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Abstract: Virtualization technologies make it possible for cloud providers to consolidate multiple
IaaS provisions into a single server in the form of virtual machines (VMs). Additionally, in order
to fulfill the divergent service requirements from multiple users, a cloud provider needs to offer
several types of VM instances, which are associated with varying configurations and performance, as
well as different prices. In such a heterogeneous virtual machine placement process, one significant
problem faced by a cloud provider is how to optimally accept and place multiple VM service
requests into its cloud data centers to achieve revenue maximization. To address this issue, in
this paper, we first formulate such a revenue maximization problem during VM admission control
as a multiple-dimensional knapsack problem, which is known to be NP-hard to solve. Then, we
propose to use a cross-entropy-based optimization approach to address this revenue maximization
problem, by obtaining a near-optimal eligible set for the provider to accept into its data centers,
from the waiting VM service requests in the system. Finally, through extensive experiments
and measurements in a simulated environment with the settings of VM instance classes derived
from real-world cloud systems, we show that our proposed cross-entropy-based admission control
optimization algorithm is efficient and effective in maximizing cloud providers’ revenue in a public
cloud computing environment.
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1. Introduction

Cloud computing delivers a new promising paradigm through which users can gain on-demand
access to cloud services on a pay-per-use basis anytime and anyplace [1]. Cloud services have brought
customers a dramatic shift in the way computing resources are used and allow for reduced operational
and maintenance costs, shorter start-up time, increased reliability, and so on. Thus, more and more
enterprises and end users are turning to outsource their jobs and applications into cloud data centers.
Infrastructure as a Service (IaaS) is such a form of cloud computing service, by which cloud providers
deliver computing resources over the Internet to consumers. On the other hand, cloud providers,
who maintain pools of massive computing resources (e.g., computation, network, storage and software
applications), can gain profits from users’ payment through economies of scale [2].

In order to achieve efficient utilization of data center resources and improve cost-effectiveness,
cloud providers usually need to consolidate multiple IaaS provisions into a single server. Virtualization
technologies, such as VMWare [3] and OpenStack [4], make it possible to run multiple virtual machines
(VMs) on a single physical machine (PM). By virtualization, every virtual machine appears to be a single
and dedicated computer to a consumer, while in fact, it is not implemented as a single physical machine,
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but uses part of the capacity of one or more physical servers. While fulfilling an IaaS request from a
consumer, the cloud provider needs to create a VM by allocating resources, such as CPUs, memory, disk
space, and so on, from physical servers, which is usually called virtual machine placement.

Since in an open and dynamic public cloud computing environment, cloud consumers usually
have divergent requirements for leasing cloud computing resources, a cloud provider needs to offer
several types of VM configurations, which are usually referred to as instance types. Different VM
instance types have varying performance and, thus, should be charging different prices. Taking
Amazon EC2 [5] as an example, it charges 0.026$ per hour of usage of a small VM instance type with
one virtual CPU core and 1 GB of memory, while charging 0.18$ per hour of usage of a medium VM
instance type with two virtual CPU cores and 4 GB of memory, etc. In such public cloud circumstances,
serving the VMs of different instance types will bring varying revenues to a cloud provider. Thus,
when there are a bunch of cloud consumers who request heterogeneous virtual machines, how to
optimally place them into cloud data centers to maximize a cloud provider’s revenue is a significant
problem to solve. On the other hand, since the available physical resources operated by a cloud
provider are usually fixed and, thus, limited, admission control can be employed as a general approach
to prevent physical servers in a cloud data center from being overloaded.

In this paper, we propose a cross-entropy-based admission control approach to address the above
heterogeneous virtual machines placement optimization problem. The proposed admission control
mechanism can suggest to a provider which subset of VM service requests to accept and which to reject,
when facing a set of VM requests with varying instance types. Briefly speaking, we formulate the VM
admission control optimization problem as a multiple-dimensional knapsack problem, which is known
to be NP-hard to solve. Thus, in this paper, we propose to use a cross-entropy-based optimization
approach to obtain a feasible near-optimal solution to suggest to the cloud provider how many and
what types of VMs to place into its data centers to achieve revenue maximization. Finally, we evaluate
our cross-entropy-based VM admission control optimization mechanism in a simulated environment
to illustrate the efficiency and effectiveness of the proposed approach.

The rest of this paper is organized as follows. In Section 2, we discuss the related work.
The proposed IaaS-type cloud service provision platform and VM placement model with admission
control are described in Section 3. Section 4 outlines the problem statement and the mathematical
formulations for the heterogeneous VM admission control problem, while the cross-entropy-based
optimization algorithm for solving the given revenue maximization problem is described in Section 5.
The experimental evaluation is given in Section 6. Section 7 contains conclusions and future directions
for this work, followed by acknowledgments and a list of references.

2. Related Work

The problem of placement, migration and scheduling of VMs across a cluster of PMs has been
investigated in the past few years, and a number of related approaches have been proposed [6–8].
Bazarbayev et al. [9] propose a content-based scheduling algorithm for VM placement in cloud data
centers, by utilizing similarity between VM disk images. Their approach can lower the network traffic
during the transfers of VMs between racks in data centers and results in significant savings in data
center network utilization and congestion. Luo et al. [10] analyze the network influence on distributed
computing tasks and web applications and propose a self-adaptive network-aware virtual machine
re-scheduling algorithm. Their proposed algorithm focuses on lowering communication cost among
virtual machines through conditional and automatic virtual machine live migrations. Wang et al. [11]
investigate the problem of cloud resource allocation and pricing and propose a suite of truthful
auction-style pricing mechanisms. Addition, for VM allocation between multiple users, they propose a
greedy resource allocation scheme to achieve reasonable economic and computational efficiency.

While there are a number of commercial IaaS cloud offerings on the market, they have not
published their VM scheduling and allocation policies. Additionally, current open source cloud
platforms and toolkits, such as OpenStack [4] and CloudSim [12], are generally equipped with
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local-optimal, but simple VM allocation policies. For example, the CloudSim scheduler provides
a first-come-first-sever (FCFS) policy for provisioning resources of physical machines to serve a VM
creation request and selects the physical machine with the most available physical CPU cores as the best
candidate for hosting the requested VM. While these VM allocation policies are efficient, they have not
taken the economy factor into consideration, and thus, the revenue problem of cloud providers
is not addressed by them. Our proposed revenue maximization heterogeneous VM placement
approach can be implemented atop the schedulers on these open source cloud platforms and works as
complementarities to those schedulers to allow the cloud providers to obtain higher profits from the
physical resources in their cloud data centers.

Virtual machine migration has also received significant attention recently [13,14]. The work in [15]
considers the inherent dependencies between VMs comprising a multi-tier application and introduces
an efficient scheme for incorporating inter-VM dependencies and the underlying network topology
into VM migration decisions. Bose et al. [16] propose to combine VM replication with scheduling to
minimize VM migration latencies. They propose an algorithm that factors in de-duplication ratios
amongst pairs of images while deciding on the replica placement of VM images, and they show that
their approach can judiciously place the replicas of VM images at multiple cloud sites to minimize the
storage requirements.

Applying the cross-entropy method for solving resource allocation problems in cloud computing
environments is not completely new. Gaetano et al. [17] model cloud resource allocation as a stochastic
optimization problem by leveraging the cross-entropy method and propose an approach based on
cognitive heuristics to deal with risk minimizations and cost optimizations. They aim to address the
problem of resource management in multi-purpose clouds, by reducing the cost associated with the
execution of the users’ applications. Compared to this work, the proposed approach in this paper
aims at solving the heterogeneous virtual machine admission control problem to maximize the cloud
provider’s revenue. Additionally, the heterogeneity of prices and configurations in VM instances
is a significant characteristic in current public cloud platforms, such as Amazon EC2 services [5],
Aliyun [18], and so on.

As discussed above, research in the area of VM placement and scheduling in data center server
farms focuses on different aspects of considerations, such as network transfer, communication cost
and start-up latency during VM migrations. Our work is complementary to current VM placement
approaches, and compared to these work, the primary contribution of our work lies in that we
formulate the revenue maximization during VM admission control as a multiple-dimensional knapsack
problem and propose to use a cross-entropy-based optimization approach to obtain a near-optimal
eligible set. Additionally, the proposed approach in this work shows high efficiency and effectiveness
for applying to real-world public cloud computing environments.

3. Framework

Figure 1 outlines the cloud IaaS platform architecture used in this paper. We here consider a cloud
data center as a distributed cluster system built from a number of physical servers. These physical
computing resources are pooled to serve multiple users’ service requests. They can support the
concurrent running of multiple and heterogeneous VM instances. An IaaS user requests a virtual
infrastructure using a VM description template given by a VM instance type supported by the IaaS
platform. A cloud provider can offer several VM instance types, each having an associated price for
per-hour usage. The configuration of a VM instance type is defined in measurable terms, such as the
number and speed of virtual CPU cores, the memory capacity, the size of storage space, the permissible
bandwidths, and so on.
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Figure 1. The architecture of the cloud IaaS platform.

The admission controller in a cloud data center employs an optimization engine equipped with
our algorithm proposed in this paper to determine an eligible set from the waiting VM service requests
in the system and maps them to a certain number of physical machines in a revenue-maximization
manner. An IaaS cloud provider uses the admission control mechanism to decide whether to accept
a client’s VM service request or not. An admission controller can operate in rounds or once there
are new VM service requests arriving at the cloud system. Additionally, in this paper, the admission
controller works in rounds, i.e., periodically with a specified time slot. In each round, the admission
controller builds up an eligible set from all of the arriving VM service requests, which are concurrently
submitted by multiple users, considering current VM instance types and pricing information, the
current availability of physical resources in the cloud system, and so on. Such information can be
collected by the virtual machine manager periodically from the cloud system.

The virtual machine manager schedules and assigns the VM service requests to physical servers
in the cluster system, which is the so-called VM placement. It manages the process of VM instance
creations with resources, such as CPU cores, memory and disk space allocated from physical servers, to
serve the IaaS requests that have been accepted by the admission controller. In this paper, we assume
each VM service request can be multiplexed and served by the physical infrastructure from the pools
of multiple resources possessed by a collection of servers. If a client’s VM service request is accepted
by the provider, the client will make payment for per-hour usage of the allocated VM, according to the
pricing information recorded in its associated VM instance specifications. The cloud provider aims to
optimize the admission and placement of VMs into its cloud data centers to fulfill the submitted IaaS
service requests amongst multiple users while maximizing its own revenue, which is obtained from
the payments made by all users.

4. Formulation of the Problem

We introduce an optimal virtual machine admission control algorithm based on the VM placement
problem described in the previous section. The goal of our admission control algorithm is to optimally



Entropy 2016, 18, 95 5 of 13

determine an eligible set of V IaaS requests with varying and heterogeneous VM instance types
requested by a bunch of users, denoted as V1, V2, ..., VV , across the available physical servers, within
the resource constraints of physical machines, while maximizing the revenue gained from payments
made by users for provisioning these VMs. The eligible set is selected from all of the waiting IaaS
service requests submitted by multiple users. Without loss of generality and for simplicity, we assume
that each user only submits one VM service request at a time slot, and we use n to denote the sum of
users that are currently waiting to be served in the cloud system. We consider a fixed number of VM
instance types delivered by a cloud provider, denoted as I. A VM instance type is characterized by m
dimensions of virtual hardware resource configurations, denoted as rj,1, ..., rj,m. In this paper, for clarity
and simplicity, we assume each virtual hardware dimension is additive. That is, the overall amount of
the resource in a dimension required by all of the accepted VM service requests is the sum of resources
each VM requires in that dimension. Additionally, each VM instance type itk (k ∈ I) has an associated
price for per-hour usage of a VM instance of this type, denoted as pk. When a VM service request sj
is submitted by a user to the cloud provider, its required VM instance type is fixed, and we use itej
to denote the index of its expected instance type. Thus, the required VM instance type demanded
by service sj can be represented as ititej , and the amount of resources needed in dimension i to be
allocated for hosting that VM can be represented as ritej ,i. Suppose ci represents the overall amount of
available resources in dimension i possessed by the physical servers in cloud data centers. When the
total infrastructure capacity requirement exceeds the capacity of the available physical machines, the
provider needs to decide which VM service requests to accept and which to deny.

As described above, our objective is to maximize the provider’s revenue within its capacity
constraints in determining an eligible set from the waiting VM service requests in the cloud system
through admission control, and the maximization problem (P1) can be expressed as:

maximize
n

∑
j=1

xj pitej (1)

subject to:

n

∑
j=1

ritej,i xj ≤ ci, i = 1, ..., m (2)

xj ∈ {0, 1}, j = 1, ..., n (3)

where xj is a pseudo-Boolean integer decision variable to determine whether the VM service request
from the j-th user is accepted or not. That is to say, xj is one if the VM service request j is accepted and
zero otherwise. The term pitej in the objective function Equation (1) represents the price for the VM
instance class required by user j. Equation (2) corresponds to the limits that the sum of the physical
resources required by all of the accepted VM requests on every dimension cannot exceed the resource
constraints on that dimension.

The above problem can be mapped to a multi-dimensional knapsack problem (MKP), which
is one kind of NP-hard combinatorial optimization problem. For a small instance size of this kind
of NP-hard combinatorial optimization problems, exhaustive search may be employed to find an
optimal solution. However, for the above VM admission control problem, with more and more users
turning to use IaaS cloud services, the number of VM service requests to be considered for admission
is usually large, and thus, it would incur extra huge and even unacceptable computational cost for
finding an optimal solution to the above revenue maximization problem. In this paper we propose a
cross-entropy-based optimization algorithm to obtain a near-optimal solution, which we will discuss
in detail in the next section.
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5. Cross-Entropy-Based VM Admission Control Optimization Algorithm

In this section, the proposed cross-entropy-based VM admission control algorithm is illustrated.
We first review how the basic cross-entropy (CE) method works and then present how we improve the
original CE approach to solve the admission control optimization problem.

5.1. Review of Cross-Entropy Method

The CE method, which was pioneered by Reuven Rubinstein in 1997, is originated from the
field of rare event simulation to estimate very small probabilities [19,20]. It is based on the concepts
of cross-entropy and importance sampling. The basic CE method can be considered as an iterative
procedure in which each iteration consists of two phases: (1) generate a random sample of data
according to a pre-defined random mechanism; (2) and then based on the current data, update the
parameters of the random mechanism to produce a new and better sample for the next iteration.
During each iteration, the second phase involves minimizing the cross-entropy (or Kullback–Leibler
(K-L)) distance.

Now, the CE methods are beginning to be applied for solving static and noisy combinatorial
optimization problems. The basic idea for applying the CE method to the combinational optimization
domain is considering the selection of an optimal solution from all of the feasible regions as a rare
event and associating an estimation problem with the optimization problem. In this paper, we will not
discuss all features of the CE method. Instead, we will only illustrate how the CE method is adapted
to solve the VM admission control problem in the next subsection.

5.2. Cross-Entropy-Based Optimization Algorithm for MKP

In the previous section, we have shown that the optimization problem P1 is NP-hard. We
now develop a cross-entropy-based algorithm in order to find a near-optimal solution to the revenue
maximization problem, following the basic idea of cross-entropy proposed in [19,20] as discussed above.
The details of the cross-entropy-based VM admission control optimization algorithm (CEVMAC) are
presented below.

The variable xj (j = 1, ..., n) in Equation (1) is a pseudo-Boolean integer decision variable with
the values of zero or one. Thus, we can associate the above decision variables with the binary
vectors X = (X1, ..., Xn), which are independent Bernoulli random variables with success probabilities
p1, ..., pn. Here, pj represents the probability that the j-th VM service request is admitted into the cloud
data centers. Thus, we have X ∼ Ber(p), where p = (p1, ..., pn), and it has a family of probability
density function (pdfs) as:

f (X; p) =
n

∏
j=1

p
Xj
j (1− pj)

1−Xj (4)

Now, in order to leverage the CE method to solve this optimization problem, we first need to cast
it into the problem of the estimation of the probability of rare events. That is, consider the associated
stochastic problem (ASP), by creating a sequence of parameter vectors p̂1, ..., p̂n and then estimating
the probability Pp(S(X)) > γ for a given level γ and the family of pdfs { f (·; p)}, where Pp is the
probability under which the random sample X has a probability density of { f (·; p)}. Additionally,
here, we use S(X) to denote the objective function in the revenue maximization problem considered
in this work. Then, for a given level γ, the goal is to find a reference parameter vector p so that the
Kullback–Leibler distance between the two densities of IS(X))≥γ and f (·; p), which is also termed the
cross-entropy of these two densities, denoted as DKL(IS(X))≥γ ‖ f (·; p)), is minimized. Solving this
cross-entropy minimization problem in the above revenue maximization problem with independent
Bernoulli random variables is equivalent to solving the maximization problem:

p̂∗ = argmax
v

1
N

N

∑
i=1

IS(Xi))≥γ ln f (Xi; p) (5)
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where Xi are generated from the probability density f (·; p). By combining Equation (4) with
Equation (5), we can get:

p̂∗j =
∑N

i=1 IS(Xi)≥γXij

∑N
i=1 IS(Xi)≥γ

(6)

Based on the above analysis, the main steps of the CE-based optimization algorithm for the
CEPRMcan be summarized as a procedure composed of the following four steps:

1. Choose an initial parameter vector p̂0, and set the iterating counter t = 1;
2. Draw a random sample X = {X1, ..., XN} from the probability density f (·; p̂t−1). Calculate

the value of S(Xi) for all i, and then, sort them in descending order, having S(1) ≤ ... ≤ S(N).
Calculate the (1− ρ)-quantile of the current sample as:

γ̂t = S(d(1−ρ)Ne) (7)

3. Solve for p̂t = ( p̂(t,1), ..., p̂(t,n)) via Equations (4) and (5), which means calculating the j-th success
probability p̂(t,j) through Equation (6), for all j = 1, ..., n;

4. If the stopping criterion is met, such as convergence or the maximum number of iterations is
reached, then stop; otherwise, increase the counter t by one and start a new iteration from Step 2.

Remark 1 (Smoothed Updating). In the above iterative procedure, smoothed updating is used instead of
updating p̂t directly from p̂t−1 through Equation (5). Thus, a smoothing coefficient 0 < α < 1 is used
for updating the Bernouilli parameter as:

p̂t = α p̂t + (1− α) p̂t−1 (8)

This smoothed updating procedure performs better than a directly updating one, because it can
prevent the situation that once zeros or ones occur in the parameter vectors, they often will remain
so forever. Through extensive experiments, Boer et al. [19] found that, for optimization problems
involving discrete random variables, a smoothing coefficient with a value between 0.4 and 0.9 would
give the best results.

Remark 2 (Equivalent Objective Function). The objective function in the admission control
optimization problem P1 is to maximize the total revenue within the available capacity constraints,
while in the CE-based optimization problem, the objective function is not associated with constraints.
Thus, transformations are needed for combining the objective function in Equation (1) and constraints
in Equations (2) and (3) to get the new objective function S(X), and we develop an equivalent objective
function in CE as:

S(X) =
n

∑
j=1

xj pitej +
n

∑
j=1

pitej ∗
m

∑
i=1

min(ci −
n

∑
j=1

ri,itej xj, 0) (9)

The second part in the right side of Equation (9) guarantees that, for a random generated solution,
which violates the resource capacity constraints, the value of its revenue is negative, and thus, it will
always have chances to be improved, i.e., it will not be selected as the final best solution. On the other
hand, for a feasible solution, its revenue value obtained from Equation (9) equals the one calculated
from Equation (1).

Based on the above analysis, Algorithm 1 illustrates the whole CE-based optimization procedure
for the VM admission control problem in pseudo-code.
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Algorithm 1 The Cross-entropy-based VM admission control optimization algorithm
Input: L: List of the arrived VM service requests in a period
T: Set of VM instance types supported by the cloud provider
Output: S: The eligible set of VM service requests accepted and its revenue
1. set N as sample size, maxits as maximum iterations, 1-ρ as quantile and d to indicate how

many CE iterations to wait until declaring a solution is found; // Initialize parameters
2. int iterCounter=0, dCounter=0;
3. set p̂0=(1/2,1/2,...,1/2) and dCounter=1; // set the initial parameter vector
4. set Sbest=0, Sold=0; // set the value of best current solution and best solution in last
iteration
5. WHILE (iterCounter ≤ maxits && dCounter ≤ d)

// While maxits not exceeded and not converged
6. Draw a random sample X1, ..., XN for Bernoulli vectors with probability vector p̂t−1;
7. Calculate the value of S(Xi) for all i according to (Equation (9));
8. Sort all S(Xi) in descending order, having S(1) ≤ ... ≤ S(N);
9. if (Sold == S1)

10. dCounter++;
11. else
12. dCounter=0;
13. end if;
14. Calculate the 1− ρ-quantile of the current sample as γ̂t according to (Equation (7));
15. Update pdf parameter vector p̂t with the best samples through (Equation (6));

// Update parameters of sampling distribution
16. if (S1 > Sbest)

17. Sbest = S1;
18. end if;
19. Sold = S1;
20. t=t+1; // Increment iteration
21. END WHILE
22. Return the Bernouilli parameter associated with the optimal solution to indicate the

accepted set of VM requests and its performance value as the obtained revenue.

6. Experimental Evaluation

In order to validate the efficiency and effectiveness of the proposed admission control optimization
algorithm, we implemented it as part of our public cloud computing platform. Experimental setups,
baseline heuristics for comparison and numerical results of this implementation are explained next.

6.1. Experimental Settings

We consider a public cloud computing platform as shown in Figure 1, which consists of clusters of
physical servers, and we assume that there are 30 VM instance types supported by the cloud provider.
The configuration settings and prices of these 30 VM types are collected and generated based on the
real-world popular public IaaS platforms, Amazon EC2 services [5] and Aliyun [18]. The number
of virtual CPU cores required by each VM instance type is varied from one to 16, and the memory
capacity required by each VM instance type is varied from 1 GB to 30 GB. Table 1 gives a sample of VM
types that we used in our work. In order to evaluate the efficiency and effectiveness of our proposed
admission control mechanism, we have varied the number of total resource capacities and the total
arriving VM service requests to generate a large number of test cases. Since the effectiveness of an
optimal admission control algorithm is more important for the cloud data centers with higher load
factors (the ratio between the total capacity required and the total available capacity), for each test case,
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the number of total available capacities and the total number of VM service requests are randomly set
in a way that the load factors of the considered cloud system vary between 1.2 and 2. The number of
VM service requests is varied from 40 to 200 with a step of 10. Additionally, the VM instance types
requested by cloud users are selected randomly from the 30 VM types, following a normal distribution.

Table 1. Sample VM instance types.

No. Number of CPU Cores Memory Cost ($ Per Hour)

1 1 1 GB 0.026
2 2 4 GB 0.18
3 4 16 GB 0.355
4 2 8 GB 0.20
5 4 8 GB 0.213
6 8 16 GB 0.397

The parameters of the proposed CE-based optimization algorithm for admission control are
as follows:

• the sample size, i.e., the number of Bernouilli vectors to generate in each iteration, is set as
N=[200, 1000];

• the value of ρ for the quantile is 0.05;
• the value of the smoothing coefficient for updating Bernouilli parameters is set as α = 0.75;
• the maximum number of iterations is 200;
• the degree to indicate how many CE iterations to wait before declaring a optimal solution is found

is set as d = 10.

Additionally, in order to avoid biasing results due to randomness and improve the accuracy of
the experimental results, for every experimental setting, the executions of our CE-based optimization
algorithm are repeated 10 times to get average values, which are used as final results.

6.2. Reference Admission Control Heuristics

Since greedy approaches are generally used for solving optimization problems such as VM
provisioning and allocation in clouds [11,21,22], in this paper, in order to test the effectiveness of
our proposed CE-based VM admission control optimization approach and also propose a systematic
approach to evaluate VM admission control algorithms in cloud data centers, based on the existing
literature, we implement three greedy approaches with classic heuristics for VM admission control
problems and compare the performance of our approach to theirs. The admission control heuristics
implemented in this work used for comparison are described below:

• Highest revenue first (HRF): This heuristic always accepts the VM service requests with the largest
revenue first. It first sorts all of the VM service requests by their revenue values associated with
their requested VM instance types and then picks VM requests one by one from the sorted set,
from highest to lowest, until no more services can be admitted due to there being not enough
available resource capacities.

• Most profitable first (VRF): This heuristic always accepts the most profitable VM service requests
first. The profitability of a VM service is calculated as the ratio between the revenue gained
from it and the number of capacities needed. Then, all of the VM service requests are sorted and
picked one by one based on these values of profitability. Since the VM instances considered in this
work are heterogeneous, the profitability calculated along different resource dimensions would be
different. In this paper, we use the number of CPU cores and the capacity of memory separately to
calculate the profitability of VM requests, and these two heuristics are denoted as VRF_C (most
profitable first by CPU) and VRF_M (most profitable first by memory), respectively.
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6.3. Numerical Results and Discussion

In the following, we provide the numerical results of our experiments and illustrate the
corresponding detailed settings. From the aspects of both efficiency and effectiveness, we discuss
how our approach can outperform the reference three greedy approaches with classic heuristics and
provide real-time performance guarantees in cloud computing environments.

6.3.1. Efficiency Validation

In this work, in order to verify the stability and scalability, as well as the efficiency of the proposed
CE-based admission control optimization algorithm, we change the problem sizes in experiments to
evaluate the average execution time and convergence of our proposed algorithm. We vary the problem
size, i.e., the number of VM service requests, from 40 to 200 with a step of 10 and examine the execution
time and how many iterations the proposed algorithm needs before converging to an optimal solution.
Besides, we also examine the effect of the sample size in the CE algorithm, by varying the sample size
N from 200 to 1000 with a step of 50.

The distributions of iterations and run-time for these experiments are shown in Figures 2 and 3,
respectively. It can be seen from Figure 2 that with the increasing of the number of VM requests
and the decreasing of the sample size, the number of iterations needed by our algorithm before
converging to an optimal solution is increasing slightly. As an example, Table 2 reports the execution
trace of the CEVMAC procedure for a representative test case, by showing the best revenue value
obtained so far in every iteration and its associated Bernoulli vector, which consists of the decision
variables indicating whether to accept a VM request or not. Note that for all experimental settings,
the CEVMAC algorithm converges quickly, and the number of iterations falls in the range of [10, 70].
Furthermore, considering the run-time required by our algorithm under different experimental settings,
from Figure 3, we can see with the increasing of the number of VM requests that the run-time of our
proposed optimization algorithm under the same sample size in CE algorithm increases slowly, but
never exceeds 1 s. Accordingly, when keeping the number of VM requests unchanged, the run-time
of our proposed optimization algorithm also increases to a small extent with the increasing of the
sample size in the CE algorithm. Note that the run-times of all of these experiments with different
problem sizes all fall below 1 s. Overall, we can conclude that the proposed CEVMAC algorithm
is very efficient in finding an optimal solution for the VM admission control problem, since for the
problems of reasonable sizes, the run-time required for reaching an optimal solution is at most 1 s,
and the number of iterations required for convergence falls below 70. Thus, our proposed approach
is suitable for on-line implementations and can provide real-time performance guarantees in cloud
computing environments.
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Figure 2. Iterations required by cross-entropy-based VM admission control optimization algorithm
(CEVMAC) for reaching convergence under different experimental settings.
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Figure 3. Run-time of CEVMAC on a 3.20-GHz i5-3470 CPU from Intel for different experimental settings.

Table 2. The execution trace in CEVMAC for a test case of VM admission control.

t Sbest p̂t

0 (0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5)
1 14.07 (1.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0)
2 14.11 (1.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0)
3 14.17 ( 1.0 1.0 1.0 0.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0)
4 14.17 ( 1.0 1.0 1.0 0.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0)
5 14.30 ( 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0)
6 14.30 ( 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0)
7 14.30 ( 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0)
8 14.30 ( 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0)
9 14.30 ( 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0)

10 14.30 ( 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0)
...

...
...

...
...

...
...

...
14 14.30 ( 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0)

6.3.2. Effectiveness Evaluation

In order to evaluate the effectiveness of our proposed CE-based optimization algorithm for VM
admission control, we have conducted several and extensive experiments to compare our algorithm to
the reference admission control heuristics, which have been discussed in previous sections. In order to
investigate the impact of the problem size on the effectiveness of the admission control algorithm, we
vary the number of VM service requests from 50 to 200 with an increment of 50. Additionally, for each
population of VM requests, the overall physical resource capacities are set accordingly, by keeping
the value of the load factor as 1.2, 1.3, 1.4 and 1.5, respectively. Thus, for every population of VM
requests, four test cases are generated, each with its own load factor and overall physical resource
capacity. For the sake of clarity, we apply normalization to the experiment results of all test cases.
Figure 4 demonstrates the normalized revenue obtained by the data centers using our CEVMAC and
the other three heuristics, i.e., HRF, VRF_C and VRF_M. It can be observed that the best results in
all investigated problem instances are achieved by our CEVMAC approach. It can be seen that our
CEVMAC algorithm can achieve improvement in revenue by up to 25% more than the other three
heuristics. Thus, we say that our CEVMAC approach outperforms the other three heuristics for the
VM admission control problem.
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Figure 4. Normalized revenue of the data center with different algorithms, for different numbers of
VM requests and load factors.

7. Conclusions

In this paper, we considered the revenue maximization problem during the VM service request
admission control and placement process in public cloud data centers. Specifically, for addressing the
heterogeneous VM admission control problem, which is formulated as an NP-hard multiple-dimensional
knapsack problem, we proposed a cross-entropy-based optimization algorithm to maximize a cloud
provider’s revenue. The proposed approach can obtain near-optimal solutions to suggest an eligible
set for the cloud provider to accept into its data centers, from the waiting VM service requests arriving
in the system. Experimental results of a simulated environment demonstrated that our proposed
cross-entropy-based admission control optimization algorithm is efficient and effective in maximizing
cloud providers’ revenue in public cloud computing environments. For the future, we are planning to
investigate how to make VM admission control decisions and schedule VMs dynamically based on the
prediction of the arrivals of IaaS requests to get optimal admission control and scheduling plans.
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