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Abstract: This paper proposes a novel estimator of mutual information for discrete and continuous
variables. The main feature of this estimator is that it is zero for a large sample size n if and only if the
two variables are independent. The estimator can be used to construct several histograms, compute
estimations of mutual information, and choose the maximum value. We prove that the number of
histograms constructed has an upper bound of O(log n) and apply this fact to the search. We compare
the performance of the proposed estimator with an estimator of the Hilbert-Schmidt independence
criterion (HSIC), though the proposed method is based on the minimum description length (MDL)
principle and the HSIC provides a statistical test. The proposed method completes the estimation in
O(n log n) time, whereas the HSIC kernel computation requires O(n3) time. We also present examples
in which the HSIC fails to detect independence but the proposed method successfully detects it.

Keywords: mutual information; kernel; independence testing; Hilbert-Schmidt independence criterion
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1. Introduction

Shannon’s information theory [1] has contributed to the development of communication and
storage systems in which sequences can be compressed up to the entropy of the source assuming that the
sender and receiver know the probability of each sequence. In the 30 years since its birth, information
theory has developed such that sequences can be compressed without sharing the associated probability
(universal coding): the probability of each future sequence can be learned from the past sequence such
that the compression ratio of the total sequence converges to its entropy.

Mutual information is a quantity that can be used to analyze the performances of encoding and
decoding in information theory, and its value expresses the dependency of two random variables and
is nonnegative (that is, zero) if and only if they are independent. Mutual information can be estimated
from actual sequences. In this paper, we construct an estimator of the mutual information based on
the minimum description length (MDL) principle [2] such that the estimator is zero if and only if the
two variables are independent for long sequences.

In any science, a law is determined based on experiments: the law should be simple and explain
the experiments. Suppose that we generate pairs of a rule and its exceptions for the experiments and
describe the pairs using universal coding. Then, the MDL principle chooses the rule of the pair that
has the shortest description length (the number of bits) as the scientific law: the simpler the rule is, the
more exceptions there are. In our situation, two variables may be either independent or dependent, and
we compute the values of the corresponding description lengths to choose one of them based on which
length is shorter. We estimate mutual information based on the difference between the description
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length values assuming that the two variables are independent and dependent, divided by the original
sequence length n.

Let X and Y be discrete random variables. Suppose that we have examples (X = x1, Y = y1), · · · ,
(X = xn, Y = yn) and that we wish to know whether X and Y are independent, denoted as X ⊥⊥ Y, not
knowing the distributions PX , PY, and PXY of X, Y and (X, Y), respectively.

One way of approaching this problem would be to estimate the correlation coefficient ρ(X, Y) of
X, Y to determine whether it is close to zero. Although the notions of independence and correlation
are close, simply because ρ(X, Y) = 0 does not mean that X and Y are independent. For example, let
X and U be mutually independent variables with a standard Gaussian distribution and {−1, 1} with
probability 0.5, respectively, and let Y = XU. Apparently, X and Y are not independent, but note that
EX = EY = 0, VX = EX2 = 1, VY = E[U2X2] = EX2 = 1, and

cov(X, Y) = E[XY] = E[X2U] = 0.5 · EX2 + 0.5 · E[−X2] = 0 ,

which means that ρ(X, Y) = cov(X, Y)/
√

VX ·VY = 0.
For this problem, we know that the mutual information defined by

I(X, Y) := ∑
x

∑
y

PXY(x, y) log
PXY(x, y)

PX(x)PY(y)

satisfies
I(X, Y) = 0⇐⇒ X ⊥⊥ Y .

Thus, it is sufficient to estimate I(X, Y) to determine whether it is positive.
Given xn = (x1, · · · , xn) and yn = (y1, · · · , yn), one might estimate I(X, Y) by plugging in the

frequencies cX(x), cY(y), and cXY(x, y) of X = x, Y = y, and (X, Y) = (x, y) divided by n into PX , PY,
and PXY, respectively, to obtain the quantity

In := ∑
x

∑
y

cXY(x, y)
n

log

cXY(x, y)
n

cX(x)
n

cY(y)
n

. (1)

However, we observe that In > 0 even when X ⊥⊥ Y for large values of n. In fact, since Equation (1)
is the Kullback-Leibler divergence between cXY(x,y)

n and cX(x)
n · cY(x)

n , we have In ≥ 0, and In = 0 if and
only if

cXY(x, y)
n

=
cX(x)

n
· cY(x)

n
for all x, y, which does not hold infinitely many times with a positive probability, even when X ⊥⊥ Y.
Thus, we need to guess X ⊥⊥ Y when In is small, say when In < δ(n) for some appropriate function
of n:

In ≤ δ(n)⇐⇒ X ⊥⊥ Y . (2)

Nobody was certain that such a function δ(n) of sample size n exists.
In 1993, Suzuki [3] identified such a function δ and proposed a new mutual information estimator

Jn := In − δ(n) such that
Jn ≤ 0⇐⇒ X ⊥⊥ Y (3)

for large n based on the minimum description length (MDL) principle. The exact form of function δ is
presented in Section 2. In this paper, we consider an extension of the estimation Jn of mutual information
I(X, Y) for a case where X and Y may be continuous.
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There are many ways of estimating mutual information for continuous variables. If we assume that
X and Y are Gaussian, then the mutual information is expressed by

I(X, Y) = −1
2

log{1− ρ(X, Y)2}

and we can show that
In −

1
2n

log n ≤ 0⇐⇒ X ⊥⊥ Y (4)

for large n, where In is the maximum likelihood estimator of I(X, Y). However, the equivalence only
holds for Gaussian variables.

For general settings, several mutual information estimators are available, such as kernel
density-based estimators [4], k-nearest neighbors [5,6], and other estimators based on quantizers [7].
In general, the kernel-based method requires an extraordinarily large computational effort to test for
independence. To overcome this problem, efficient estimators have been proposed, such as one that
completes the test in O(n log n) time [5]. However, correctness, such as consistency, is required and has
a higher priority than efficiency. Although some of these methods converge to the correct value I(X, Y)
for large n in O(n log n) time [7], the estimation values are positive with nonzero probability for large n
when X and Y are independent (I(X, Y) = 0).

Currently, the construction of nonlinear alternatives of cov(X, Y) to test for independence between
X and Y by using positive definite kernels is becoming popular. In particular, a quantity known as the
Hilbelt-Schmidt independence criterion (HSIC) [8], which is defined in Section 2, is extensively used for
independence testing. It is known that the HSIC value HSIC(X, Y, k, l) depends on the kernels k and l
w.r.t. the ranges of X and Y, and

HSIC(X, Y, k, l) = 0⇐⇒ X ⊥⊥ Y (5)

if the kernel pair (k, l) is chosen properly. In this paper, we assume that we always use such a kernel
pair and denote HSIC(X, Y, k, l) simply by H(X, Y). For the estimation of H(X, Y) given xn and yn, the
most popular estimator Hn of H(X, Y), which is defined in Section 2, always takes positive values, and
given a significance level of 0 < α < 1 (typically, α = 0.05), we need to obtain ε(α) such that the decision

Hn < ε(α)⇐⇒ X ⊥⊥ Y

is as accurate as possible.
In this paper, we propose a new estimator Jn of mutual information. This new estimator quantizes

the two-dimensional Euclidean space R2 of X and Y into 2u × 2u bins for u = 1, 2 · · · . For each value of
u that indicates a histogram, we obtain the estimation J(u)n of mutual information for discrete variables.
The maximum value of J(u)n over u = 1, 2, · · · is the final estimation. We prove that the optimal value
of u is at most O(log n). In particular, the proposed method divides R2 without distinguishing between
discrete and continuous data, and it satisfies Equation (3).

Then, we experimentally compare the proposed estimator Jn of I(X, Y) with the estimator Hn of
HSIC H(X, Y) in terms of independence testing. Although we obtained several insights, we could
not obtain confirmation that one of the estimators outperforms the other. However, we found that
the HSIC only considers the magnitude of the data and would fail to detect relations among the data
that cannot be identified by simply observing the changes in magnitude. We present two examples for
which the HSIC fails to detect the dependencies among xn and yn due to the aforementioned limitation.
The proposed estimation procedure completes the computation in O(n log n) time, whereas the HSIC
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requires O(n3) time. In this sense, the proposed method based on mutual information would be useful
in many situations.

The remainder of this paper is organized as follows. Section 2 provides the background for the
work presented in this paper, and Sections 2.1 and 2.2 explain the mutual information and HSIC
estimations, respectively. Section 3 presents the contributions of this paper, and Section 3.1 proposes
the new algorithm for estimating mutual information. Section 3.2 mathematically proves the merits of
the proposed method, and Section 3.3 presents the results of the preliminary experiments. Section 4
presents the results of the experiments using the R language to compare the performance in terms
of independence testing for the proposed estimator of mutual information and its HSIC counterpart.
Section 5 summarizes the contributions and discusses opportunities for future work.

Throughout the paper, the base two logarithm is assumed unless specified otherwise.

2. Background

This section describes the basic properties of the estimations of mutual information I(X, Y) for
discrete variables and HSIC H(X, Y).

2.1. Mutual Information for Discrete Variables

In 1993, Suzuki [3] proposed an estimator of mutual information based on the minimum description
length (MDL) principle [2]. Given examples, the MDL chooses a rule that minimizes the total description
length when the examples are described in terms of a rule and its exceptions. In this case, there are two
candidate rules: X and Y are either independent or not. When they are independent, for each X and Y,
we first describe the independent conditional probability values, and using them, the examples can be
described. The total length will be

Ln(xn) := −∑
x

cX(x) log
cX(x)

n
+

α− 1
2

log n (6)

plus

Ln(yn) := −∑
y

cY(y) log
cY(y)

n
+

β− 1
2

log n (7)

up to constant values, where α and β are the cardinalities of X and Y, respectively. When they are not
independent, we describe the examples in length

Ln(xn, yn) := −∑
x

∑
y

cXY(x, y) log
cXY(x, y)

n
+

αβ− 1
2

log n (8)

up to constant values. Hence, the difference Equation (6) + Equation (7) − Equation (8) divided by n is

Jn = In −
(α− 1)(β− 1)

2n
log n . (9)

It is known that
Jn ≤ 0⇐⇒ X ⊥⊥ Y (10)

for large n [9], which means that δ(n) =
(α− 1)(β− 1)

2n
log n in Equation (2). Figure 1 presents a box

plot of 1000 trials for the two estimations for n = 100 and α = β = 2, where X and Y are independent
and dependent, respectively.
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Figure 1. Estimating mutual information: the minimum description length (MDL) computes the correct
values, whereas the maximum likelihood yields values that are larger than the correct values.

Although the estimator of mutual information is defined by Equation (9) in the original paper by
Suzuki [3], in this paper, we define

Jn := max{In −
(α− 1)(β− 1)

2n
log n, 0}

instead such that Equation (10) is replaced by

Jn = 0⇐⇒ X ⊥⊥ Y .

2.2. Maximizing the Posterior Probability

Note that this paper seeks whether X ⊥⊥ Y or not rather than the mutual information value itself.
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We claim that the decision (9.5) asymptotically maximizes the posterior probability of X ⊥⊥ Y
given xn and yn. Let Qn(X) :=

∫
∏x θnx

x w(θ|a)dθ, where nx is the occurrence of X = x in xn,
and w(θ|a) ∝ ∏x θax−1

x is the prior probability of the probability θ = (θx) of X = x assuming the
hyper-parameters a = (ax) with ax > 0. Suppose that we similarly construct Qn(Y) and Qn(X, Y)
with ay > 0 and axy > 0. It is known that if we choose ax = 0.5, ay = 0.5, and axy = 0.5, then
Ln(xn) + log Qn(X), Ln(yn) + log Qn(Y), and Ln(xn, yn) + log Qn(X, Y) are bounded by constants [10].
Hence, for large n, we have

pQn(X)Qn(Y) ≥ (1− p)Qn(X, Y)⇐⇒ Jn = 0 ,

where the prior probability p of X ⊥⊥ Y is a constant and is negligible for large n.
On the other hand, Nemenman, Shafee, and Bialek [11] proposed a Bayesian estimator

Hn(xn, a) :=
∫
(−∑

x
θx log θx)w(θ|xn, a)dθ

and its expectation Hn(xn) w.r.t. a prior over the hyper-parameter a = (ax), where θx is the probability
of the event (X = x). If we similarly construct a Bayesian estimators Hn(yn) and Hn(xn, yn) of entropies
H(Y), H(X, Y), respectively, then we also obtain a Bayesian estimator

In
NSB(xn, yn) := Hn(xn) + Hn(yn)− Hn(xn, yn)

of mutual information I(X, Y) [12]. M. Hutter [13] proposed another estimator

In(xn, yn, a) :=
∫
(∑

x
∑
y

θxy log
θxy

θxθy
)w(θ|xn, yn, a)dθ (11)

and its expectation In
H(xn, yn) w.r.t. a prior over the hyper-parameter a = (ax, ay), where θy and θxy are

the probabilities of the events (Y = y) and (X = x, Y = y).
The main drawback of estimators In

NSB and In
H is that both of

In
NSB(xn, yn) = 0⇐⇒ X ⊥⊥ Y

In
H(xn, yn) = 0⇐⇒ X ⊥⊥ Y

fail for large n. For example, we have In(xn, yn, a) > 0 unless w(θ|xn, yn, a) concentrates on the case
θxy = θxθy for all x, y, which occurs with probability zero even when X ⊥⊥ Y. Note that they seek the
mutual information value itself rather than whether X ⊥⊥ Y or not.

2.3. HSIC

The HSIC is formally defined by

H(X, Y) := EXX′YY′ [k(X, X′)l(Y, Y′)] + EXX′ [k(X, X′)] · EYY′ [l(Y, Y′)]− 2EXY{EX′ [k(X, X′)]EY′ [l(Y, Y′)]} (12)

using the positive definite kernels k : X 2 → R and l : Y2 → R, where X and Y are the ranges of
X and Y, respectively, and PXY = PX′Y′ . The most common estimator of H(X, Y), given xn and yn,
would be

Hn :=
1
n2 ∑

i,j
k(xi, xj)l(yi, yj) +

1
n4 ∑

i,j
k(xi, xj)∑

p,q
l(yp, yq)−

2
n3 ∑

i,p.q
k(xi, xp)l(yi, yq)} . (13)
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We prepare 0 < α < 1 (for example, α = 0.05). Then, there exists a threshold ε(α) such that if the
null hypothesis is true, then the value of Hn should be less than ε(α) with probability 1− α. The decision
is based on

Hn < ε(α)⇐⇒ X ⊥⊥ Y .

Applying HSIC to independence testing is widely accepted in the machine learning community;
in addition to the equivalence Equation (5) with independence, (weak) consistency has been shown in
the sense that the difference between Equations (12) and (13) is at most O(1/

√
n) in probability [8].

Furthermore, HSIC exhibits satisfactory performance in actual situations and is currently considered to
be the de facto method for independence testing.

However, we still encounter serious problems when applying HSIC. The most significant problem
is that HSIC requires O(n3) computational time, and n is required to be small if it is necessary that the
test be completed within a predetermined time. Moreover, the calculation of the correct value of ε(n)
requires many hours for simulating the null hypothesis. Given xn and yn, we randomly reorder yn to
obtain independent pairs of examples and compute Hn many times to obtain the (1− α)× 100 percentile
point ε(α). If α = 0.05, then we obtain 10 samples of a higher α× 100 percentile to ensure that the value
of ε(α) is correct by executing the computation more than 200 times.

3. Estimation of Mutual Information for both Discrete and Continuous Variables

This paper proposes a new estimator of mutual information that is able to address both discrete
and continuous variables and that becomes zero if and only if X and Y are independent for large n.

3.1. Proposed Algorithm

The proposed estimation consists of three steps:

1. prepare nested histograms [14],
2. compute estimations J(u)n of mutual information for the histogram s = 1, 2, · · · , and
3. choose the maximum among the estimations J(u)n w.r.t. the histograms u = 1, 2, · · · .

Suppose that we are given examples xn = (x1, · · · , xn) and yn = (y1, · · · , yn) and that they have
been sorted as

x̃1 ≤ x̃2 ≤ · · · ≤ x̃n and ỹ1 ≤ ỹ2 ≤ · · · ≤ ỹn . (14)

First, we assume that no consecutive values are equal in each of the two sequences Equation (14),
which is true with probability one when the density function exists. Let s ≥ 1 be an integer, and for each
u = 1, · · · , s, we prepare histograms with 2u bins for X, Y, and (X, Y). Let t := n/2u. The sequences
Equation (14) are divided into clusters such as

(x̃1, · · · , x̃btc), · · · (x̃b(j−1)tc+1, · · · , x̃bjtc), · · · , (x̃b(2u−1)tc+1, · · · , x̃n)

and
(ỹ1, · · · , ỹbtc), · · · (ỹb(k−1)tc+1, · · · , ỹbktc), · · · , (ỹb(2u−1)tc+1, · · · , ỹn) .

Thus, we have quantized sequences xn 7→ an
u = (a(u)1 , · · · , a(u)n ) and yn 7→ bn

u = (b(u)1 , · · · , b(u)n ) with
u = 1, · · · , s using the clusters. For example, suppose that we generate n = 1000 standard Gaussian
random sequences xn and yn with a correlation coefficient of 0.8. The frequency distribution tables of an

and bn for u = 3 are

1 2 3 4 5 6 7 8
125 125 125 125 125 125 125 125

and that of (an, bn) for u = 3 are as follows:
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1 2 3 4 5 6 7 8
1 75 32 12 5 1 0 0 0
2 25 41 25 18 9 7 0 0
3 15 23 32 27 14 11 1 2
4 5 17 24 22 27 19 11 0
5 5 9 19 24 23 23 17 5
6 0 3 7 18 26 26 28 17
7 0 0 6 9 19 21 45 25
8 0 0 0 2 6 18 23 76

Thus, the distributions of an and bn are nearly uniform. Because a sufficient number of samples is
allocated to each cluster, at least for one-dimensional X, Y if n is large, the estimations are more robust
than for other histogram-based methods [9].

Because the obtained sequences an
u and bn

u are discrete, we can compute

J(u)n = I(u)n − K(u)
n

2n
log n , (15)

where I(u)n is the empirical mutual information w.r.t. histogram u = 1, 2, · · · and K(u)
n = (2u − 1)2 is the

number of independent parameters. The derivation of Equation (15) is similar to that of Equation (9).
Let (Xu, Yu) and (Xv, Yv) be the random variables for histograms u and v such that u ≤ v.

Suppose that examples an
v and bn

v have been emitted from (Xv, Yv); we wish to know whether (Xv, Yv)

are conditionally independent given (Xu, Yu) based on the MDL principle. Then, we can answer the
question affirmatively if we compare the description length values to find that J(v)n ≤ J(u)n . This means
that according to the MDL principle, we can use the decision that (Xv, Yv) are conditionally independent
given (Xu, Yu) if and only if J(v)n ≤ J(u)n . Hence, if u provides the maximum value of J(u)n , then we choose
the histogram u. Thus, we propose the estimation given by Jn := max

1≤u≤s
J(u)n , and we prove why the

optimal value of u is at most s = b0.5 log nc in Section 3.2 (Theorem 1).
Another interpretation is that if the sample size in each bin is smaller, then the estimation is less

robust. However, if the number of bins is smaller, then the approximation of the histogram is less
appropriate. These two factors are balanced by the MDL principle.

For example, suppose that n = 1000; thus, s = b0.5 log 1000c = 4. If we have the following
four values:

u J(u)
1 0.2664842
2 0.5077115
3 0.5731657
4 0.4601272

then the final estimation will be 0.5731657 (u = 3). Note that there are other methods for finding the
maximum mutual information. For example, s = b0.5 loga nc and au clusters for each of (X, Y) work if
a > 1 (the smaller a is, the larger s is). For a = 1.5, we experimentally find (Figure 2) that the value of
J(u) depicts a concave curve, i.e., the maximum value is obtained at the point u = 5 at which the sample
size of each bin (robustness of the estimation) and the number of bins (approximation of the histogram)
are balanced.
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Figure 2. Values of J(u)n with 1 ≤ u ≤ s: the maximum value is obtained at the point where the sample
size of each bin and the number of bins are balanced.

Next, we consider the case for which two values at consecutive locations are the same in one of
the two sequences Equation (14). In general, we divide each cluster in half at each stage u = 1, 2, · · · , s.
If two values at consecutive locations are equal and they need to be divided, then we choose another
border: suppose that k values are equal from the (j + 1)-th location,

x̃j < x̃j+1 = · · · = x̃j+k < x̃j+k+1 .

and that we need to divide the (j + i)-th and (j + i + 1)-th positions (1 ≤ i ≤ k− 1); rather, we either
divide between the j-th and (j + 1)-th positions or between the (j + k)-th and (j + k + 1)-th positions,
depending on whether i < k/2 or i ≥ k/2. For example, if n = 8 and x8 = (2, 4, 1, 2, 3, 4, 3, 3), then the
cluster generating process for (x̃1, · · · , x̃8) = (1, 2, 2, 3, 3, 3, 4, 4) is as follows:

{(1, 2, 2, 3, 3, 3, 4, 4)} → {(1, 2, 2), (3, 3, 3, 4, 4)} → {(1), (2, 2), (3, 3, 3), (4, 4)}

In this way, even when the sequence xn is discrete, we can obtain the quantization xn 7→ an
u =

(a(u)1 , · · · , a(u)n ). In particular, we have an
u = xn if u is sufficiently large. The proposed scheme does not

distinguish whether each of the given sequences is discrete or continuous.

3.2. Properties

In this subsection, we prove two fundamental claims:

1. The optimal u that maximizes J(u)n is no larger than s := b0.5 log nc.
2. For large n, the mutual information estimation of each histogram converges to the correct

approximated value.
3. For large n, the estimation is zero if and only if X and Y are independent.

First, we have the following lemma from the law of large numbers:
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Lemma 1. The 2u − 1 breaking points of histograms u = 1, 2, · · · , converge to the correct values
(100 × j/2u percentile points, j = 1, · · · , 2u − 1) with probability one as the sample size n (hence,
its maximum depth s) increases, and the value of a is assumed to be two for simplicity.

Let I(Xu, Yu) be the true mutual information w.r.t. the correct breaking points of the histogram
u = 1, · · · , s.

Theorem 1. For n ≥ 4, the optimal u is no larger than s = b0.5 log nc.

We observe that for all u = 1, 2, · · · ,

I(u+1)
n − I(u)n ≤ 2 . (16)

In fact, from u to u + 1, the increases in the empirical entropies of X and Y are at most one,
respectively, and the decrease in the empirical entropy of (X, Y) is at least zero. If we have the inequality

J(u)n = I(u)n − (2u − 1)2

2n
log n ≥ J(u+1)

n = I(u+1)
n − (2u+1 − 1)2

2n
log n (17)

for some 1 ≤ u ≤ s, then we cannot expect u + 1 to be the optimal value. However, when
u = s = 0.5 log n, under Equation (16), Equation (17) implies that

− (2u − 1)2

2n
log n ≥ 2− (2u+1 − 1)2

2n
log n ,

which is equivalent to

log n ≥ 4
3− 2/

√
n

and is true for n ≥ 4. Moreover, for n ≥ 4 and j = 2, 3, · · · , from I(u+j)
n − I(u)n ≤ 2 and

− (2u+1 − 1)2

2n
≥ − (2u+j − 1)2

2n
log n ,

we also have J(u)n ≥ J(u+j)
n . This completes the proof.

Theorem 2. For large n, the estimation of the mutual information of each histogram converges to the
correct value.

Proof. Each boundary converges to the true value for each histogram (Lemma 1), and the number
of samples in each bin increases as n becomes larger; therefore, the estimation in histogram u = 1, 2, · · ·
converges to the correct mutual information value I(Xu, Yu).

Theorem 3. With probability one as n→ ∞, Jn = 0 if and only if X and Y are independent.

Proof. Suppose that X and Y are not independent. Because I(X, Y) > 0, we have I(Xu, Yu) > 0 for
the value u. Thus, the J(u)n for u is positive mutual information I(X, Y) with probability one as n → ∞
(Theorem 2), and Jn > 0. For proof of the other direction, see the Appendix.
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3.3. Preliminary Experiments

If the random variables are known to be Gaussian a priori, it is considered to be easier to use
a Gaussian method to estimate the correlation coefficient and to compute the estimation based on
Equation (4) than by using the proposed method, which does not require the variables to be Gaussian.
We compared the proposed algorithm with the Gaussian method.

1. X and Y follow the negative binomial distribution with parameters (P, wx) and (P, wy) such that X
and Y are the numbers of occurrences before an event with probability P occurs wx and wy (wx ≤ wy)
times, respectively. In particular, we set P = 0.5, wx = 3, wy = 4, and n = 200, 500, 2, 000.

2. X ∼ N (0, σ2) with σ2 > 0, W ∈ {−1, 1} with probability 0.5, Y = X + W, and n = 100.
3. X ∈ {−1, 1} with probability 0.5, W ∼ N (0, σ2) with σ2 > 0, Y = X + W, and n = 100.

For the first experiment, because X and Y are discrete, we expect the proposed method to
successfully compute the mutual information values even though none of the ranges of X and Y are
bounded. The Gaussian method only considers the correlation between two variables, whereas the
proposed method counts the occurrences of the pairs. Consequently, particularly for large n, the
proposed method outperformed the Gaussian method and tended to converge to the true mutual
information value as n increased (Figure 3).

Figure 3. Experiment 1: for large n, the proposed method outperforms the Gaussian method.

For the second experiment, although X and Y are continuous, the difference is discrete, as is the
probabilistic relation. The proposed method can count the differences (integers) and the quantized
values. Consequently, the proposed method estimated the mutual information values more correctly
than the Gaussian method (Figure 4a).

However, for the ANOVA case (Experiment 3), the mutual information values obtained using the
proposed method are closer to the true value than those obtained using the Gaussian method (Figure 4b).
We expected that the Gaussian method would outperform the proposed method, but in this case, X is
discrete and the mutual information is at most the entropy of X; thus, the proposed method shows
a slightly better performance than the Gaussian method. However, the difference between the two
methods is not as large as that in Experiment 2, which is because the noise is Gaussian and the Gaussian
method is designed to address Gaussian noise.
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Figure 4. Experiments 2 and 3: the proposed method outperformed the Gaussian method for both
experiments. The difference is less in Experiment 3 than in Experiment 2.

4. Application to Independence Tests

We conducted experiments using the R language, and we obtained evidence that supports the
“No Free Lunch” theorem [15] for independence tests: no single independence test is capable of
outperforming all the other tests. The proposed and HSIC methods require O(n log n) and O(n3)

time, respectively, to perform the computation; thus, the former is considerably faster than the latter,
particularly for large values of n.

For the HSIC method, we used the Gaussian kernel [8]

k(x, x′) = exp{− (x− x′)2

2σ2 } , x, x′ ∈ X

with σ2 = 1 for both k : X × X → R and l : Y × Y → R. We set the significance level α to be
0.05. To compute the threshold ε(α) such that we decide X ⊥⊥ Y if and only if Hn ≤ ε(α), because
only xn and yn are available, this requires us to repeatedly and randomly reorder yn to generate
mutually independent xn and yn such that we can simulate the null hypothesis. However, this process
is time-consuming for our experiments, and we generate mutually independent pairs xn and yn to
compute Hn 200 times to estimate the distribution of Hn under the null hypothesis and the 95 percentile
point ε(0.05).

For the proposed method, we set the prior probability of X ⊥⊥ Y to be 0.5.

4.1. Binary and Gaussian Sequences

First, we generated mutually independent binary X and U, with the probabilities of X = 1 and
U = 1 being 0.5 and p = 0.1, 0.2, 0.3, 0.4, 0.5, respectively, to obtain Y = X + U mod 2. When we
simulated the null hypothesis, we generated yn in the same way as that used for generating xn. We
computed Jn and Hn 100 times for n = 100 and n = 200.

The obtained results are presented in Figure 5. For each p and n = 200, we depict the distributions
of Hn and Jn in the plots on the left and right, respectively. If the data occur to the left of the red vertical
line, then the tests consider xn and yn to be independent. In particular, for p = 0.5 (X ⊥⊥ Y) and p = 0.4
(X 6⊥⊥ Y), we counted how many times the two tests chose X ⊥⊥ Y and X 6⊥⊥ Y (see Table 1).

We could not find any significant difference in the correctness of testing for the two tests.
Next, we generated mutually independent Gaussian X and U with mean zero and variance one,

and Y = qX +
√

1− q2U for q = 0, 0.2, 0.4, 0.6, 0.8. When we simulated the null hypothesis, we
generated yn in the same way as that used for generating xn. We computed Jn and Hn 100 times for
n = 100 and n = 200.
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Table 1. Experiments for binary sequences: the figures show how many times (out of 100) the HSIC and
the proposed method regarded the two sequences as being independent (⊥⊥) and dependent ( 6⊥⊥) for
p = 0.5, 0.4, 0.3.

n = 200 p = 0.5 p = 0.4 n =100 p = 0.5 p = 0.4

(100 Trials) ⊥⊥ 6⊥⊥ ⊥⊥ 6⊥⊥ (100 Trials) ⊥⊥ 6⊥⊥ ⊥⊥ 6⊥⊥
HSIC 95 5 24 76 HSIC 95 5 49 51

Proposed 94 6 19 81 Proposed 88 12 33 67

The obtained results are presented in Figure 6. For each q and n = 200, we depict the distributions
of Hn and Jn on the left and right, respectively. If the data occur to the left of the red vertical line, then
the tests consider xn and yn to be independent. In particular, for q = 0.5 (X ⊥⊥ Y) and q = 0.4 (X 6⊥⊥ Y),
we counted how many times the two tests chose X ⊥⊥ Y and X 6⊥⊥ Y (see Table 2).

We could not find any significant difference in the correctness of testing between the two tests.
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Figure 5. Experiments for binary sequences (n = 200) .
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Table 2. Experiments for Gaussian sequences: the figures show how many times (out of 100) the HSIC
and the proposed method regarded the two sequences as being independent (⊥⊥) and dependent ( 6⊥⊥)
for q = 0, 0.1, 0.2.

n = 200 q = 0 q = 0.2 q = 0.4 n = 100 q = 0 q = 0.2 q = 0.4

(100 Trials) ⊥⊥ 6⊥⊥ ⊥⊥ 6⊥⊥ ⊥⊥ 6⊥⊥ (100 Trials) ⊥⊥ 6⊥⊥ ⊥⊥ 6⊥⊥ ⊥⊥ 6⊥⊥
HSIC 97 3 51 49 0 100 HSIC 93 7 74 26 11 89

Proposed 95 5 58 42 4 92 Proposed 94 6 56 44 23 77

4.2. When is the Proposed Method Superior?

We found two cases in which the proposed method outperforms the HSIC:

1. X and U are mutually independent and follow the Gaussian distribution with mean 0 and variance
0.25, and Y = X − round(X) + round(U), where round(x) is the rounded integer of x (round(1.1)
= 1, round(1.6) = 2, round(−1.1) = −1, round(−1.6) = −2) (ROUNDING).

2. X takes a value in {0, 1, · · · , 9} uniformly and Y takes a value in either {0, 2, 4, 6, 8} or {1, 3, 5, 7, 9}
uniformly depending on the value of X such that X + Y is an even number (INTEGER).

We refer to the two problems as ROUNDING and INTEGER, respectively. Apparently, the answers
to both of these are that X, Y are not independent, although the correlation coefficient ρ(X, Y) is zero.

Table 3 shows the number of times the tests chose X ⊥⊥ Y and X 6⊥⊥ Y for the experiments.
We observed that the HSIC failed to detect dependencies for both of the problems, whereas the proposed
method successfully found X and Y to not be independent.

Table 3. Hilbert-Schmidt independence criterion (HSIC) fails to detect dependencies.

n = 200 ROUNDING n = 200 INTEGER

(100 Trials) ⊥⊥ 6⊥⊥ (100 Trials) ⊥⊥ 6⊥⊥
HSIC 100 0 HSIC 96 4

Proposed 1 99 Proposed 0 100

The obvious reason appears to be that the HSIC simply considers the magnitudes of X, Y. For the
ROUNDING problem, X, Y are independent for the integer parts, but the fractional parts are related.
However, when using HSIC, because the integer part contributes to the score considerably more than
the fractional part, the HSIC cannot detect the relation between the whole parts.

The same reasoning can be applied to the INTEGER problem. In fact, the values of bX/2c and
bY/2c are independent, where bxc denotes the largest integer not exceeding x. However, the relation
X ≡ Y mod 2 always holds, and this cannot be detected by the HSIC.

Note that we do not claim that the proposed method is always superior to the HSIC. Admittedly,
for many problems, the HSIC performs better. For example, for typical problems such as

3. X and U follow the standard Gaussian and binary (probability 0.5) distributions, and Y = XU
(ZERO-COV),

we find that the HSIC offers more advantages (see Table 4).
We rather claim that no single independence test outperforms all the others.
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Table 4. HSIC outperforms the proposed method.

n = 200 ZERO-COV

(100 Trials) ⊥⊥ 6⊥⊥
HSIC 0 100

Proposed 12 88

4.3. Execution Time

We compare the execution times for the Gaussian sequences. Table 5 lists the average execution
times for n = 100, 500, 1000, and 2000 and q = 0.2 (the results were almost identical for the other values
of q).

We find that the proposed method is considerably faster than the HSIC, particularly for large n.
This result occurs because the proposed method requires O(n log n) time for the computation, whereas
the HSIC requires O(n3) time. Although the HSIC estimator might detect some independence for large
n because of its (weak) consistency, it appears that the HSIC is not efficient for large n. Because the HSIC
requires the null hypothesis to be simulated, a considerable amount of additional computation would
be required.

Table 5. Execution time (seconds).

n 100 500 1000 2000

HSIC 0.50 9.51 40.28 185.53
Proposed 0.30 0.33 0.62 1.05

5. Concluding Remarks

We proposed an estimator of mutual information and demonstrated the effectiveness of the
algorithm in solving the independence testing problem.

Although estimating mutual information of continuous variables was considered to be difficult,
the proposed estimator was shown to detect independence for a large sample size if and only if the
two variables are independent. The estimator constructs many histograms of size 2u× 2u, estimates their
mutual information J(u)n , and chooses the one with the maximum J(u)n value over u = 1, 2, · · · . We find
that the optimal u has an upper bound of b0.5 log nc. The proposed algorithm requires O(n log n) time
to perform the computation.

Then, we compared the performance of our proposed estimator with that of the HSIC estimator,
de facto for the independence testing principle. The two methods differ in that the proposed method
is based on the MDL principle given data xn, yn, although the HSIC detects abnormalities assuming
the null hypothesis given the data. We could not obtain a definite answer to enable us to determine
which method is superior for general settings; rather, we obtained evidence that no single statistical
test outperforms all the others for all problems. In fact, although HSIC will clearly be superior
when certain specific dependency structures form the alternative hypothesis, the proposed estimator
is more universal.

One meaningful insight obtained is that the HSIC only considers the magnitude of the data and
neglects to find relations that cannot be detected by simply considering the changes in magnitude.

The most notable merit of the proposed algorithm compared to the HSIC is its efficiency. The HSIC
requires O(n3) computational time for one test. However, prior to the test, it is necessary to simulate the
null hypothesis and set the threshold such that the algorithm determines that the data are independent
if and only if the HSIC values do not exceed the threshold. In this sense, executing the HSIC would
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be time-consuming, and it would be safe to say that the proposed algorithm is useful for designing
intelligent machines, whereas the HSIC is appropriate for scientific discovery.

In future work, we will consider exactly when the proposed method exhibits a particularly good
performance.

Moreover, we should address the question of how generalizations to three dimensions might work.
In this paper, it is not clear whether one would want to estimate some form of total independence such

as E log
p(X, Y, Z)

p(X)p(Y)p(Z)
or conditional mutual information such as E log

p(X, Y, Z)p(X)

p(X, Z)p(X, Y)
. In fact, for

Bayesian network structure learning (BNSL), we need to compute Bayesian scores of conditional mutual
information from the data to apply a standard scheme of BNSL based on dynamic programming [16].
Currently, a constraint-based approach for estimating conditional mutual information values using
positive definite kernels is available [17], but no theoretical guarantee, such as consistency, is obtained
by the method.

Conflicts of Interest: The author declares no conflict of interest.

Appendix

Proof. of Theorem 3 (Necessity)
We assume that X, Y are independent to show J(u) = maxu≥1 J(u)n = J(0)n = 0 with probability one.
To this end, we use the following fact: 2I(u)n ∼ χl with l = (2u − 1)2 for large n → ∞ for each

u ≥ 1 [18,19]. If we write the Gamma density and functions as

fl(z) :=
1

2l/2Γ(l/2)
zl/2−1e−z/2

Γ(α, x) :=
∫ ∞

x
tα−1e−tdt , Γ(α) :=

∫ ∞

0
tα−1e−tdt , α > 0 , x ≥ 0

and set z = l log n, the fact implies that

P{J(u)n = 0} = P{I(u)n ≤ (2u − 1)2

2
log n} =

∫ ∞

z
fl(x)dx = 1− Γ(z/2, l/2)

Γ(l/2)
.

First, to show maxu≥2 J(u)n = J(0)n = 0 with probability one as n → ∞, we set for each u ≥ 2,
α = (2u − 1)2/2 and x = α log n to obtain an upper bound on the probability

G(α, x) := 1− Γ(α, x)
Γ(α)

of J(u)n > J(0)n = 0. Note that Theorem 2 does not necessarily mean maxu≥1 J(u)n = J(0)n = 0 with
probability one as n→ ∞.

Let m := α− 1/2 (integer). Because

Γ(α, x)

= xα−1e−x + (α− 1)Γ(α− 1, x)

= xα−1e−x + (α− 1){xα−2e−x + (α− 2)Γ(α− 2, x)}

≥ xα−1e−x + (α− 1)xα−2e−x + (α− 1)(α− 2)xα−3e−x + · · ·+ (α− 1)(α− 2) · · · 3
2

x1/2e−x

= e−x
m−1

∑
k=0

Γ(m + 1
2 )

Γ(k + 3
2 )

xk+ 1
2
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and
xk

Γ(k + 1)
≤ xk+1/2

Γ(k + 3/2)

only but for a finite number of k, we find that

G(α, x) ≤ e−x{ex −
m−1

∑
k=0

xk+1/2

Γ(k + 3/2)
} ≤ e−x

∞

∑
k=m

xk

k!

only but for a finite number of k. Moreover, from the mean value theorem, there exists 0 < c < α

such that

G(α, x) ≤ 1
nα

(α log n)α−1/2

Γ(α + 1/2)
ec .

Furthermore, if we let H(m, n) := G(α, x) as a function of m and n, from (m + 1/2)m ≤ mm+1/2

(m ≥ 4) and the Stirling formula m! ≥
√

2πmm+1/2e−m, we have

H(m, n) =
( e

n

)m+ 1
2 {(m + 1

2 ) log n}m

m!
≤
( e

n

)m+ 1
2 · 1√

2π
(e log n)m ≤

√
e

2πn
(

e2 log n
n

)m ,

which means that

∑
m≥4

H(m, n) ≤ ∑
m≥4

(
e2 log n

n
)m =

(
e2 log n

n
)4

1− e2 log n
n

= o(n−1)

only but for a finite n(n s.t. n/ log n ≤ e2), where we have written the quantity f (n) s.t. n f (n) → 0 as
n→ ∞ as o(n−1).

Hence, from the Borel-Cantelli lemma, with probability maxu≥2 J(u)n = J(0)n = 0 as n → ∞, which
combined with J(1)n = J(0)n = 0 with probability one means that maxu≥1 J(u)n = J(0)n with probability one
as n→ ∞. This completes the proof.
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