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Abstract: The Vallis model for El Niño is an important model describing a very interesting physical
problem. The aim of this paper is to investigate and compare the models using both integer and
non-integer order derivatives. We first studied the model with the local derivative by presenting for
the first time the exact solution for equilibrium points, and then we presented the exact solutions
with the numerical simulations. We further examined the model within the scope of fractional order
derivatives. The fractional derivatives used here are the Caputo derivative and Caputo–Fabrizio type.
Within the scope of fractional derivatives, we presented the existence and unique solutions of the
model. We derive special solutions of both models with Caputo and Caputo–Fabrizio derivatives.
Some numerical simulations are presented to compare the models. We obtained more chaotic behavior
from the model with Caputo–Fabrizio derivative than other one with local and Caputo derivative.
When compare the three models, we realized that, the Caputo derivative plays a role of low band
filter when the Caputo–Fabrizio presents more information that were not revealed in the model with
local derivative.

Keywords: Vallis model; chaotic behavior; Caputo–Fabrizio fractional derivative; analysis;
numerical simulations

1. Introduction

Claude Shannon in 1948 established the concept of information theory. The concept has been
used in many scientific fields, for instance in signal and image processing [1–6]. Recently, using the
concept of fractional calculus, Machado has introduced a new formula for entropy [1,2]. Nowadays,
information theory is generalized in the scope of fractional calculus and has found many novel
applications in the fields of engineering and physics [1–6].

Within the class of mathematical systems of equations describing some chaotic system, we can
say that the well-known Lorenz model is perhaps the most classical and exemplary problem since
it is, as far we are aware, the primitive model of chaotic behavior [7–10]. This model is a modified
and simplified form of the former complex model of Saltzman to portray buoyancy-driven convection
patterns in the classical rectangular Rayleigh-Bernard problem used in thermal convection between
two plates perpendicular to the direction of the Earth’s gravitational force. This model can also be
obtained by a simple transformation of the Vallis model for El Niño given below as:
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dx ptq
dt

“ By ptq ´ C px ptq ` pq

dy ptq
dt

“ x ptq z ptq ´ y ptq

dz ptq
dt

“ ´x ptq y ptq ´ z ptq ` 1

(1)

The El Niño phenomenon is a devilishly irregular, anomalous, Christmas-time warming of the
coastal waters off Peru and Ecuador occurring about every 3–6 years that has an enormous impact
on global climate. Because of the importance of this model, more studies need to be done in order to
accurately provide a more accurate model can be used to describe the mentioned physical problem [7].
Although the model has been used with great success, it is perhaps important to mention that,
anomalous or irregular phenomenon cannot accurately be described with local derivative. This has
been revealed in many research papers, monograms and books in the last decade [11–20]. The aim of
this paper is to further observe if the model based on the fractional derivative will be more descriptive
than the one with local derivative. Therefore in this paper, the comparison of models will be done
using different definitions of derivatives. We shall therefore present in the section some definition of
derivative with fractional order.

Definition 1. [17–20]. Let f P H1 pa, bq , b ą a, α P r0, 1s then, the new Caputo derivative of fractional
derivative is defined as:

Dα
t p f ptqq “

M pαq

1´ α

t
ż

a

f 1 pxq exp
„

´α
t´ x
1´ α



dx (2)

where M pαq is a normalization function such that M p0q “ M p1q “ 1 [11]. Nevertheless, if the function
does not belong to H1 pa, bq then, the derivative can be reformulated as:

Dα
t p f ptqq “

αM pαq

1´ α

t
ż

a

p f ptq ´ f pxqq exp
„

´α
t´ x
1´ α



dx (3)

Definition 2. Let f be a function not necessary differential, let α be a real number such that 0 ď α ď 1,
then the new derivative with order α is given as:

0Dα
x t f pxqu “

1
1´ α

d
dx

x
ż

0

f pxq exp
„

´α
pt´ xq
1´ α



dx (4)

If α is zero we have the following

0D0
x t f pxqu “

d
dx

x
ż

0

f pxq dx “ f pxq (5)

Using the argument by Caputo and Fabrizio, we also have that when this expression also goes to
1 we recover the first derivative [17–20].

Definition 3. According to Caputo, the fractional derivative of a continuous and n-time differentiable
function f is given as:

Dα
t p f ptqq “

1
Γ pn´ αq

t
ż

a

pt´ xqn´α´1
ˆ

d
dx

˙n
f pxq dx, n´ 1 ă α ď n (6)
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Definition 4. The modified Riemann–Liouville fractional derivative of a function f is given as:

Dα
t p f ptqq “

1
Γ pn´ αq

ˆ

d
dt

˙n t
ż

a

pt´ xqn´α´1
r f pxq ´ f paqs dx, n´ 1 ă α ď n

There are other definitions that are not mentioned here.

2. Analysis of Vallis Model with Local Derivative

In this section we present a detailed analysis system of Equation (1).

2.1. Stability Analysis of Equilibrium Points

To find the equilibrium points, we assume that the system is time-independent such that:
$

’

&

’

%

0 “ By´ C px` pq
0 “ xz´ y
0 “ ´xy´ z` 1

(7)

The following general solutions are obtained:

x

“ ´
p
3
´

21{3p3Cp´B`Cq ´C2p2q

3Cp´9BC2p´ 18C3p´ 2C3p3 `

b

4p3Cp´B`Cq ´C2p2q
3
` p´9BC2p´ 18C3p´ 2C3p3q

2
q

1{3

`
p´9BC2p´ 18C3p´ 2C3p3 `

b

4p3Cp´B`Cq ´C2p2q
3
` p´9BC2p´ 18C3p´ 2C3p3q

2
q

1{3

321{3C
y

“ ´
1
B
p´

2Cp
3

´
21{3BC

p´9BC2 p´ 18C3 p´ 2C3 p3 `

b

4p3Cp´B` Cq ´ C2 p2q
3
` p´9BC2 p´ 18C3 p´ 2C3 p3q

2
q

1{3

`
21{3C2

p´9BC2 p´ 18C3 p´ 2C3 p3 `

b

4p3Cp´B` Cq ´ C2 p2q
3
` p´9BC2 p´ 18C3 p´ 2C3 p3q

2
q

1{3

´
21{3C2 p2

3p´9BC2 p´ 18C3 p´ 2C3 p3 `

b

4p3Cp´B` Cq ´ C2 p2q
3
` p´9BC2 p´ 18C3 p´ 2C3 p3q

2
q

1{3

´
p´9BC2 p´ 18C3 p´ 2C3 p3 `

b

4p3Cp´B` Cq ´ C2 p2q
3
` p´9BC2 p´ 18C3 p´ 2C3 p3q

2
q

1{3

321{3
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z

“
1
B
p

B
3
`

2C
3

´
22{3B2C

p´9BC2 p´ 18C3 p´ 2C3 p3 `

b

4p3Cp´B` Cq ´ C2 p2q
3
` p´9BC2 p´ 18C3 p´ 2C3 p3q

2
q

2{3

`
222{3BC2

p´9BC2 p´ 18C3 p´ 2C3 p3 `

b

4p3Cp´B` Cq ´ C2 p2q
3
` p´9BC2 p´ 18C3 p´ 2C3 p3q

2
q

2{3

´
22{3C3

p´9BC2 p´ 18C3 p´ 2C3 p3 `

b

4p3Cp´B` Cq ´ C2 p2q
3
` p´9BC2 p´ 18C3 p´ 2C3 p3q

2
q

2{3

´
222{3BC2 p2

3p´9BC2 p´ 18C3 p´ 2C3 p3 `

b

4p3Cp´B` Cq ´ C2 p2q
3
` p´9BC2 p´ 18C3 p´ 2C3 p3q

2
q

2{3

`
222{3C3 p2

3p´9BC2 p´ 18C3 p´ 2C3 p3 `

b

4p3Cp´B` Cq ´ C2 p2q
3
` p´9BC2 p´ 18C3 p´ 2C3 p3q

2
q

2{3

´
22{3C3 p4

9p´9BC2 p´ 18C3 p´ 2C3 p3 `

b

4p3Cp´B` Cq ´ C2 p2q
3
` p´9BC2 p´ 18C3 p´ 2C3 p3q

2
q

2{3

´
21{3BCp

3p´9BC2 p´ 18C3 p´ 2C3 p3 `

b

4p3Cp´B` Cq ´ C2 p2q
3
` p´9BC2 p´ 18C3 p´ 2C3 p3q

2
q

1{3

`
21{3C2 p

3p´9BC2 p´ 18C3 p´ 2C3 p3 `

b

4p3Cp´B` Cq ´ C2 p2q
3
` p´9BC2 p´ 18C3 p´ 2C3 p3q

2
q

1{3

´
21{3C2 p3

9p´9BC2 p´ 18C3 p´ 2C3 p3 `

b

4p3Cp´B` Cq ´ C2 p2q
3
` p´9BC2 p´ 18C3 p´ 2C3 p3q

2
q

1{3

´
pp´9BC2 p´ 18C3 p´ 2C3 p3 `

b

4p3Cp´B` Cq ´ C2 p2q
3
` p´9BC2 p´ 18C3 p´ 2C3 p3q

2
q

1{3

321{3

`
1
9

22{3 pp´9BC2 p´ 18C3 p´ 2C3 p3 `

b

4p3Cp´B` Cq ´ C2 p2q
3
` p´9BC2 p´ 18C3 p´ 2C3 p3q

2
q

1{3

´
p´9BC2 p´ 18C3 p´ 2C3 p3 `

b

4p3Cp´B` Cq ´ C2 p2q
3
` p´9BC2 p´ 18C3 p´ 2C3 p3q

2
q

2{3

922{3C
q

Therefore, if we chose B = 102, C = 3 and p = 0.83, we obtain the following equilibrium points:

x “ ´6.18617, y “ ´0.157534, z “ 0.0254656

The characteristic equation associate to the above equilibrium points is given as:

246.868` 22.8431x´ 11.05412´ x3 “ 0 (8)

The following eigenvalues are therefore obtained:

x1 “ ´11.1102, x2 “ ´4.68584, x3 “ 4.74193

The above shows that the equilibrium point is unstable.

2.2. Existence of Exact Solution

We aim in this section to show that, the system (1) with initial solution has a unique set of solution.
To achieve we first transform the system into integral equations by applying the antiderivative on both
sides of the system to obtain:
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x ptq ´ x p0q “

t
ż

0

tBy plq ´ C px plq ` pqu dl

y ptq ´ y p0q “

t
ż

0

tx plq z plq ´ y plqu dl

z ptq ´ z p0q “

t
ż

0

t´x plq y plq ´ z plq ` 1u dl

(9)

We suggest the following iterative formula from Equation (9):

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

xn ptq “

t
ż

0

tByn´1 plq ´ C pxn´1 plq ` pqu dl

yn ptq “

t
ż

0

txn´1 plq zn´1 plq ´ yn´1 plqu dl

zn ptq “

t
ż

0

t´xn´1 plq yn´1 plq ´ zn´1 plq ` 1u dl

(10)

With initial components:
$

’

&

’

%

x0 ptq “ x p0q
y0 ptq “ y p0q
z0 ptq “ z p0q

(11)

We consider the following formula:
$

’

&

’

%

Xn “ xn ´ xn´1

Yn “ yn ´ yn´1

Zn “ zn ´ zn´1

(12)

Thus it is easy to see that:
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

xn ptq “
n
ř

j“1
Xj

yn ptq “
n
ř

j“1
Yj

zn ptq “
n
ř

j“1
Zj

(13)

Let F ptq “ rx ptq , y ptq , z ptqsT , X p0q “ rx ptq , y ptq , z ptqsT and K pt, F ptqq “ max
0ďtďT

„

dx
dt

,
dy
dt

,
dz
dt



.

With above definition, we can system (10) into:

Fn ptq “

t
ż

0

K pl, Fn´1 plqq dl (14)

Also:
Dn ptq “ Fn ptq ´ Fn´1 ptq (15)

We now evaluate:
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||Dn ptq || “ ||Fn ptq ´ Fn´1 ptq || “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t
ż

0

tK pl, Fn´1 plqq ´ K pl, Fn´2 plqqu dl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

t
ż

0

|| tK pl, Fn´1 plqq ´ K pl, Fn´2 plqqu ||dl

(16)

We shall prove that, the defined kernel has Lipschitz condition.

Theorem 1. The defined kernel K possesses the Lipschitz condition under the condition that, the operator F is
bounded or if:

1` ||F1|| ` ||F2|| ă M

then:
|| tK pl, F1 plqq ´ K pl, F2 plqqu|| ă M||F1 plq ´ F2 plq ||

where F1 ptq “ rx1 ptq , y1 ptq , z1 ptqs
T and F2 ptq “ rx2 ptq , y2 ptq , z2 ptqs

T

Proof. Within the scope of our study, we have that:

K pl, F1 plqq “ F2
1 ` F1

Thus:

|| tK pl, F1 plqq ´ K pl, F2 plqqu || “ ||F2
1 ` F1 ´ F2

2 ´ F2|| ď t1` ||F1|| ` ||F2||u ||F1 ´ F2||

Using the hypothesis, we get:

|| tK pl, F1 plqq ´ K pl, F2 plqqu || ă M||F1 ´ F2|| (17)

And the requested result is obtained. 2

Therefore within the boundaries of Theorem 1, we have that:

||Dn ptq || ď M

t
ż

0

||Dn´1 plq ||dl (18)

Theorem 2. Under the condition set in Theorem 1, the Vallis model for El Niño model has a unique set of solutions.

Proof. Using Equation (18), we have the following inequality, which is obtained by recursion:

||Dn ptq || ď pMtqn maxt X p0qTu

Then it follows from the above that:

F ptq “
8
ÿ

n“0

Dn ptq (19)

exists and is continuous. We now show that the above function is the solution of Equation (9), for this
we let:

F ptq “ Fn ptq ´ Rn ptq (20)

where Rn ptq is considered as a remainder term, which tends to zero when n tends to infinity. With this
in mind:
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F ptq ´ G p0q ´

t
ż

0

K pτ, F pτqq dτ “ Rn ptq `

t
ż

0

tK pτ, F pτq ´ Rn ptqq ´ K tτ, F pτquu dτ (21)

where G p0q “ rx p0q , y p0q , z p0qsT .
Applying the norm on both sides and considering the Lipschitz condition of the kernel, we obtain:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

F ptq ´ G p0q ´

t
ż

0

K pτ, F pτqq dτ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď ||Rn ptq || ` tM||Rn ptq ||

Apply the limit of both sides when n tends to infinity, the right hand side produces zero then:

F ptq “ G p0q `

t
ż

0

K pτ, F pτqq dτ.

Thus the above is indeed the solution of system (9). The next step is to show the uniqueness of
the solution. Let assume that we can find a different function F1 ptq satisfying system (9). Then:

||F ptq ´ F1 ptq || ď ||Rn ptq ´ Rpn´1q1 ptq || ` tM||Rn ptq ´ Rpn´1q1 ptq ||

When n tends to infinity, the right hand side tends to zero then:

F ptq “ F1 ptq

This completes the proof. 2

2.3. Numerical Simulations

In this section, we derive the solution of the system using some iterative technique since the
system is nonlinear:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

x ptq ´ x p0q “

t
ż

0

tBy plq ´ C px plq ` pqu dl

y ptq ´ y p0q “

t
ż

0

tx plq z plq ´ y plqu dl

z ptq ´ z p0q “

t
ż

0

t´x plq y plq ´ z plq ` 1u dl

We suggest the following iterative formula from equation:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

xn ptq “

t
ż

0

tByn´1 plq ´ C pxn´1 plq ` pqu dl

yn ptq “

t
ż

0

txn´1 plq zn´1 plq ´ yn´1 plqu dl

zn ptq “

t
ż

0

t´xn´1 plq yn´1 plq ´ zn´1 plq ` 1u dl
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with initial components:
$

’

&

’

%

x0 ptq “ x p0q
y0 ptq “ y p0q
z0 ptq “ z p0q

the approximate solution can be given as:

$

’

’

&

’

’

%

x ptq “ lim
nÑ8

xn

y ptq “ lim
nÑ8

yn

z ptq “ lim
nÑ8

zn

(22)

To obtain the solution, we use the following Algorithm 1:

Algorithm 1.

Input

$

’

&

’

%

x0 ptq “ x p0q
y0 ptq “ y p0q
z0 ptq “ z p0q

as preliminary input

‚ i-number terms in the approximation

‚ Result

$

’

&

’

%

xap ptq
yap ptq
zap ptq

the approximate solution

Step 1: Put

$

’

&

’

%

x0 ptq “ x p0q
y0 ptq “ y p0q
z0 ptq “ z p0q

and

$

’

&

’

%

xap ptq “ xap ptq
yap ptq “ yap ptq
zap ptq “ zap ptq

Step 2: for i = 1 to n ´ 1 do step 3, step 4 and step 5

xn ptq “

t
ż

0

tByn´1 plq ´ C pxn´1 plq ` pqu dl

yn ptq “

t
ż

0

txn´1 plq zn´1 plq ´ yn´1 plqu dl

zn ptq “

t
ż

0

t´xn´1 plq yn´1 plq ´ zn´1 plq ` 1u dl

Step 3: compute
Tn`1 ptq “ Tn ptq ` xap ptq
Ln`1 ptq “ Ln ptq ` yap ptq
En`1 ptq “ En ptq ` zap ptq

Step 4:
xap ptq “ Tn`1 ptq ` xap ptq
yap ptq “ Ln`1 ptq ` yap ptq
zap ptq “ En`1 ptq ` zap ptq

Step 5: stop.
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The numerical simulations are depicted in Figures 1–6. In Figures 1 and 2 we have the solution of
the system 1. In Figures 3 and 4 we have the 3 dimensional parametric plot of the system solution. In
Figures 5 and 6 we have the solution for y and z.
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3. Analysis of Vallis Model with Caputo Derivative

In this section, we consider the model in system with the Caputo fractional derivative. Then
system (1) becomes:

$

’

’

&

’

’

%

C
0 Dα

t x ptq “ By ptq ´ C px ptq ` pq
C
0 Dα

t y ptq “ x ptq z ptq ´ y ptq
C
0 Dα

t z ptq “ ´x ptq y ptq ´ z ptq ` 1
(23)

We derive the approximate solution of the above equation using the Laplace transform operator.
Thus applying it on both sides of (23), we obtain:

$

’

’

’

’

’

&

’

’

’

’

’

%

x psq “
x p0q

s
`

1
sα
L tBy ptq ´ C px ptq ` pqu psq

y psq “
y p0q

s
`

1
sα
L tx ptq z ptq ´ y ptqu psq

z psq “
z p0q

s
`

1
sα
L t´x ptq y ptq ´ z ptq ` 1u psq

(24)

By application of inverse Laplace on above system, we get:
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

x ptq “ x p0q `L´1
"

1
sα
L tBy ptq ´ C px ptq ` pqu psq

*

ptq

y ptq “ y p0q `L´1
"

1
sα
L tx ptq z ptq ´ y ptqu psq

*

ptq

z ptq “ z p0q `L´1
"

1
sα
L t´x ptq y ptq ´ z ptq ` 1u psq

*

ptq

(25)

The following iterative formula is then proposed:
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

xn ptq “ L´1
"

1
sα
L tByn´1 ptq ´ C pxn´1 ptq ` pqu psq

*

ptq

yn ptq “ L´1
"

1
sα
L txn´1 ptq zn´1 ptq ´ yn´1 ptqu psq

*

ptq

zn ptq “ L´1
"

1
sα
L t´xn´1 ptq yn´1 ptq ´ zn´1 ptq ` 1u psq

*

ptq

$

’

&

’

%

x0 ptq “ x p0q
y0 ptq “ y p0q
z0 ptq “ z p0q

(26)

The approximate solution is assumed to be obtain as a limit when n tends to infinity:
$

’

’

&

’

’

%

x ptq “ lim
nÑ8

xn

y ptq “ lim
nÑ8

yn

z ptq “ lim
nÑ8

zn

Stability Analysis of the Iteration Method

In this section, we demonstrate that the used method is stable when solving system (1). In this
section, we assume the following: It is possible to find three positive constant A, W and J such that
for all 0 ď t ď T ď 8, ||x ptq || ă A, ||y ptq || ă W and ||z ptq || ă J. We next consider a subset of
L2 ppa, bq p0, Tqq defined by:

R “
"

v : pa, bq p0, Tq Ñ R,
1

Γ pαq

ż

pt´ lqα´1 v plq u plq dl ă 8
*
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We now consider the following operator V defined as:

V px, y, zq “

$

’

&

’

%

By ptq ´ C px ptq ` pq
x ptq z ptq ´ y ptq
´x ptq y ptq ´ z ptq ` 1

(27)

Then:

xV px, y, xq´ V pX, Y, Zq , px´ X, y´Y, z´ Zqy

“

$

’

&

’

%

xB py ptq ´Y ptqq ´ C px ptq ´ X ptqq , px ptq ´ X ptqqy
xpx ptq ´ X ptqq pz ptq ´ Z ptqq ´ py ptq ´Y ptqq , py ptq ´Y ptqqy
x– px ptq ´ X ptqq py ptq ´Y ptqq ´ pz ptq ´ Z ptqq , pz ptq ´ Z ptqqy

(28)

where x ptq ‰ X ptq , y ptq ‰ Y ptq and z ptq ‰ Z ptq for all 0 ď t ď T ă 8.
Thus applying the absolute value on both sides, the right hand side produces:

$

’

&

’

%

B||y ptq ´Y ptq ||||x ptq ´ X ptq || ` C||x ptq ´ X ptq ||2

||x ptq ´ X ptq ||||z ptq ´ Z ptq ||||y ptq ´Y ptq || ` ||y ptq ´Y ptq ||2

||x ptq ´ X ptq ||||y ptq ´Y ptq ||||z ptq ´ Z ptq || ` ||z ptq ´ Z ptq ||2
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

"

B
||y ptq ´Y ptq ||
||x ptq ´ X ptq ||

` C
*

||x ptq ´ X ptq ||2

"

||x ptq ´ X ptq ||||z ptq ´ Z ptq ||
||y ptq ´Y ptq ||

` 1
*

||y ptq ´Y ptq ||2

"

||x ptq ´ X ptq ||||y ptq ´Y ptq ||
||z ptq ´ Z ptq ||

`

*

||z ptq ´ Z ptq ||2

(29)

Then:

| xV px, y, xq´ V pX, Y, Zq , px´ X, y´Y, z´ Zqy |

ď

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

"

B
||y ptq ´Y ptq ||
||x ptq ´ X ptq ||

` C
*

||x ptq ´ X ptq ||2

"

||x ptq ´ X ptq ||||z ptq ´ Z ptq ||
||y ptq ´Y ptq ||

` 1
*

||y ptq ´Y ptq ||2

"

||x ptq ´ X ptq ||||y ptq ´Y ptq ||
||z ptq ´ Z ptq ||

*

||z ptq ´ Z ptq ||2

|xV px, y, xq ´V pX, Y, Zq , px´ X, y´Y, z´ Zqy| ă

$

’

&

’

%

M||x ptq ´ X ptq ||2

N||y ptq ´Y ptq ||2

L||z ptq ´ Z ptq ||2

(30)

With:

B
||y ptq ´Y ptq ||
||x ptq ´ X ptq ||

` C “ M,
||x ptq ´ X ptq ||||z ptq ´ Z ptq ||

||y ptq ´Y ptq ||
` 1 “ N, L “

||x ptq ´ X ptq ||||y ptq ´Y ptq ||
||z ptq ´ Z ptq ||

Also if we consider a given non-null vector (X, Y, Z), then using the same routine as above
we obtain:

|xV px, y, xq ´V pX, Y, Zq , pX, Y, Zqy| ă

$

’

&

’

%

M||x ptq ´ X ptq ||||X ptq ||
N||y ptq ´Y ptq ||||Y ptq ||
L||z ptq ´ Z ptq ||||Z ptq ||

(31)

From the results obtained in Equations (30) and (31), we conclude that the used iterative method is
stable. Using the iterative formula in (26) we present the numerical solution in Figures 7–9 for different
values of α. In these simulations, we used p = 0.3, with the nitial condition z(0) = y(0) = x(0) = 1.
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From the above figures and with comparison with the model with local derivative, one can see
that the Caputo derivative filters all high frequencies, as the order of α tends to zero. The Caputo
derivative therefore plays a role of low band filter in this model.

4. Analysis of the Vallis Model with Caputo–Fabrizio Derivative

Some moderately current outcomes as of deterministic chaos field have extensive consequence for
experts of information theory. Theory of information may be applicable to representational encodings
of the phase-space descriptions of physical non-linear dynamical systems so that the characterization
of process in terms of its Kolmogorov–Sinai entropy.

Consequently this concept of deterministic information theory happens to deal with way for
assessing the limits of compression for single finite strings, while deterministic chaos theory results
further permit one to choose particularly calibrated information sources to be employed to assess the
performance of specific compression algorithm.

Since any novel applied mathematical concept must be entirely underpinned by some potential
applications, we are here fully here with the concept of fractional derivative with no singular
kernel Some result obtained via informations theory are used to define a new family of generalized
informational entropies which are indexed by a parameter clearly related to fractals, via fractional
calculus, and which is quite relevant in the presence of creation of uncertainty, via defects of the
observation process. The relation with Shannon’s entropy, Renyi’s entropy and Tsallis’ entropy is
clarified, and it is shown that Tsallis’ generalized logarithm has a direct significance in terms of
fractional calculus.

In this section we consider the model in system with Caputo–Fabrizio derivative with fractional
order. Thus the model in system one becomes:

$

’

’

&

’

’

%

CF
0 Dα

t x ptq “ By ptq ´ C px ptq ` pq
CF
0 Dα

t y ptq “ x ptq z ptq ´ y ptq
CF
0 Dα

t z ptq “ ´x ptq y ptq ´ z ptq ` 1
(32)

where CF
0 Dα

t is the Caputo–Fabrizio derivative with fractional order defined in Equation (1). To derive
a special solution for the above system, we employ the Sumudu transform operator. The relation
between the Sumudu transform denoted by S and the Caputo–Fabrizio derivative with fractional order
was developed in [20] as:

S r f ptqs ppq “
F ppq ´ p f p0q

1´ α´ αp
(33)

Therefore applying the Sumudu transform on both sides of system (32) yields:

X psq ´ p f p0q
1´ α´ αs

“ S tBy ptq ´ C px ptq ` pqu psq

Y psq ´ sz p0q
1´ α´ αs

“ S tx ptq z ptq ´ y ptqu psq

Z psq ´ sz p0q
1´ α´ αs

“ S t´x ptq y ptq ´ z ptq ` 1u psq

(34)

Applying the inverse Sumudu transform on both sides, we obtain:

x ptq ´ x p0q “ S´1 t1´ α´ αsu S tBy ptq ´ C px ptq ` pqu ppq
y ptq ´ y p0q “ S´1 t1´ α´ αsu S tx ptq z ptq ´ y ptqu ppq

z ptq ´ z p0q “ S´1 t1´ α´ αsu S t´x ptq y ptq ´ z ptq ` 1u ppq
(35)

From the above, the following recursive method is proposed:
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xn ptq “ xn´1 ptq ` S´1 tt1´ α´ αsu S tByn´1 ptq ´ C pxn´1 ptq ` pqu psqu ptq
yn ptqq “ yn´1 ptq ` S´1 tt1´ α´ αsu S txn´1 ptq zn´1 ptq ´ yn´1 ptqu psqu ptq

zn ptq “ zn´1 ptq ` S´1 tt1´ α´ αsu S t´xn´1 ptq yn´1 ptq ´ zn´1 ptq ` 1u psqu ptq
x0 ptq “ x p0q
y0 ptq “ y p0q
z0 ptq “ z p0q

(36)

And as before the approximate solution can be obtained as:
$

’

’

&

’

’

%

x ptq “ lim
nÑ8

xn

y ptq “ lim
nÑ8

yn

z ptq “ lim
nÑ8

zn

The stability analysis and existence of exact solutions for this model can be achieved similarly
as before. However using the iteration formula suggested in (36) with initial conditions and p = 0.3,
we present the numerical solution of system (32) for different values of α in Figures 10–12. The initial
conditions are the same as before.
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Unlike the model with Caputo and local derivative, the model with Caputo–Fabrizio portrays
more chaotic behavior as α is closer to 1, however when α is closer to zero we obtain approximately
the chaotic behavior observed from the model with local derivative. Figures 10 and 11 show a new
chaotic behavior, which are not shown by the local derivative.

5. Conclusions

The Vallis model for El Niño was considered with three-different definitions of derivative in
this work. We used the local derivative in one model, the Caputo derivative with power function
kernel with singularity and the Caputo–Fabrizio derivative with exponential kernel, which has no
singularity [21–24]. We presented the existence and uniqueness of the model with local derivative and
then we derived approximate solutions via iterative method. We presented some numerical simulation
and observed some chaotic behavior as p changes from zero to 0.3. We derived the solution of the
model with Caputo derivative using the combination of Laplace transform and iterative formula. We
presented the stability analysis of the used method together with some numerical simulations. The
model with Caputo–Fabrizio was solved with Sumudu transform operator. We observed that the
Caputo derivative played a role of high band filter, when the Caputo–Fabrizio shows more interesting
chaotic behavior as α tends to 1.

Acknowledgments: The authors would like to extend their sincere appreciation to the Deanship of Scientific
Research at King Saud University for funding this group No. RG-1437-017.

Author Contributions: Both authors contributed equally to this work. Both authors have read and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tenreiro Machado, J.A. Entropy analysis of integer and fractional dynamical systems. Nonlinear Dyn. 2010,
62, 371–378. [CrossRef]

2. Tenreiro Machado, J.A. Entropy analysis of fractional derivatives and their approximation. J. Appl.
Nonlinear Dyn. 2012, 1, 109–112. [CrossRef]

3. Ibrahim, R.W. The fractional differential polynomial neural network for approximation of functions. Entropy
2013, 15, 4188–4198. [CrossRef]

4. Mathai, A.M.; Haubold, H.J. On a generalized entropy measure leading to the pathway model with a
preliminary application to solar neutrino data. Entropy 2013, 15, 4011–4025. [CrossRef]

http://dx.doi.org/10.1007/s11071-010-9724-4
http://dx.doi.org/10.5890/JAND.2012.03.001
http://dx.doi.org/10.3390/e15104188
http://dx.doi.org/10.3390/e15104011


Entropy 2016, 18, 100 17 of 17

5. Jalab, H.A.; Ibrahim, R.W. Denoising algorithm based on generalized fractional integral operator with two
parameters. Discret. Dyn. Nat. Soc. 2012, 2012, 529849. [CrossRef]

6. Jalab, H.A.; Ibrahim, R.W. Texture enhancement based on the Savitzky-Golay fractional differential operator.
Math. Probl. Eng. 2013, 2013, 149289. [CrossRef]

7. Vallis, G.K. El Niño: A chaotic dynamical system? Science 1986, 232, 243–255. [CrossRef] [PubMed]
8. Letellier, C.; Dutertre, P.; Gouesbet, G. Characterization of the Lorenz system, taking into account the

equivariance of the vector field. Phys. Rev. E 1994, 49. [CrossRef]
9. Mischaikow, K.; Mrozek, M. Chaos in the Lorenz equations: A computer assisted proof. Part II: Details.

Math. Comput. Am. Math. Soc. 1998, 67, 1023–1046. [CrossRef]
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