semantic Trainer strategies. The Semantic Trainer originally retrieved images using bi-gram (class
keyword plus additional term) queries on the Google image search engine, and it has been modified
here to work with Flickr. Thus, for each class, ten bi-gram queries are selected according to different
strategies: basic, hyponym-based (hypo), verb-based (verb), visual adjective-based (vadj), combination of
modules by bi-gram frequency (fcom), and combination of classifiers (ccom).

Table 1. Comparative classification results on the PASCAL VOC 2012 dataset between a simple search
(Flickr column), the Semantic Trainer strategies, and our framework (see text for details). The numbers
indicate interpolated average precision (AP), with the average AP in the last row (Bold font indicates
the best for each class).

Classes Flickr Semantic Trainer Our Framework

basic hypo verb vadj fcom ccom freq-f qual-f keyw-f noun-f

aeroplane 97.7 97.3 95.2 97.4 97.1 97.9 97.3 97.3 96.4 97.3 93.6
bicycle 82.8 82.5 70.4 79.3 83.6 82.2 81.2 83.1 76.6 82.3 76.5

bird 90.7 90.4 91.5 89.9 90.2 90.1 91.7 90.7 92.7 89.3 92.0
boat 88.7 88.2 88.8 87.8 86.9 89.5 89.2 88.9 87.5 89.3 89.0

bottle 57.3 56.7 57.5 55.7 55.8 57.6 58.3 57.3 54.9 56.8 55.6
bus 93.8 93.7 87.3 94.3 93.0 94.1 93.0 93.4 91.6 93.1 92.8
car 72.6 75.6 69.8 71.9 75.9 71.6 74.7 73.2 74.6 73.9 73.2
cat 91.5 89.1 92.9 90.6 90.9 91.4 93.1 92.9 89.6 90.0 91.5

chair 70.3 69.9 73.3 71.1 72.3 67.8 74.3 68.9 66.5 71.0 59.5
cow 79.0 73.9 73.6 71.8 75.1 75.7 77.7 76.6 78.8 76.1 64.9
dog 88.9 87.3 89.5 87.3 87.1 86.1 89.7 88.8 88.7 86.6 87.5

horse 85.1 76.8 80.1 76.9 81.7 80.5 83.0 84.8 83.8 82.2 80.7
motorbike 89.1 89.4 4.7 88.9 91.0 90.7 91.3 89.1 89.8 85.5 79.2

person 60.4 61.5 72.8 60.6 58.1 63.9 68.4 57.8 71.8 66.8 58.1
sheep 84.9 84.0 85.6 82.9 85.2 84.9 87.2 84.9 86.3 86.2 79.5
sofa 58.0 59.6 45.7 52.7 58.7 58.2 59.0 10.6 62.7 49.8 39.1
train 92.8 92.4 90.6 93.1 92.2 93.6 93.2 89.1 92.7 91.8 91.0

tv monitor 25.0 74.1 55.4 26.2 45.0 46.8 53.1 73.4 77.1 31.5 69.3

Mean AP 78.3 80.15 73.6 76.6 78.9 79.1 80.9 77.8 81.3 77.8 76.3

These results indicate comparable performances between our framework and the Semantic Trainer
strategies, with the difference that our approach is considerably simpler: the Semantic Trainer requires
an expensive search of the Google Ngrams database for additional terms (that might also turn out to
be unrelated visually), while we mine these terms from the actually-used tags. In addition, the quality
filter (qual-f ) performs best, on average. However, there are some odd, very low, numbers for certain
classes and strategies: the simple search, although it uses no strategy at all to cull noise and false
positives, does very well, except for the tv monitor class. Following the methodology of the Semantic
Trainer, unlike all other classes where the search keyword is the name of the class, the keyword for this
class is the single word “tv”. This creates a problem specifically heightened in the Flickr community,
as the users have appropriated the acronym “tv” for something completely different from the television
device. Hence, the simple search performance is terrible, while some of the Semantic Trainer strategies
and some of our proposed methods are able to correctly focus on the monitor device. The sofa class
also results very difficult to handle. As shown in Figure 1, this particular object is often an accessory to
other attractions. In the last set of experiments, we will discuss some workarounds for these problems.

Of significant interest for the practical usefulness of our approach is how well the training
datasets generalize beyond the insights gathered on Pascal VOC. One way to gain an approximate
idea is by performing cross-dataset evaluations between different benchmark datasets, and comparing
the relative performance of our training sets. Following [19], we set out to explore cross-dataset
generalization, meaning to perform cross-dataset evaluations between different benchmark datasets,
and comparing the relative performance of our training sets. In particular, we analyze the behavior of



Entropy 2016, 18, 130 8 of 15

the person class, which is of particular interest for many reasons, spanning from multimedia to social
robotics, from surveillance to human computer interaction. For each class, we perform 10 randomized
experiments with 200 positive and 400 negative samples split into 50% for training, 25% for
cross-validation, and 25% for testing. As a source of negative samples, we use the “other” classes of
Pascal VOC.

From the results in Table 2, our noun filter gives the best result on average among all the
approaches of automatic training set generation, having the top scores when considering the
Caltech-256 [30] and Pascal VOC. It is also worth noting that on the Pascal VOC dataset all our
filters give the best performance. Finally, it is encouraging to see that our best score is comparable to
what is obtained by ImageNet.

Table 2. Cross-dataset generalization on the person class: rows and columns identify training and
testing datasets, respectively. The last column averages all the results in a given row, where this average
excludes matching sources for the public databases.

Train on: Test on: Mean

ImageNet Graz Caltech-256 Pascal VOC others

Pascal VOC 95.10 92.22 97.04 94.71 94.77
Graz [31] 92.10 99.46 94.32 88.06 93.48

Caltech-256 [32] 96.44 90.42 99.33 92.87 94.77
ImageNet 99.14 93.59 97.88 92.39 95.75

ccom [19] 97.61 97.76 96.07 88.01 94.86
fcom [19] 95.52 94.90 94.79 87.54 93.12

freq-f 95.72 95.72 95.03 88.22 93.68
qual-f 96.48 90.53 96.22 89.85 93.27
keyw-f 96.22 94.58 96.51 90.34 94.41
noun-f 97.21 94.50 98.00 91.28 95.25

4.2. Comparison against OPTIMOL

A relatively harder comparison is with OPTIMOL [18], which analyzes the content of the images:
in fact, our approach is agnostic towards the visual information, working only on textual data.
For the sake of comparison we adopt the same experimental protocol, considering a selection of
classes of the Caltech-101 [1,33], and generating the same number of training images. As for the
testing set, we consider all the images provided by the Caltech-101. As for the features, we extract
128-dimensions dense SIFT, quantizing them into a 100-visual word dictionary by applying k-means
clustering provided by the Vlfeat library (v0.9.20) [34]. We then use these histograms to train a linear
SVM (with Liblinear v1.94 [35]) for each class and to perform object classification. In Table 3, the
classification results are reported, showing that surprisingly all of our approaches work better than
OPTIMOL, with the frequency filter outperforming it by more than 14%.

Table 3. Comparison against OPTIMOL. Our framework improves on it by more than 14%.

OPTIMOL Our Framework

freq-f qual-f keyw-f noun-f

aeroplane 76.00 84.07 69.10 79.21 79.87
car 94.50 95.20 94.98 95.11 94.84
face 82.90 83.44 83.32 78.40 90.70

guitar 60.40 97.14 96.99 98.09 97.03
leopard 89.00 92.24 95.49 91.80 92.21

motorbike 67.30 75.83 63.67 71.77 69.03
watch 53.60 94.66 95.98 90.45 89.58

Mean AP 74.81 88.94 85.65 86.40 87.61
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4.3. Entropy-Based Selection

This section describes a set of experiments performed quite some time after the ones shown in
the previous sections. Although we made some minor changes to the way we collect information,
a major disadvantage in using social media platforms like Flickr is the impermanence of their content:
in part because the community of users continuously updates it, and in part because the company
might change the inner workings of the search engine to correct defects or improve performances.
Thus, there is no guarantee that the same algorithms return the same results.

In these experiments, we first establish a new baseline dataset that corrects two of the problems of
the simple search in Section 4.1: first, we change our approach towards the tv monitor class (or any
other multi-word class), by treating both its keywords as tags to be required in an image. This is
possible because the constraint present for the Semantic Trainer is artificial in our framework, and we
are not limited to bi-grams as keywords, but we can add any number of additional tags. Secondly,
we observed that some of the classes often have a sizeable intersection in their datasets; for example,
cat and sofa generate, separately, many images with both objects, or person with many of the other
classes. Since our framework does not check the contents of the images, the next best thing we can do
is require the search engine to exclude images tagged with the other keywords when querying for a
certain class.

Thus, we repeated the Pascal VOC 2012 comparative experiments using these settings. Other small
fixes were made in how the class dictionaries are built: we used 1000 tagged images instead of 500 to
build the initial dictionaries, for additional precision in the frequencies, although no substantial changes
in the keywords; since Flickr is a major community of photography enthusiasts, there are often tags
specifying the camera device used or the photoshoot setup: some of these words (like “canon”, “eos”,
“dslr”, etc.) were pruned from the raw dictionaries. It is feasible, in a future work, to automatically
detect such biases from a global corpus dictionary, where such biases would show up as tags highly
used independently from the image subject.

In Table 4, the “old Flickr” column reports the same simple search numbers of Table 1, while the
“new Flickr” column shows the new situation exclusively due to changes in the Flickr content and
search engine (except for the tv monitor multi-word fix). Classes like cow and motorbike have dropped
considerably, while person has improved by a large margin. Unfortunately, these changes are out of
our control, and they ultimately affect our framework’s performance. However, once the new baseline
was established, where other classes’ keywords are constrained to be excluded, we can see that both
the frequency filter and the entropy-based selection strategy provide definite improvements, with the
latter outperforming the former on average and on more than half of the classes. We chose to collect
k = 10 keywords for both methods.

In Figure 2, we show the gains graphically to better highlight the changes: the only considerable
drop is in the sheep class, while there are several sizeable improvements in the motorbike, cow, and person
classes. In Table 5, we show all the tags selected for the entropy-based experiment: below each tag is
the corresponding value hi of the (relative) entropy as calculated in Section 3. The tag “monochrome”,
which is present in several classes, is another word tied to photography setups that jumps out only
from an overview. In Figure 3, we show the relative importance of the selected tags for the four classes
mentioned above. The pie charts show the relative shares of the total entropy; that is, hi/ ∑i hi, which
are used to calculate the number of images each expanded query contributes to the final class dataset.
In Table 6, we show some representative images in the datasets assembled for the motorbike and sofa
classes. The former set of images shows a good selection of correct images, and a few examples of
misleading ones. The latter highlights problems: some of the images have the wrong focus, and the
selected tags themselves are unhelpful. In both sets, there are near-similar images probably coming
from the same source: this can be either an advantage when the source can be trusted to provide useful
images, or an hindrance, as it will multiply the number of wrong images.
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Table 4. Results of the new experiments: the old and new Flickr simple search are reported for reference;
in the baseline, we exclude the keywords of other classes in the simple search; the entropy-based
selection strategy is compared to the frequency filter (with changes calculated against the baseline;
bold font indicates the best for each class).

Classes Old Flickr New Flickr Baseline freq-f (Difference) Entropy (Difference)

aeroplane 97.7 96.7 96.8 96.5 (−0.3) 96.8 (0)
bicycle 82.8 79.4 79.8 79.9 (+0.1) 81.7 (+1.9)

bird 90.7 88.6 89.3 90.4 (+1.1) 90.9 (+1.6)
boat 88.7 84.3 84.8 85.4 (+0.6) 85.2 (+0.4)

bottle 57.3 58.9 57.6 59.0 (+1.4) 58.8 (+1.2)
bus 93.8 93.7 93.3 92.9 (−0.4) 92.6 (−0.7)
car 72.6 71.2 71.6 73.0 (+1.4) 72.5 (+0.9)
cat 91.5 92.9 94.2 94.0 (−0.2) 94.7 (+0.5)

chair 70.3 65.4 69.3 67.7 (−1.6) 70.3 (+1.0)
cow 79.0 65.8 66.0 70.0 (+4.0) 70.4 (+4.4)
dog 88.9 86.7 87.8 88.0 (+0.2) 88.1 (+0.3)

horse 85.1 80.9 82.5 84.9 (+2.4) 84.0 (+1.5)
motorbike 89.1 74.5 76.2 78.5 (+2.3) 83.1 (+6.9)

person 60.4 80.7 80.6 82.9 (+2.3) 84.4 (+3.8)
sheep 84.9 81.1 82.0 75.3 (−6.7) 77.0 (−5.0)
sofa 58.0 50.2 54.8 55.6 (+0.8) 56.8 (+2.0)
train 92.8 92.2 92.0 93.3 (+1.3) 93.1 (+1.1)

tv monitor 25.0 79.4 79.5 79.8 (+0.3) 80.6 (+1.1)

Mean AP 78.3 79.0 79.9 80.4 (+0.5) 81.2 (+1.3)
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m
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+5%

Figure 2. Graph of the gains for the entropy-based selection strategy against the baseline.
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Figure 3. Charts of the relative importance of the selected tags based on the entropy value hi for the
classes motorbike, cow, person, and sheep.
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Table 5. All the tags selected in the entropy-based strategy, with the corresponding (relative) entropy values below each tag.

Classes Selected Tags

aeroplane plane airport aviation airplane jet flight boeing aircraft raf planespotting
hi 1.00 0.97 0.84 0.76 0.70 0.61 0.57 0.51 0.38 0.31

bicycle bike street city people europe monochrome fahrrad cycle man shadow
hi 1.00 0.90 0.57 0.55 0.47 0.37 0.35 0.31 0.29 0.26

bird nature wildlife animal birds outdoor vogel water oiseau fauna ngc
hi 1.00 0.84 0.75 0.67 0.55 0.47 0.45 0.40 0.32 0.25

boat water sea landscape sky sunset reflection clouds summer ship blue
hi 1.00 0.93 0.81 0.77 0.74 0.62 0.58 0.51 0.46 0.39

bottle glass green wine water drink beer stilllife blue macro red
hi 0.78 0.53 0.50 0.45 0.43 0.42 0.39 0.36 0.33 0.32

bus london street city transport night people uk road travel buses
hi 0.78 0.73 0.60 0.49 0.41 0.40 0.37 0.34 0.29 0.28

car auto vintage street cars red automobile old night urban classic
hi 0.73 0.67 0.64 0.58 0.50 0.47 0.43 0.41 0.37 0.35

cat animal pet kitten portrait chat kitty cats feline eyes nature
hi 0.97 0.68 0.66 0.60 0.55 0.46 0.41 0.36 0.33 0.27

chair abandoned window table urban white art red shadow old beach
hi 0.73 0.56 0.55 0.47 0.42 0.34 0.34 0.32 0.30 0.29

cow animal landscape cattle nature farm kuh cows field animals mountain
hi 0.80 0.69 0.66 0.61 0.53 0.49 0.39 0.35 0.30 0.28

dog animal pet portrait white nature hund street beach puppy dogs
hi 0.87 0.71 0.59 0.46 0.44 0.38 0.38 0.35 0.34 0.30

horse horses animal cheval landscape nature white equine sky sunset outdoor
hi 0.93 0.66 0.57 0.47 0.44 0.35 0.32 0.30 0.28 0.27

motorbike moto bike motorcycle 2015 motorrad street speed bmw honda harleydavidson
hi 0.99 0.82 0.75 0.66 0.48 0.44 0.25 0.23 0.20 0.20

person people street portrait monochrome man woman city black human silhouette
hi 1.00 0.97 0.79 0.75 0.64 0.56 0.46 0.38 0.31 0.25

sheep landscape nature trees england animal farm grass autumn clouds animals
hi 0.85 0.68 0.52 0.52 0.50 0.47 0.44 0.40 0.34 0.32

sofa couch girl abandoned portrait home white woman bed furniture interior
hi 0.75 0.59 0.50 0.46 0.38 0.33 0.29 0.27 0.25 0.24

train railway station railroad city rail locomotive travel street trains monochrome
hi 0.85 0.80 0.63 0.59 0.49 0.42 0.38 0.36 0.33 0.30

tv monitor television video screen 3d electronics art film computer germany lcd
hi 0.89 0.79 0.55 0.48 0.40 0.34 0.29 0.27 0.24 0.21
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Table 6. Representative images in the datasets assembled for the classes motorbike and sofa. Each row
shows up to 15 images contributed by the corresponding expanded query with the selected tag. The
tags are in the order they were selected by the entropy-based strategy.

Tag Representative Images

motorbike

moto

bike

motorcycle

2015

motorrad

street

speed

bmw

honda

harleydavidson

sofa

couch

girl

abandoned

portrait

home

white

woman

bed

furniture

interior

5. Conclusions

The exploitation of data from social media is an ongoing and very successful trend in machine
learning, one that is bound to bear fruit for many years to come as the wealth of content increases and
more information is extracted and made useful. Automatic generation of training sets for classifiers is
gradually becoming a viable path towards the rapid utilization of this data, especially given the requests
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for classifiers embedded into portable devices like smartphones. Take for example the popular applet
Shazam, which recently introduced visual recognition (see [36]). In this work, we have shown that
textual tags associated with images from social media platforms, even if noisy, represent an important
source of information expressive enough to generate image datasets that compare favorably with
man-made repositories such as Pascal VOC and ImageNet. Future improvements include associating
metadata with textual tags, and incorporating analyses of the visual content in the images, trying to
understand the relationship among visual features and textual features. A framework that connects
visual, textual, and metadata information is what we envisage in the future for creating a theory of
visual knowledge able to inform intelligent systems about the world around us.

Supplementary Materials: The representative images of the 18 assembled datasets described in the paper are
available online at www.mdpi.com/1099-4300/18/4/130/s1.
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