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Abstract: Heart rate variability (HRV) is a non-invasive measurement based on the intervals
between normal heart beats that characterize cardiac autonomic function. Decreased HRV is
associated with increased risk of cardiovascular events. Characterizing HRV using only moment
statistics fails to capture abnormalities in regulatory function that are important aspects of disease
risk. Thus, entropy measures are a promising approach to quantify HRV for risk stratification.
The purpose of this study was to investigate this potential for approximate, corrected approximate,
sample, fuzzy, and fuzzy measure entropy and its dependency on the parameter selection. Recently,
published parameter sets and further parameter combinations were investigated. Heart rate data
were obtained from the "Cardiac Arrhythmia Suppression Trial (CAST) RR Interval Sub-Study
Database" (Physionet). Corresponding outcomes and clinical data were provided by one of the
investigators. The use of previously-reported parameter sets on the pre-treatment data did not
significantly add to the identification of patients at risk for cardiovascular death on follow-up. After
arrhythmia suppression treatment, several parameter sets predicted outcomes for all patients and
patients without coronary artery bypass grafting (CABG). The strongest results were seen using
the threshold parameter as a multiple of the data’s standard deviation (r = 0.2 · σ). Approximate
and sample entropy provided significant hazard ratios for patients without CABG and without
diabetes for an entropy maximizing threshold approximation. Additional parameter combinations
did not improve the results for pre-treatment data. The results of this study illustrate the influence of
parameter selection on entropy measures’ potential for cardiovascular risk stratification and support
the potential use of entropy measures in future studies.
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1. Introduction

More than 50 years ago, it was realized that the variation of the heart rate, i.e., heart rate
variability (HRV), could be used as a marker of cardiovascular health status [1]. This discovery was
originally applied to fetal medicine where reductions in fetal HRV during labor identified babies
who were in distress [1]. However, when HRV measures were applied to post-myocardial infarction
(MI) patient populations, it became clear that the presence of decreased HRV could be important for
risk-stratifying such patients [2].

HRV reflects the net effect of many physiological factors modulating the normal rhythm of the
heart and ideally providing cardiac output that is matched to the needs of the body on a beat by
beat basis. The data on which HRV analysis is based have traditionally been derived from the
ambulatory electrocardiogram (ECG), i.e., the electrical signature of the cardiac cycles from which
normal-to-normal interbeat intervals can be identified and measured.

An increasing number of measures are being developed and applied to quantify HRV in the
time- and/or frequency domain [3,4]. Sassi et al. [5] provided a critical review of newer methods
(e.g., long-range correlation and fractal analysis, short-term complexity, entropy) highlighting their
contribution to the technical understanding of HRV and their ability to quantify the complex
regulation mechanism of the heart rate not covered by traditional methods. In addition, they
addressed the rather limited success of these newer methods in clinical applications.

More specifically, some of the traditional HRV measures [4] achieve good results in clinical
settings (e.g., Total Power, Ultra and Very Low Frequency Power, Low Frequency/High Frequency
ratio, [6]), others work only on specific subgroups (e.g., the standard deviation of normal-to-normal
(NN) intervals (SDNN) or the standard deviation of the 5-minute average of NN intervals
(SDANN), [6]), and some are very limited in assisting in the diagnosis of patients (e.g., the average of
NN intervals (AVGNN), or the root mean square successive difference of NN intervals (rMSSD), [7]).
Therefore, in the quest of comprehensively quantifying all aspects of HRV, one has to try new
measures and learn more about their potential and optimal settings.

Machine learning, which combines computer and data science, statistics, and artificial
intelligence, can potentially help to overcome the aforementioned limitations. It is rapidly growing,
in terms of new learning algorithms and theory, and this growth is fueled by the increasing
amount of available online data and the availability of low-cost computing power. The adoption
of data-intensive machine-learning methods can lead to more evidence-based decision-making in
the biomedical domain [8]. However, one is confronted with probabilistic, uncertain, unknown,
incomplete, heterogeneous, noisy, and dirty data sets which increase the possibility of the modeling
of artifacts. Another problem is that most machine learning approaches assume homogeneity in time,
although most physiologic processes do not fulfill this requirement.

Entropy measures represent a family of new methods to quantify the variability of the heart
rate [9]. Use of entropy measures is a promising approach, due to their ability to discover certain
patterns and shifts in the "apparent ensemble amount of randomness" of a stochastic process [10],
and to measure randomness as well as the predictability of processes [11]. In recent years, a huge
variety of entropy measures was developed. Amongst the most widely used, especially in HRV
analysis, are the approximate entropy (ApEn) [12], sample entropy (SampEn) [13], and fuzzy entropy
(FuzzyEn) [14]. Some of those have been further developed, e.g., fuzzy measure entropy
(FuzzyMEn) [15] and corrected ApEn (CApEn) [16].

In general, entropy measures quantify the likelihood that two similar runs of patterns of a
certain length remain similar after increasing this length by one point [12]. Their specific behavior
is determined by a number of parameters and the selection of these is crucial for the results.

In recent years, there have been several reports about the selection of parameters for various
entropy measures (e.g., [17,18]). The results of these studies are in agreement on a couple of
parameters, but there are different results published for some others. Furthermore, to our knowledge,
all these HRV studies have performed their parameter selection on cross-sectional data, in order to
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differentiate between pathological and non-pathological HRV. However, to the best of our knowledge,
the predictive value (i.e., the ability to predict mortality) of entropy measures utilizing the published
parameter sets has not been investigated using outcome data. Therefore, Holzinger et al. recently
raised the question of how to select parameters for entropy measures. By now, this problem has not
yet been solved, especially for ApEn, SampEn, FuzzyEn and FuzzyMEn [9].

We therefore set out to assess the effect of parameter selection on the predictive value of entropy
measures in a study of high risk post-myocardial infarction patients with multiple recordings who
were followed for survival over a period of 362± 243 days. Thus, there are two primary aims of this
study. The first is to investigate the predictive value of HRV for mortality using recently published
parameter sets. Secondly, if these existing parameter sets fail to deliver significant results, our aim is to
investigate additional possible parameter combinations. In this work, we are addressing the question
raised by Holzinger et al. [9]; therefore, we focus on ApEn, SampEn, FuzzyEn, and FuzzyMEn.
Furthermore, this work is based on the findings of previous publications focused on the same entropy
measures [17,19]. Moreover, ApEn is known to be biased by self-matches, and several corrections
have been proposed. SampEn is one of those corrections, and CApEn is another. To enhance
comparability of the results of this work, CApEn was added to the list of methods under investigation.

2. Methods

2.1. Data

All heart rate data used in this study were taken from Physionet [20], a free-access, on-line
archive of physiological signals. Physionet guarantees that all data have been fully de-identified
(anonymized), and may be used without further institutional review board approval.

All RR interval data were taken from the "Cardiac Arrhythmia Suppression Trial (CAST) RR
Interval Sub-Study Database" [7]. This subset was selected based on the availability of usable
qualifying and suppression tapes to allow for evaluating the predictive value of HRV parameters with
treatment [7]. CAST was designed to analyze the effects of suppression of ventricular arrhythmia
by anti-arrhythmic drugs after MI on survival [21,22]. Corresponding outcome and clinical data
were provided by one of the investigators and co-authors Phyllis K. Stein. Baseline (pre-treatment)
interbeat (RR) interval data and data after treatment were used. In total, 760 pre-treatment and
740 after treatment recordings with corresponding follow-up data were available and used. Patient
baseline data can be found in Table 1.

Table 1. Patient baseline data and number of records before and after treatment (data are stated as
mean ± SD or median and 95% confidence interval (CI)).

Before Treatment After Treatment

Sample size 760 740
Age (years) 60.8± 9.6 60.7± 9.6
Sex (m/f) 624/136 607/133
Time after MI (days) 38 (35–42) 72 (68–76)
CABG 141 137
DM 160 155
CABG & DM 270 262
Follow-up time (days) 333 (301–355) 291.5 (268–329)

Abbreviations: SD = standard deviation; CI = confidence interval; MI = myocardial infarction;
CABG = coronary artery bypass grafting; DM = diabetes mellitus.

2.2. Entropy Measures

Entropy measures quantify the logarithmic likelihood of two similar sequences of length m
(template length) to remain similar after increasing the length to m + 1 [12]. Thereby, similarity is
defined either using a rectangular function of radius r (threshold parameter) or a fuzzy membership
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function of radius r and exponent n (weighting factor). Finally, some entropy measures distinguish
between local and global similarity, therefore requiring local and global radii and exponents (rL, rF,
nL, and nF). The total length of the analyzed series is commonly denoted as N.

In this work, approximate entropy (ApEn), corrected approximate entropy (CApEn), sample
entropy (SampEn), fuzzy entropy (FuzzyEn), and fuzzy measure entropy (FuzzyMEn) were tested.

• The approximate entropy ApEn as introduced by Pincus et al. [12] is calculated as

ApEn(m, r, N) :=
1

(N −m + 1)

N−m+1

∑
i=1

log
Cm

i (r)

Cm+1
i (r)

, (1)

where Cm
i (r) is the number of points found within the distance r for any point x(i) within the

points xm
i := [x(i), ..., x(i + m− 1)], divided by N −m + 1.

• Since ApEn is biased by self-matches, the corrected approximate entropy CApEn was introduced
by Porta et al. [16]. The correction is obtained by replacing the ratio Cm

i (r)/Cm+1
i (r) in Equation (1)

by 1/(N −m + 1) when Cm
i (r) = 1 or Cm+1

i (r) = 1.
• Another modification of ApEn in order to correct its bias by self-matches is the sample entropy

SampEn as introduced by Richman and Moorman [13]. It is defined as

SampEn(m, r, N) := log

(
N−m

∑
i=1

Cm
i (r)

)
− log

(
N−m−1

∑
i=1

Cm+1
i (r)

)
; (2)

however, this time, Cm
i (r) does not count self-matches.

• To soften the effects of a hard threshold r, Chen et al. [14] replaced it with the fuzzy
membership function

µ(x, n, r) := exp(−0.69 · (x/r)n). (3)

The factor of 0.69 was incorporated to get a value of 0.5 for x/r = 1, which is important for
comparisons between rectangular and fuzzy membership functions. Finally, with

φm(r, n, N) :=
1

N −m

N−m

∑
i=1

N−m

∑
j=1,j 6=i

µ(d(xm
i , xm

j ), n, r)

N −m− 1
, (4)

where d is the Chebyshev distance, the fuzzy entropy FuzzyEn is defined as:

FuzzyEn(m, r, n, N) := ln
(

φm(r, n, N)

φm+1(r, n, N)

)
. (5)

• The fuzzy measure entropy FuzzyMEn, proposed by Liu et al. [15], introduces a distinction
between local and global similarity based on FuzzyEn:

FuzzyMEn(m, rL, rF, nL, nF, N) := ln
(

φm(rL, nL, N)

φm+1(rL, nL, N)

)
+ ln

(
φm(rF, nF, N)

φm+1(rF, nF, N)

)
. (6)

2.3. Application of Entropy Measures to CAST Data

NN interval data were downloaded from Physionet [20] using the Waveform Database library
(WFDB) for Matlab (version 0.9.10) [20,23]. Thus, the wrapper function "ann2rr.m" was extended to
use the full functionality of the function "ann2rr" of the WFDB Software Package (version 0.9.10) [20]
including the options "-p N" and "-P N" to restrict the output to NN intervals. There was no
pre-processing step necessary, since downloaded NN intervals were already free of obvious artifacts.
NN intervals at 6 p.m. (chosen to avoid transition effects between day and night) were extracted for
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all subjects to decrease computation time and to avoid daytime dependent variations. Depending on
the parameter set, data length N was either 1000 or 1200, as listed in Table 2.

Unfortunately, we could not perform more robust randomized testing strategies (i.e., the
permutation of the original data and choosing various time intervals) due to the high computational
complexity of the entropy measures, which was already increased by two orders of magnitude due
to parameter variation. A randomized testing strategy would have multiplied the computation time
further by at least a thousand times.

Concerning the choice of the parameters of the entropy measures, recent studies are in agreement
on a couple of parameters, such as template and data lengths (m and N), but there are discrepancies
regarding the threshold parameters r (rL, rF) for all entropy measures and the selection of the
weighting factors n (nL, nF) for fuzzy entropies [17,18].

Therefore, the parameters were first set according to those in the literature to test whether
entropy measures have a predictive value with the suggested parameter sets [17,18]. The parameters
used in this analysis can be found in Table 2.

Table 2. Parameter sets based on literature for template length m, data length N, threshold parameter
r, the weighting factor(s) n, nL and nF, and the threshold parameter(s) r, rL and rF.

No. Source m N n = nL nF r = rL = rF Entropy Type

1 Mayer et al. [17] 2 1200 2 1 rChon all
2 Mayer et al. [17] 2 1200 1 3 0.2 · σ all
3 Zhao et al. [18] 2 1000 - - 0.15 SampEn
4 Zhao et al. [18] 2 1000 3 2 0.15 FuzzyMEn

Second, a parameter iteration and selection process for r (rL and rF) and n (nL and nF),
respectively, was attempted to test whether the modified parameter sets improved the ability of the
measures to risk stratify patients. Consistent with published recommendations, template and data
length were set to m = 2 and N = 1200, respectively [17,18]. The other parameters were iterated in
the following ranges: (1) r ∈ [0.10 · σ, 0.45 · σ], where σ is the standard deviation of the signal, and
r ∈ [0.25 · rChon, 3.00 · rChon], where rChon is an approximation for the r value maximizing entropy
values [24], and (2) n ∈ [1.0, 5.0].

The template length is usually set to m = 2 based on the recommendations of Pincus and
Goldberger for ApEn [25], Yentes et al. for SampEn [26], and Porta et al. for CApEn [16]. These
recommendations have been confirmed by other studies, e.g., [27]. Zhao et al. showed that SampEn
performed similarly with m = 2 and m = 3, but the latter choice is not suitable for FuzzyMEn [18].
A false nearest neighbor method is sometimes used as well, but its suitability for ApEn for human
heart rate variability data could not be shown [24]. In [14,15], the template length is set to m = 2 for
FuzzyEn and FuzzyMEn as well.

There have been reports that these measurements are sensitive to data length N [3,11,12]. The
influence of data length on SampEn was not large for N > 200 [13,28], but was for N < 100 [26],
indicating a stabilization of the behavior in the dataset that was tested [18]. Zhao et al. reported only
small changes for SampEn and FuzzyMEn from N = 300 to N = 1000 [18]. In our previous study,
we suggested choosing N > 200 or even N > 1000 depending on the threshold value r [17].

2.4. Statistical Analysis

The predictive value of each entropy measure was determined using a univariate Cox
proportional hazards regression. It is a method to determine the influence of predictor variables
Xi (in this work: entropy measures) on survival times by fitting the coefficients bi of the model

h(t) = h0(t) · exp

(
∑

i
biXi

)
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to the observations, where the hazard rate h(t) and the baseline hazard rate function h0(t) are
estimated from the data [29,30]. Finally, the particular hazard ratios are calculated as exp(b). Hazard
ratios quantify the increase (or decrease) of the instantaneous risk at any particular time for every unit
increase in the associated predictor variable. For example, a hazard ratio of 2 for a certain entropy
measure means that the risk of dying is doubled for every unit increase in the entropy measure.

The univariate Cox proportional hazards regression is based on the null hypothesis that the
predictor variable does not have any influence on mortality, i.e., that b = 0 and therefore the hazard
ratio equals 1. The p-value represents the probability of a certain or more extreme observation under
the assumption of a true null hypothesis. In this work, significance levels were set at the 5% level, i.e.,
the null hypothesis is rejected if p ≤ 0.05.

Data were transformed by using the two-parametric Box–Cox transformation [31,32] to remove
skewness after replacing negative values by 0 and adding an offset of λ2 = 0.001 to fulfill the
requirement of positive inputs. The transformation parameter λ is given where necessary.

Results for the parameter iteration and selection process are presented by their p-values and not
by their corresponding hazard ratios and their 95% confidence interval opposed to literature, since
the focus of the study was to assess the effect of parameter selection on the predictive value of entropy
measures but not to compare these hazard ratios. Furthermore, this approach was chosen for reasons
of clarity and comprehensibility, because some confidence intervals differ in order of magnitude and
their visual comparison would be meaningless.

Additionally, cut-off values and their corresponding sensitivity and specificity were determined
for entropies with significant predictive values. Thus, survival curves were compared for various
cut-off values using the log-rank test, i.e., a rank order statistics to compare survival distributions of
two samples [33], and the cut-off value maximizing the separation was chosen, i.e., cut-off value with
lowest p-value. Results are stated as sensitivity and specificity with their corresponding results from
the log-rank test comparing lower and higher risk groups (χ2 statistics and the associated p-value).

The analyses were performed on the whole data set as well as in subsets of patients without
coronary artery bypass grafting (CABG), and without CABG and diabetes as reported in [7,34].
Baseline data and data after treatment were analyzed independently. All computations were
performed using Matlab (R2014a) and R (Version 3.2.3).

We used statistical tests based on the same null hypothesis, (i.e., the predictor variable does
not influence mortality), the same subject groups, the same endpoints and only slight variations
of the analysis method. Thus, interaction of the observed results is not only possible, but highly
probable. However, p-value adjustments, such as the commonly used Bonferroni correction, assume
uncorrelated endpoints and are therefore considered inappropriate for the tasks in this work [35].
Besides, the aim of this work is not to test whether there is a difference between groups, but to
investigate the ability of the measures to risk stratifying patients.

3. Results

3.1. Predictive Value with Standard Parameter Sets

The results for baseline data from a univariate Cox proportional hazards regression using
parameters from the literature (see Table 2) are shown in Table 3. No combination of parameter
sets or entropy measures from the pre-treatment baseline provided significant hazard ratios for all
patients or for subgroups, respectively. Furthermore, the transformation parameter λ of the Box–Cox
transformation are stated in Table 3 to indicate the skewness of the data before transformation and to
allow an interpretation of the hazard ratio by inversely transforming the data.

Results shown in Table 4 indicate that the situation is different for post-treatment data. This
table is quite revealing in several ways. First, unlike in Table 3, ApEn and SampEn each had
significant predictive value for all groups if r = rChon is chosen. CApEn reached very similar results.
Second, several further parameter sets are significant predictors of outcome both for all patients and
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for patients without CABG, especially FuzzyEn and FuzzyMEn with r = 0.2 · σ. Third, using a
constant r does not lead to any significant risk stratification. Therefore, the use of r = 0.2 · σ seems
especially promising for FuzzyEn and FuzzyMEn, while r = rChon seems better suited for ApEn,
CApEn, and SampEn.

Table 3. Univariate entropy predictors of mortality in CAST at baseline with parameter sets 1 to 4 as
defined in Table 2 (all data (n = 760, 70 deaths), w/o CABG (n = 619, 63 deaths) and w/o CABG, w/o
DM (n = 490, 39 deaths).

All w/o CABG w/o CABG, w/o DM
No. Variable λ

HR (95% CI) p HR (95% CI) p HR (95% CI) p

1 ApEn −0.09 0.990 (0.909–1.079) 0.825 0.976 (0.891–1.069) 0.604 0.969 (0.864–1.088) 0.594

CApEn −0.15 0.989 (0.916–1.067) 0.768 0.977 (0.901–1.060) 0.578 0.974 (0.879–1.079) 0.612

SampEn −0.12 0.993 (0.920–1.071) 0.854 0.981 (0.904–1.063) 0.635 0.975 (0.880–1.081) 0.632

FuzzyEn −0.02 0.965 (0.781–1.192) 0.738 0.905 (0.718–1.140) 0.396 0.926 (0.686–1.249) 0.615

FuzzyMEn 0.21 0.840 (0.469–1.504) 0.557 0.726 (0.390–1.351) 0.313 0.759 (0.342–1.685) 0.498

2 ApEn 1.66 0.962 (0.441–2.098) 0.923 0.889 (0.399–1.981) 0.774 0.638 (0.239–1.700) 0.369

CApEn 0.61 0.957 (0.711–1.288) 0.770 0.879 (0.650–1.188) 0.402 0.833 (0.569–1.221) 0.349

SampEn 0.88 0.911 (0.566–1.464) 0.699 0.818 (0.506–1.323) 0.413 0.674 (0.368–1.235) 0.202

FuzzyEn 0.85 0.979 (0.375–2.558) 0.965 1.047 (0.359–3.057) 0.932 0.557 (0.146–2.127) 0.392

FuzzyMEn 0.93 0.962 (0.622–1.490) 0.863 0.988 (0.617–1.582) 0.959 0.726 (0.404–1.307) 0.286

3 SampEn 0.09 0.951 (0.773–1.169) 0.633 0.890 (0.710–1.114) 0.308 0.876 (0.653–1.176) 0.378

4 FuzzyMEn 0.08 0.965 (0.740–1.259) 0.795 0.889 (0.669–1.180) 0.415 0.887 (0.615–1.281) 0.523

Abbreviations: CAST = Cardiac Arrhythmia Suppression Trial, w/o = without, CABG = coronary artery bypass grafting, DM = diabetes
mellitus, λ = transformation parameter of Box-Cox transformation, HR = hazard ratio, CI = confidence interval.

Table 4. Univariate entropy predictors of mortality in CAST after treatment with parameter sets 1 to
4 as defined in Table 2 (all data (n = 740, 69 deaths), w/o CABG (n = 603, 62 deaths) and w/o CABG,
w/o DM (n = 478, 39 deaths).

All w/o CABG w/o CABG, w/o DM
No. Variable λ

HR (95% CI) p HR (95% CI) p HR (95% CI) p

1 ApEn −0.19 0.927 (0.875–0.981) 0.009 0.910 (0.857–0.966) 0.002 0.930 (0.866–0.999) 0.048

CApEn −0.28 0.939 (0.895–0.985) 0.010 0.926 (0.881–0.974) 0.003 0.943 (0.888–1.001) 0.053

SampEn −0.23 0.937 (0.892–0.985) 0.010 0.922 (0.876–0.972) 0.002 0.940 (0.884–1.000) 0.049

FuzzyEn −0.09 0.962 (0.815–1.136) 0.649 0.882 (0.742–1.050) 0.158 0.897 (0.715–1.124) 0.343

FuzzyMEn 0.11 0.844 (0.529–1.348) 0.478 0.689 (0.430–1.104) 0.121 0.727 (0.394–1.340) 0.307

2 ApEn 1.80 2.252 (0.994–5.102) 0.052 2.349 (1.006–5.489) 0.049 1.690 (0.610–4.686) 0.313

CApEn 0.58 1.516 (1.100–2.089) 0.011 1.441 (1.040–1.996) 0.028 1.334 (0.890–1.998) 0.162

SampEn 0.92 1.713 (1.023–2.869) 0.041 1.705 (1.008–2.884) 0.046 1.367 (0.720–2.597) 0.340

FuzzyEn 0.77 3.375 (1.381–8.247) 0.008 3.828 (1.454–10.075) 0.007 1.825 (0.535–6.229) 0.337

FuzzyMEn 0.86 1.634 (1.054–2.535) 0.028 1.767 (1.104–2.826) 0.018 1.200 (0.668–2.157) 0.542

3 SampEn 0.06 0.953 (0.788–1.153) 0.622 0.857 (0.699–1.050) 0.136 0.845 (0.650–1.098) 0.207

4 FuzzyMEn 0.02 1.124 (0.881–1.435) 0.347 0.980 (0.758–1.269) 0.880 0.967 (0.690–1.356) 0.846

In the following, sensitivity and specificity are presented exemplarily for ApEn (r = rChon) for
post-treatment data. ApEn< 0.011 had a sensitivity of 77% and a specificity of 42% for mortality
for all patients (χ2 = 7.8, p = 0.005) , a sensitivity of 76% and a specificity of 45% for mortality for
patients without CABG (χ2 = 9.5, p = 0.002) and a sensitivity of 69% and a specificity of 49% for
mortality for patients without CABG and DM (χ2 = 5.2, p = 0.023). In Figure 1, survival curves are
presented separated according to risk groups.
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Figure 1. Kaplan–Meier survival curves according to risk groups based on ApEn for post-treatment
data (see parameter set No. 1 in Table 2); for all patients (A), for all patients w/o CABG (B) and w/o
CABG and DM (C).

3.2. Parameter Selection Process

3.2.1. Variation of the Threshold Value

Variation of the threshold value r as a multiple of rChon, i.e., an approximation of the threshold
value maximizing entropy values [24], does not improve the predictive value of the studied entropy
measures for baseline data, as can be seen in Figure 2A–C. The significant predictive values of ApEn
and SampEn for data after treatment are confirmed for 1.00, 1.25 and 1.50 times rChon with p-values
between 0.002 and 0.049 for all subgroups in Figure 2D–F. In the subgroup of patients without CABG
(Figure 2E), ApEn and SampEn provided significant predictive values for all threshold values except
3.00 · rChon. CApEn performed similar to ApEn and SampEn in the range of 1.00 · rChon to 1.50 · rChon.
FuzzyEn and FuzzyMEn did not provide any significant results.

C

D

A B

E F

·rChon ·rChon ·rChon

·rChon ·rChon ·rChon

Figure 2. Significance of predictive values of entropy measures for different choices of r (multiples
of rChon); parameters: m = 2, N = 1200, n = nL = 2, nF = 1; HRV data at baseline (A,B,C)
and after treatment (D,E,F); for all patients (A,D), for all patients w/o CABG (B,E) and w/o CABG
and DM (C,F). p = 0.05 marks the threshold of statistical significance.
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Variations of the threshold value r as a multiple of σ are displayed in Figure 3 and, for baseline
data (Figure 3A–C), yielded similar results as the variation as multiple of rChon—with one exception,
where ApEn had borderline significance (p = 0.056) for the subgroup without CABG and without
diabetes mellitus (Figure 3C). In contrast to the results displayed in Figure 2, all entropy measures
were statistically significantly associated with outcome for data after treatment for at least one r value
for all patients and patients without CABG (Figure 3D,E). Furthermore, FuzzyEn and FuzzyMEn
outperformed the other three entropy measures with constantly reaching significant results for the
whole range of r for the same groups. However, in contrast to Figure 2, no entropy measure
reached significance for data after treatment for patients without CABG and without diabetes
mellitus (Figure 3F).

C

D

A B

E F

⋅σ ⋅σ⋅σ

⋅σ ⋅σ ⋅σ

Figure 3. Significance of predictive values of entropy measures for different choices of r (multiples
of σ); parameters: m = 2, N = 1200, n = nL = 1, nF = 3; HRV data at baseline (A,B,C) and
after treatment (D,E,F); for all patients (A,D), for all patients w/o CABG (B,E) and w/o CABG
and DM (C,F). p = 0.05 marks the threshold of statistical significance.

Independent variation of rL and rF as a multiple of rChon did not improve the results
for FuzzyMEn, except for the subgroup without CABG for data after treatment (Figure 4E).
In this subgroup, the following duplets reached p-values in the range from 0.034 to
0.044: (rL, rF) ∈ {(1.50, 0.25), (2.00, 0.25), (3.00, 0.25), (3.00, 0.50), (3.00, 1.00), (3.00, 1.25) · rChon}.
Furthermore, despite achieving or not achieving statistical significance, rL = 3.00 and rF = 0.25
appear to be the most suitable selections.

Independent variation of rL and rF as a multiple of σ again confirmed the results of the variation
with rL = rF for all data (Figure 5). Again, significance could not be reached for the pre-treatment
groups. For post-treatment data, the choice of rL and rF is not critical, since all combinations lead to
significant results for all patients and the subgroup patients without CABG (Figure 5D,E).
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C

D

A B

E F

·rChon ·rChon ·rChon

·rChon ·rChon ·rChon

·rChon ·rChon ·rChon

·rChon·rChon ·rChon

Figure 4. Significance of predictive values of FuzzyMEn for different choices of rL and rF (multiples
of rChon); parameters: m = 2, N = 1200, n = nL = 2, nF = 1; HRV data at baseline (A,B,C)
and after treatment (D,E,F); for all patients (A,D), for all patients w/o CABG (B,E) and w/o CABG
and DM (C,F).

C

D

A B
⋅σ

E F

⋅σ ⋅σ⋅σ

⋅σ ⋅σ ⋅σ

⋅σ⋅σ

⋅σ⋅σ⋅σ

Figure 5. Significance of predictive values of FuzzyMEn for different choices of rL and rF (multiples
of σ); parameters: m = 2, N = 1200, n = nL = 1, nF = 3; HRV data at baseline (A,B,C) and
after treatment (D,E,F); for all patients (A,D), for all patients w/o CABG (B,E) and w/o CABG
and DM (C,F).

3.2.2. Variation of the Weighting Factor

Results for variation of the weighting factor(s) for FuzzyEn and FuzzyMEn are shown in the
online supplement Figures S1–S4. Overall, it can be stated that the variation of the weighting factor(s)
does not lead to significant changes in the results. Significance (p < 0.05) is reached for all n = nL
and nF values for all patients and patients without CABG after treatment but not for baseline data
and patients without CABG and diabetes mellitus, if r = rL = rF = 0.2 · σ. In contrast, using
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r = rL = rF = rChon and variation of the weighting factor(s) does not improve the predictive value
of FuzzyEn and FuzzyMEn for almost all cases. Only FuzzyMEn achieved better results with very
high nF and nL for all patients after treatment and for patients without CABG after treatment, when
r = rL = rF = rChon is used. However, for the same subgroups, r = rL = rF = 0.2 · σ led to better
results with any nF and nL anyway.

4. Discussion

An interesting finding was that the predictive value of the entropy measures is different for data
at baseline and data after treatment. This holds true for parameter sets from the literature and all
of the different parameter variations, as well as for the threshold parameter r as a multiple of the
standard deviation σ or as a multiple of rChon. Analysis of baseline data did not lead to significant
results for any of the subgroups or any of the parameter combinations. In contrast, entropy measures
applied to the after treatment data proved to have significant predictive value, especially for all
patients and patients without CABG. This finding was unexpected but can probably be explained by
the fact that the encainide/flecainide phase of the Cardiac Arrhythmia Suppression Trial (CAST) was
stopped early because of excess mortality and the moricizine arm of the trial, which was not stopped
early, had no effect on mortality [36,37]. Thus, these measures likely reflect the overall negative effect
of treatment on outcomes in the trial. Another possible explanation could be the fact that the subjects
for the trial were initially selected as being at elevated risk of mortality based on frequent ventricular
premature contractions (VPCs).

Another important finding was that different approaches for choosing the threshold parameter r
yield different results. In the literature, there are three common ways of choosing the threshold value
r. The first approach uses constant r values, e.g., r ∈ {0.10, 0.15} for SampEn and m = 2 or m = 3,
or r ∈ {0.10, 0.15, 0.20, 0.25} for FuzzyEn and m = 1 or m = 2 [18]. Choosing such a constant value
was questioned, especially for fast dynamic series in [38] and [27]. An approach to overcoming these
shortcomings is to choose r as a multiple of the standard deviation σ of the time series as suggested
by Pincus, i.e., r ∈ [0.1 · σ, 0.25 · σ] [12]. A threshold value of r = 0.2 · σ is most commonly reported
in the literature [13,15,17,38–40]. Another approach for choosing r is to maximize entropy values. A
replacement for the computationally expensive maximization is an approximation rChon suggested
by Chon et al. [24]. The formula was derived from non-physiologic data and it was shown in [39]
that it does not outperform a constant r. The authors cited in [15,17] suggested choosing rL = rF
for FuzzyMEn.

In our study, we determined that a constant choice and parameter sets suggested by
Zhao et al. [18] without additional parameter variation did not result in significant predictive values.
Thus, we were unable to demonstrate that rChon does not outperform a constant value as shown
in [39]. The results presented in Figures 2 and 3 do not support superiority of the choice of the
threshold parameter as a multiple of the standard deviation σ or as a multiple of rChon. For after
treatment data, one can see a tendency to the former approach, since all five entropy measures
show good to acceptable performance, but the latter seems to be appropriate as well, especially
for ApEn, CApEn, and SampEn. In general, one can see that the entropy measures behave more
stably with respect to changing magnitudes of rChon compared to the approach depending on
the standard deviation, which shows more unstable behavior especially for ApEn, CApEn, and
SampEn. The results of this study are consistent with other research which suggest setting rL = rF
for FuzzyEn [15,17].

Varying the threshold parameter r showed that, in general, ApEn, CApEn, and SampEn are
more sensitive to changes in r than FuzzyEn and FuzzyMEn. This phenomenon can be found for
both choices of r, in all subgroups, at baseline and after treatment (Figures 2 and 3). These findings
are in line with those of previous studies and reflect the idea of using a fuzzy membership function
instead of the Heaviside function to overcome the sensitivity of ApEn, CApEn, and SampEn with
respect to the threshold parameter [14].
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The choice of the weighting factors for FuzzyEn and FuzzyMEn has been less investigated and
reported in the literature. Chen et al. [14] used n = 2 and r = 0.2 · σ for test signals, whereas it is
described that for a larger n, closer data points are weighted more strongly. Liu et al. [15] used the
weighting factors nL = 3, nF = 2 and rL = rF = 0.2 · σ for heart rate variability analysis. Their choices
for nL and nF were given without any motivation. Our previous findings in [17] had suggested the
choice of n = nL = 2 and nF = 1 for rChon according to [24] or n = nL = 1 and nF = 3 for r = 0.2 · σ.

In the current study, as stated in section 3.2.2, the variation of the weighting factors does not
lead to significant changes in the results. Thus, it can be assumed that the choice of the weighting
factors is less critical than the choice of the threshold parameter in this population. These results
and the variation of r support previous research and are in line with the choices of n as suggested
in [17]. Nevertheless, this aspect of parameter selection needs to be investigated in more detail in
future research.

One unanticipated finding was that the predictive power of the entropy measures could not be
shown for the smallest subgroup, i.e., patients without coronary artery bypass grafting and without
diabetes mellitus, for data after treatment, even when apparent in the two other groups. This result
has not previously been described and reported. Stein et al. reported that an inclusion of patients
with diabetes mellitus or CABG decreases predictive power of traditional heart rate variability after
myocardial infarction [34]. A possible explanation for this might be, as both of these groups tend
to have lower HRV, that entropy measures capture a feature in patients with low HRV that is not
captured by traditional HRV measures. Alternatively, since the primary difference between the
smallest subgroup and the others is the absence of diabetes, a relation between diabetes and entropy
affecting mortality might be suspected. Nevertheless, this fact needs further attention.

Another interesting finding was that none of the tested entropy measures, regardless of the used
parameter sets, were able for predicting mortality for baseline data. This is especially surprising as
several traditional HRV measures proved to be reliable predictors in the same dataset in previous
studies [6,7,34]. Compared to the time domain HRV parameters reported by Stein et al. [7] (see
Table 5), one can see for some entropy measures and parameter combinations trends similar to
SDNN and Ln SDANN for baseline data (Figure 3 A,B,C) when varying r as a multiple of σ, i.e.,
no significance for all data (A), approaching the significance level for patients w/o CABG (B) and
(borderline) significance for all patients w/o CABG and DM (C). The other time-domain parameters
did not predict mortality for baseline data in uni-variate analysis as well [7]. On the contrary, all
of the entropy measures under investigation proved to be able to predict mortality after treatment.
It therefore can be assumed that these complexity measures detect adverse effects of the treatments
used in the CAST. Sensitivity and specificity were in a similar range as reported for frequency-domain
parameters by Stein et al. [34].

Finally, a number of important limitations of this study need to be considered. First, this study
is limited to a relatively small part of the entire 24 h recordings, which was necessary to decrease
computation time. Second, the template length was fixed to m = 2 for all calculations, as the
number of possible parameter combinations would increase dramatically otherwise. According to
the literature, m = 2 seems to be a reasonable choice. Furthermore, parameters were iterated
consecutively and not simultaneously to reduce the dimension of the parameter space. In addition,
the study did not evaluate the dependency of the entropy measures on age and gender as reported
in literature [41,42]. Finally, one has to keep in mind that the Cardiac Arrhythmia Suppression
Trial tested three antiarrhythmic drugs which led to adverse effects in some patients. Therefore,
the results for data after treatment of this study cannot be generalized to patients with different or
without treatment.
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Table 5. Univariated traditional HRV predictors as reported by Stein et al. [7] using the same dateset
(i.e., CAST).

All w/o CABG w/o CABG, w/o DM

Variable HR (95% CI) p HR (95% CI) p HR (95% CI) p

AVGNN 1.001 (0.999–1.002) 0.36 1.000 (0.998–1.002) 0.77 1.000 (0.998–1.003) 0.77

SDNN 0.997 (0.9991–1.003) 0.36 0.994 (0.987–1.001) 0.09 0.992 (0.982–1.001) 0.07

Ln SDANN 0.800 (0.485–1.319) 0.38 0.576 (0.322–1.028) 0.06 0.400 (0.184–0.871) 0.02

Ln SDNNIDX 0.919 (0.581–1.452) 0.72 0.740 (0.435–1.257) 0.26 0.748 (0.360–1.553) 0.44

LN rMSSD 1.271 (0.803–2.010) 0.31 1.127 (0.683–1.860) 0.64 1.371 (0.735–2.557) 0.32

Abbreviations: CAST = Cardiac Arrhythmia Suppression Trial, w/o = without, CABG = coronary
artery bypass grafting, DM = diabetes mellitus, HR = hazard ratio, CI = confidence interval,
AVGNN = average NN intervals in ms, SDNN = the standard deviation of NN intervals in ms,
Ln = log transformation, SDANN = the standard deviation of 5-min mean NN intervals in ms,
SDNNIDX = the average of standard deviations of NN intervals for each 5-min interval in ms,
rMSSD = the root mean square successive difference of NN intervals in ms.

5. Conclusions

This study aimed to assess the effect of parameter selection on the predictive value of entropy
measures using outcome data. Previously, similar heart rate variability-based studies performed
parameter selection on cross-sectional data and attempted to allow for differentiating between
pathological and non-pathological data. The results of this study help to understand the influence of
the parameters on the predictive value of entropy measures. Nevertheless, more research is needed
to better understand the underlying principles and to overcome the limitations of this study.

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/18/4/129/s1.
Figure S1: Significance of predictive values of entropy measures for different choices of n (n = nL ∈
[1.0, 5.0], nF = 1); parameters: m = 2, N = 1200, r = rL = rF = rChon; HRV data at baseline (A,B,C) and after
treatment (D,E,F); for all patients (A,D), for all patients w/o CABG (B,E) and w/o CABG and DM (C,F). Figure
S2: Significance of predictive values of entropy measures for different choices of n (n = nL ∈ [1.0, 5.0], nF = 1);
parameters: m = 2, N = 1200, r = rL = rF = 0.2 · σ; HRV data at baseline (A,B,C) and after treatment (D,E,F);
for all patients (A,D), for all patients w/o CABG (B,E) and w/o CABG and DM (C,F). Figure S3: Significance
of predictive values of FuzzyMEn for different choices of nL and nF (nL, nF ∈ [1.0, 5.0]); parameters: m = 2,
N = 1200, r = rL = rF = rChon; HRV data at baseline (A,B,C) and after treatment (D,E,F); for all patients
(A,D), for all patients w/o CABG (B,E) and w/o CABG and DM (C,F). Figure S4: Significance of predictive
values of FuzzyMEn for different choices of nL and nF (nL, nF ∈ [1.0, 5.0]); parameters: m = 2, N = 1200,
r = rL = rF = 0.2 · σ; HRV data at baseline (A,B,C) and after treatment (D,E,F); for all patients (A,D), for all
patients w/o CABG (B,E) and w/o CABG and DM (C,F).
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