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Abstract: In this article, we review a series of recent theoretical results regarding a conventional
approach to the dark energy (DE) concept. This approach is distinguished among others
for its simplicity and its physical relevance. By compromising General Relativity (GR) and
Thermodynamics at cosmological scale, we end up with a model without DE. Instead, the Universe
we are proposing is filled with a perfect fluid of self-interacting dark matter (DM), the volume
elements of which perform hydrodynamic flows. To the best of our knowledge, it is the first time
in a cosmological framework that the energy of the cosmic fluid internal motions is also taken
into account as a source of the universal gravitational field. As we demonstrate, this form of
energy may compensate for the DE needed to compromise spatial flatness, while, depending on the
particular type of thermodynamic processes occurring in the interior of the DM fluid (isothermal or
polytropic), the Universe depicts itself as either decelerating or accelerating (respectively). In both
cases, there is no disagreement between observations and the theoretical prediction of the distant
supernovae (SNe) Type Ia distribution. In fact, the cosmological model with matter content in
the form of a thermodynamically-involved DM fluid not only interprets the observational data
associated with the recent history of Universe expansion, but also confronts successfully with every
major cosmological issue (such as the age and the coincidence problems). In this way, depending
on the type of thermodynamic processes in it, such a model may serve either for a conventional DE
cosmology or for a viable alternative one.
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1. Introduction

During the last 20 years, a continuously growing list of observational data has verified the
existence of a distributed energy component in the Universe, i.e., one that does not seem to cluster at
any scale. This new constituent of the cosmic matter-energy content was termed dark energy [1,2];
a reflection of our ignorance on its exact nature, the determination of which has become one of the
biggest problems in theoretical physics and cosmology (for a review of the various DE models see,
e.g., [3]). Let us briefly review how did we get to this point.

It all begun in the late 1990s, when high-precision distance measurements revealed that, in a
dust Universe, the far-off light-emitting sources look fainter (in other words, their actual distance
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is larger) than what is theoretically predicted [4–30]. To compromise theory with observation,
Perlmutter et al. [2] and Riess et al. [9] admitted that the value of the long-sought cosmological
constant, Λ, is no longer zero (in connection, see [31]). In this case, along with its mass content,
the Universe is filled also with an extra, uniformly distributed amount of energy.

At the same time, detailed observational studies of the cosmic microwave background (CMB)
suggested that the post-recombination Universe can be described (to high accuracy) by a spatially-flat
Robertson-Walker (RW) model [32–40]. This means that the overall energy density, ε, of the Universe
matter-energy content, in units of the critical energy density, εc = ρcc2 (the equivalent to the critical

rest-mass density, ρc =
3H2

0
8πG , where H0 is the Hubble parameter at the present epoch, G is Newton’s

gravitational constant, and c is the velocity of light), must be very close to unity, Ω = ε
εc
' 1, i.e.,

much larger than the (most recently) measured value of the density parameter, ΩM = ρ
ρc

= 0.279 [41].
Once again, an extra amount of energy was needed, this time, in order to compromise spatial flatness.

The particle-physics vacuum does contribute a uniformly distributed energy component, which
could serve as an effective cosmological constant and justify spatial flatness [42]. Unfortunately,
vacuum energy is 10123 times larger than what is currently inferred by observations (see, e.g., [43]).
Clearly, to reconcile spatial flatness with the observed dimming of the cosmological standard candles,
another approach, i.e., other than the cosmological constant, was needed.

As a consequence, several physically-motivated models have appeared in the literature, such
as, models with scalar fields [44,45], phantom cosmology [46], tachyonic matter [47], braneworld
scenarios [48,49], scalar-tensor theories [50], f (R)-gravity [51], holographic gravity [52–54],
Chaplygin gas [55–58], Cardassian cosmology [59–61], models with extra (i.e., more than four)
dimensions [62–65], neutrinos of varying mass [66,67], and many others (see, e.g., [68]). However,
most of these models are suffering by the (old) cosmological-coincidence problem. According to
it, a viable DE model should be able (also) to explain why we live so close to the transition era;
the inflection point being (observationally) set at a rather low value of the cosmological redshift
parameter, z, the so-called transition redshift, ztr = 0.752± 0.041 [30]. Of course, we should mention
that, it is not completely clear how much the transision redshift depends (or not) either on the
specific cosmological model used [69,70] or on the particular theory of gravitation that is taken into
account [71–73]. In other words, for the time being, ztr cannot be measured in a model-independent
way; and this is where, usually, cosmography takes over [74].

In view of the cosmographic approach, all quantities of interest are expanded as Taylor series
around their present-time values, with the corresponding coefficients being directly related to several
parameters of cosmological significance [75]. In other words, cosmography is a technique for
matching cosmological data with observable quantities without imposing a particular cosmological
model. In view of the large number of speculative models presently being considered, such an
observationally-driven approach is of interest in its own right; hence, many cosmographic efforts
to resolve the controversy on the exact nature of the cosmic fluid have appeared in the literature
(see, e.g., [76–97]).

In the meantime, much evidence in favour of a dark (energy) component in the Universe
matter-energy content had been accumulated, also from observations of galaxy clusters [98],
the integrated Sachs-Wolfe (ISW) effect [99], baryon acoustic oscillations (BAOs) [100,101], weak
gravitational lensing (WGL) [102,103], and the Lyman-α (LYA) forest [104]. For the first time
since the early 1930s, observation was prevailing over theory. As a consequence, many alternative
interpretations to the DE concept also appeared in the literature (see, e.g., [105–108]), although a dark
component was already present in the Universe matter content.

Indeed, nowadays, there is too much evidence in favour of a non-baryonic mass component
in the Universe matter content. This evidence includes high-precicion measurements of the
flattened galactic rotation curves [109,110], the WGL of distant galaxies by (some dark) foreground
structure [111], and the weak modulation of strong lensing around individual massive elliptical
galaxies [112]. On the scale of galaxies, recent observational data indicate that the (dark) galactic
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haloes extend almost half the distance to the neighboring galaxies [113,114]. On larger scales, it has
been found that the total-mass of galaxy clusters is almost ten times higher than its baryonic
counterpart [115–117], while, analogous conclusions can be deduced also at the universal level, from
the combination of CMB measurements [39] with those concerning light-chemicals abundances [118].
Accordingly, more than 85% of the mass in the Universe consists of non-luminous DM [119].

The precise nature of the DM constituents is still a matter of debate. One of the most attractive
candidates are the weakly interacting massive particles (WIMPs)—a by-product of the Universe hot
youth [120–122]. These particles are quite relevant to the direct or/and indirect detection of DM,
due to their connection to standard-model particles [123–125]. However, for such a candidancy
only weak-scale physics is involved, and, therefore, cosmologists used to argue that the WIMPs
are practically collisionless. However, recent results from high-energy particle detectors [126,127],
combined with data from the Wilkinson Microwave Anisotropy Probe (WMAP) [128], have revealed
an unexplained positron excess in the Universe, which could be related to interactions between DM
particles (see, e.g., [129–139]). In other words, the WIMPs can be slightly collisional [140–144].

A collisional-DM model could reconcile DM and DE in terms of a single component, thus arising
as a relatively inexpensive solution to the DE problem (see, e.g., [145–158]). In this framework,
Kleidis and Spyrou [159,160], proposed a classical approach to the DE concept, in terms of a
phenomenological model, in which the Universe matter content possesses (also) some sort of
thermodynamic properties. Indeed, in view of the CMB-based spatial flatness, today, the Universe
should contain a much larger amount of energy than what is attributed to the total rest-mass of its
matter content. This, however, would have no longer been a problem, if the dominant component
of the Universe matter content (i.e., DM) was represented by a thermodynamically-involved fluid, in
which, the extra energy needed to compromise spatial flatness is attributed to the energy of its internal
motions. Notice that, the same assumption has been proved very useful in modeling dark galactic
haloes, leading to a significant improvement of the galaxies velocity dispersion profiles [161–167].

It is therefore worth examining the properties of a cosmological model, in which, in principle,
there is no DE at all. Instead, we assume that the evolution of this model is driven by collisional-DM,
i.e., a cosmic fluid with thermodynamical content. In this case, the fundamental constituents of the
Universe matter content are the volume elements of this fluid, performing hydrodynamic flows.
We distinguish two types of thermodynamic processes in it, namely, (i) isothermal flows [159] and
(ii) polytropic flows [160]. In both cases, the energy of the DM fluid internal motions is also taken into
account as a source of the universal gravitational field, thus compensating for the extra DE needed
to compromise spatial flatness. In such a cosmological model, there is no disagreement between
the theoretical prediction and the observed distrubution of the distant SNe Ia, while neither the age
problem nor the corresponding coincidence one ever rise.

This review article is organized as follows: In Section 2, we consider a spatially-flat Universe, the
evolution of which is driven by a (perfect) fluid of self-interacting (i.e., thermodynamically-involved)
DM. Accordingly, in Section 3, we focus on the special case where the volume elements of this fluid
perform isothermal flows [159]. In this case, an extra DE amount arises naturally—being represented
by the energy of the internal motions of the DM fluid—although the Universe is ever-decelerating.
However, what we really need to query about is, what is realized by an observer who - although living
in such a model—mistreats DM as collisionless dust. As we shall demonstrate, for such an observer,
besides the need for a DE amount (to compromise spatial flatness), every cosmologically-distant
indicator appears to be fainter (i.e., its actual distance is larger) than what is theoretically predicted,
and the late Universe is accelerating. Although intriguing, this alternative model has a delicate point:
It is compatible with observations, only if the matter content of the dark sector consists of hot DM
(HDM). However, pure HDM models can not reproduce the observed large-scale structure of the
Universe [168], in contrast to their cold DM (CDM) counterparts [169]. In an effort to confront with
this issue, in Section 4, we consider that the dominant type of process occuring in the interior of the
(cosmic) DM fluid is polytropic flow [160]. Once again, the extra DE needed to compromise spatial
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flatness is represented by the internal energy of the fluid. The polytropic (DM) model depends on one
free parameter, the polytropic exponent, Γ. For Γ ≤ 0.540 the pressure of the cosmic fluid is definitely
negative, and the Universe does accelerate its expansion, below a transition value of the cosmological
redshift, ztr. In fact, the polytropic DM model can confront with almost every major cosmological
issue, such as the age and the coincidence problems, while reproducing to high accuracy the observed
distribution of the SNe Ia standard candles. Finally, we conclude in Section 5.

2. Collisional-DM Cosmology

In view of the CMB observational data released at the dawn of the 21st century (see, e.g., [32–36]),
the post-recombination Universe is described by a spatially-flat RW model, the line element of which
is given by

ds2 = S2(η)
[
c2dη2 −

(
dx2 + dy2 + dz2

)]
, (1)

where η is conformal time, and S(η) is the scale factor. As a consequence, the value of the Hubble
parameter at the present epoch is, by definition, given by

H2
0 =

8πG
3

ρc (2)

(see, e.g., [170] (p. 77)). The evolution of model (1) depends on the nature of the source that drives
the universal gravitational field, i.e., its matter-energy content.

According to Kleidis and Spyrou [159,160], along the lines of the collisional-DM approach, we
assume that, in principle, there is no DE at all. Instead, we admit that the DM possesses fluid-like
properties, in the sense that, the collisions of WIMPs maintain a tight coupling between these
particles, so that their kinetic energy is re-distributed. Under this assumption, the DM acquires some
sort of thermodynamical content, and, therefore, the evolution of the post-recombination Universe is
no longer driven by pressureless dust, but by a fluid, which, in view of the cosmological principle,
should (rather) be practically homogeneous and isotropic at large scale. The pressure of this (perfect)
fluid is accordingly given by a barotropic equation of state,

p = f (ρ) , (3)

where ρ is the rest-mass density, i.e., the part equivalent to the energy density ρc2 that remains
unaffected by the internal motions of the cosmic fluid. Now, the fundamental units of the Universe
matter content are the volume elements of the collisional-DM fluid (elements of fluid, each one
consisting always of the same number of particles).

In the context of GR, the motions of volume elements in the interior of a continuous medium are
governed by the equations

Tµν
;ν = 0 , (4)

where Greek indices refer to the four-dimensional spacetime, Latin indices refer to the
three-dimensional spatial slices, the semicolon denotes covariant derivative, and Tµν is the
energy-momentum tensor of the Universe matter content. In the particular case of a perfect fluid,
Tµν admits the standard form

Tµν = (ε + p)uµuν − pgµν , (5)

where uµ = dxµ

ds is the four-velocity
(
uµuµ = 1

)
at the position, xµ, of a fluid volume element, gµν are

the contravariant components of the Universe metric tensor, and ε is the total energy density of the
fluid. In an ideal equilibrium state (i.e., in the absence of shear and viscocity), ε is decomposed to

ε = E(ρ, T) + ρ U (T) (6)
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(see, e.g., [171] (pp. 81–84 and 90–94)). In Equation (6), T is the absolute temperature and U is
the energy of this fluid internal motions, thus defining ρ U as the corresponding (specific) energy
density. In this framework, E(ρ, T) represents every form of energy (density) involved, other
than that of internal motions (e.g., due to the rest-mass content, heat exchange, etc.). Along these
lines, Equation (4) represent the hydrodynamic flows of the volume elements in the interior of a
perfect-fluid source.

However, in a maximally symmetric cosmological setup, an observer comoving with the cosmic
expansion also traces the hydrodynamic flow of the spatially-homogeneous cosmic fluid and the Weyl
postulate is valid (see, e.g., [172] (p. 91)). Accordingly, the dynamical evolution of the cosmological
model with line element given by Equation (1) is governed by the equation of the classical (i.e., for
Λ = 0) Friedmann-Robertson-Walker (FRW) cosmology

H2 =
8πG
3c2 ε , (7)

where

H =
S′

S2 (8)

is the Hubble parameter as a function of the scale factor, and the prime denotes differentiation with
respect to η. As regards Equation (7), we need to stress that there is an essential difference between
our (thermodynamical) model and the rest of the classical FRW cosmologies, since, in this case, the
basic matter constituents are no longer particles receding from each other, but the volume elements of
the collisional-DM fluid, which possess some sort of internal structure and, hence, thermodynamical
content. Therefore, the functional form of ε in Equation (7) is no longer given by ρc2 alone, but by
Equation (6) (in connection, see also [172] (pp. 61–62)). Accordingly, we need to determine E and U .
To do so, we address (i) to the first law of thermodynamics in curved spacetime,

d U + pd
(

1
ρ

)
= CdT (9)

(see, e.g., [171] (p. 83)), where C is the specific heat of the cosmic fluid, and (ii) to the conservation
law of GR, T0ν

;ν = 0, which, in terms of the metric tensor, gµν, associated to Equation (1), results in the
continuity equation

ε′ + 3
S′

S
(ε + p) = 0 . (10)

Now, in order to proceed further, we need to decide on the type of processes that take place in
the interior of the cosmic (DM) fluid, i.e., to determine the functional form of the equation of state
given by Equation (3). To do so, we distinguish two cases, namely, (i) isothermal flows [159] and (ii)
polytropic flows [160]. We consider each one of these cases, separately.

3. Isothermal Processes in a Cosmological DM Fluid

In the case where the volume elements of the cosmic fluid perform isothermal flows, we have
dT = 0 = dQ, and, hence, E = ρc2. Accordingly, the DM (always entangled with the small baryonic
contamination) constitutes a gravitating perfect fluid with equation of state

p = wρc2 , (11)

where 0 ≤ w =
( cs

c
)2 ≤ 1 is a dimensionless constant, which measures the square of the speed of

sound, cs, in units of c2. For dT = 0, the first law of Thermodynamics Equation (13) results in [173]

U = U0 + wc2 ln
(

ρ

ρ0

)
, (12)
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where ρ0 and U0 are the present-time values of rest-mass density and internal-energy density,
respectively. By virtue of Equation (12), the total energy density of the Universe matter-energy content
is written in the form

ε = ρc2
[

1 +
U0

c2 + w ln
(

ρ

ρ0

)]
(13)

and the continuity Equation (10) yields

ρ = ρ0

(
S0

S

)3
, (14)

where S0 is the present-time value of the scale factor. Accordingly, in the isothermal case, the
Friedmann Equation (7) reads(

H
H0

)2
= ΩM

(
S0

S

)3 [
1 +
U0

c2 + 3w ln
(

S0

S

)]
, (15)

where we have used also Equation (2). At the present epoch (when S = S0 and H = H0), Equation (15)
is reduced to

U0 =
1−ΩM

ΩM
c2 (16)

and, therefore, from Equation (6) we find that, in a cosmological model with matter content in the
form of an isothermal DM fluid, the present-time value of the overall-energy density parameter is
exactly unity, i.e.,

Ω0 =
ε0

εc
=

ρ0c2

ρcc2 +
ρ0U0

ρcc2 = ΩM + ΩM
U0

c2 = 1 . (17)

In other words, the (extra) DE needed to flatten the Universe can be represented by the energy
of the internal motions of the isothermal DM fluid (iDMF model).

By virtue of the present-time value of the internal energy given by Equation (16), Equation (15)
results in (

H
H0

)2
=

(
S0

S

)3 [
1 + 3wΩM ln

(
S0

S

)]
. (18)

The Friedmann Equation (18) that determines the evolution of the iDMF model, can become very
useful, if we take into account that, since 0 ≤ w ≤ 1 and ΩM = 0.274 [40], the combination wΩM
can be quite small, i.e., wΩM � 1. Accordingly, to terms linear in wΩM, Equation (18) is written in
the form

H ' H0

(
S0

S

) 3
2 (1+wΩM)

, (19)

which, by virtue of Equation (8), can be solved analyically, to determine the scale factor of the iDMF
model, as follows

S = S0

(
η

η0

) 2
1+3wΩM

, (20)

where
η0 =

2
(1 + 3wΩM)H0S0

(21)

is the present-time value of the conformal time. For w 6= 0, Equation (20) is the natural generalization
of the Einstein-de Sitter (EdS) model

(
S ∼ η2) (see, e.g., [170] (pp. 77, 83 and 142–144)), i.e., of the

collisionless-DM counterpart of the iDMF model.
Now, upon consideration of the cosmological redshift parameter,

z + 1 =
S0

S
, (22)
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Equation (19) can be cast in the form

H = H0(1 + z)
3
2 (1+wΩM) . (23)

In view of Equation (23), on the approach to the present epoch (when z = 0), H(z) decreases
monotonically. In other words, the cosmological model filled with an isothermal DM fluid decelerates
its expansion. Indeed, in the iDMF model the deceleration parameter,

q(z) =
dH/dz
H(z)

(1 + z)− 1 (24)

(cf. Equation (16) of [174]), yields

q(z) =
1
2
(1 + 3wΩM) > 0 , (25)

independently of z, even if w = 0. In other words, the iDMF model cannot confront with the apparent
accelerated expansion of the Universe. The actual reason is that, it does not have to. As we shall
demonstrate in Section 3.1, in a cosmological model with matter content in the form of isothermal
(DM) fluid, both the observed dimming of the distant SNe Ia and the apparent accelerated expansion
of the Universe can be due to the misinterpretation of several cosmological parameters, by those
observers who, although living in the iDMF model, insist on adopting the collisionless-DM approach.

3.1. Mistreating DM as Collisionless

In the late 1990s, the scientific community was assured that the Universe is filled with
collisionless DM, i.e., mainly, dust. Then, high-precision distance measurements performed with
the aid of SNe Ia events, revealed the unexpected acceleration of the cosmic expansion. However,
the physical content of a dust Universe is entirely different from that of a collisional-DM model. In
other words, the dynamical properties of a pressureless Universe are no longer described by the
metric tensor gµν, associated to Equation (1), but, rather, in terms of another metric tensor, g̃µν.
Clearly, someone who (mis)treats DM as dust, relies on g̃µν in interpreting observations. For such an
observer, the accumulated evidence in favour of spatial flatness, not only implies that the spacetime
line element is written in the form

ds̃2 = S̃2(η)
[
c2dη2 −

(
dx2 + dy2 + dz2

)]
, (26)

but, also, suggests that there is a deficit (1−ΩM) in the universal energy budget. On the contrary, in
the iDMF approach, the extra energy amount needed to compromise Ω0 = 1 is already included in the
model, being represented by the energy of the internal motions of the thermodynamically-involved
DM fluid. Furthermore, on interpreting the dimming of the cosmologically-distant SNe Ia events,
a supporter of the collisionless-DM scenario is also based on g̃µν and the cosmological parameters
arising from it, hence, a possible explanation for such a dimming could be that, recently, the Universe
accelerated its expansion [7,9]. We cannot help but wondering, what would be the explanation within
the context of the iDMF model.

In search of such an explanation, we note that, according to Kleidis and Spyrou [175] the
collisional-DM treatment of the Universe matter-energy content (in terms of which, in principle,
p 6= 0) can be related to the collisionless-DM approach (in terms of which, necessarily, p̃ = 0) by
a conformal transformation,

g̃µν = f 2(xκ) gµν (27)
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(see also [176] (pp. 24–29 and 54–61), [177–179]), where, upon consideration of isentropic flows, the
conformal factor, f (xκ), is given by [175]

f (xκ) = C
(

ε + p
ρc2

)
(28)

corresponding to the specific enthalpy of the ideal fluid under consideration (C is an integration
constant). More recently, Verozub showed that Equations (27) and (28) apply to every Riemannian
spacetime, and not just to the metric tensor associated with a perfect fluid source [180].

With the aid of Equations (27) and (28), we can now determine the scale factor S̃(η), i.e., the scale
factor of the Universe as it is realized by someone who, although living in the iDMF model, mistreats
DM as collisionless. By virtue of Equation (27),

S̃(η) = f (xκ)S(η) , (29)

where, in terms of z, f (xκ) is given by [159]

f (z) = 1 + wΩM [1 + 3 ln(1 + z)] . (30)

Upon consideration of Equations (29) and (30), we can express several cosmological parameters
of the iDMF model, in terms of their collisionless-DM counterparts. In this framework, the
cosmological redshift parameter, z̃, as defined by a supporter of the collisionless-DM scenario, is
given by

z̃ + 1 =
S̃(η0)

S̃(η)
=

1 + wΩM
1 + wΩM[1 + 3 ln(1 + z)]

(z + 1) , (31)

which, to linear terms in wΩM � 1, results in

1 + z̃ ' (1 + z)1−3wΩM . (32)

Equation (32) suggests that, for every value of z, i.e., the cosmological redshift as it is defined in
the iDMF model, the corresponding collisionless-DM quantity, z̃, is always a little bit smaller (z̃ < z).
In other words, on observing a standard candle in the iDMF model, an observer who adopts the
collisionless-DM approach infers that it lies farther (z) than expected (z̃).

3.2. Accomodating the Recent SNe Ia Data in a Decelerating Universe

One of the most reliable methods to monitor the Universe expansion, is to measure the redshift
and the apparent magnitude, m, of cosmologically-distant SNe Ia events (standard candles), whose
absolute magnitude, M, is well-known [5–9]. In an effort to determine the distribution of these
events in curved spacetime, a number of scientific groups found evidence in favour of a recent
accelerating stage of the Universe expansion [6–30]. Indeed, in all of these surveys, the SNe Ia
events (at peak luminocity) look fainter (i.e., their actual distance is larger) than what is theoretically
predicted. This result led the scientific community to admit that, recently, the Universe (driven by an
exotic DE fluid of negative pressure) accelerated its expansion (see, e.g., [37]). However, in view of
Equation (32), there may be another, more conventional interpretation.

To begin with, we note that photons travel along null geodesics, ds̃2 = 0 = ds2, which remain
unaffected by conformal transformations. Consequently, both in the collisional-DM treatment and in
the collisionless-DM approach, the radial distance of a particular SN Ia event is the same, i.e., r̃ = r.
In this case, upon consideration of Equation (32), the actually-measured (in a spatially-flat iDMF
model) luminosity distance,

dL(z) = rS(η0)(1 + z) , (33)
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can be expressed in terms of the corresponding collisionless-DM quantity,

d̃L(z̃) = r̃S̃(η0)(1 + z̃) , (34)

as follows
dL

d̃L
=

1
1 + wΩM

(1 + z)3wΩM . (35)

According to Equation (35), in the iDMF Universe, there exists a characteristic value of the
actually-measured cosmological redshift, namely,

zc = (1 + wΩM)
1

3wΩM − 1 , (36)

such that, for z > zc, dL > d̃L. In other words, an observer who—although living in the iDMF
model—treats DM as dust, infers that any SN Ia event located at z > zc lies farther than what is
theoretically predicted. By virtue of zc, an inflection point (on the dL versus z diagram) arises naturally
in the iDMF model, without the need to assume any transition from deceleration to acceleration.
In other words, the iDMF model does not suffer from the coincidence problem.

Now, we shall demonstrate that, in fact, there is no discrepancy between theoretical
prediction and the observed distribution of the distant SNe Ia in the iDMF model. To do so,
we overplot the theoretically-determined distance modulus (of a light-emitting source in the
iDMF model) on the Hubble (µ versus z) diagram of the sample of 192 SN Ia events used by
Davis et al. [181] (Available at http://braeburn.pha.jhu.edu/∼ariess/R06). In what follows, we
admit that H0 = 70.2 Km/sec/Mpc [40] and hence 2c/H0 = 8, 547 Mpc.

In the iDMF model, the distance modulus of a cosmologically-distant indicator is given by

µ(z) = 5 log
[

dL(z)
Mpc

]
+ 25 = m(z)−M , (37)

where dL is measured in megaparsecs (Mpc). In a similar manner,

µ̃(z̃) = 5 log
[

d̃L(z̃)
Mpc

]
+ 25 (38)

is the theoretical formula associated to the distance modulus of the same source, as it is defined
by someone who, although living in the iDMF model, insists on adopting the (traditional)
collisionless-DM approach. In this case, using Equation (36), we obtain

µ− µ̃ = 15wΩM log(1 + z)− 5 log (1 + wΩM) . (39)

According to Equation (39), any light-emitting source of the iDMF model that is located at z > zc,
from the point of view of an observer who treats DM as collisionless, appears to be dimmer than
expected, i.e., µ̃ < µ. Therefore, if the cosmic DM amount is interpreted as an isothermal fluid, then,
it is possible that the discrepancy between the expected value of the distance modulus (µ̃) of a distant
SN Ia and the corresponding observed one (µ), arises only because some cosmologists (although
living in the iDMF model) insist on treating DM as dust.

In order to overplot Equation (38) on the µ versus z diagram of the SN dataset used by
Davis et al. [181], first, we need to determine the luminosity distance d̃L(z̃), inferred by someone who
treats DM as dust, and, second, to express this function in terms of the actually-measured quantity, z.
A supporter of the collisionless-DM scenario, necessarily performs calculations in the framework of
the EdS Universe, in which the luminosity distance is given by

d̃L(z̃) =
2c
H̃0

(1 + z̃)1/2
[
(1 + z̃)1/2 − 1

]
. (40)
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According to Kleidis and Spyrou [159], in the context of the iDMF approach, Equation (40) is
translated to

d̃L(z) =
2c

(1− 4wΩM) H0
(1 + z)

1
2 (1−3wΩM)

[
(1 + z)

1
2 (1−3wΩM) − 1

]
. (41)

However, in depicting Equation (38) on the µ versus z diagram of a sample of SNe events, an
observer who treats DM as collisionless, unavoidably misinterprets the measured quantity z as z̃
(also, the present-time value of the Hubble parameter, H0, is misinterpreted as H̃0). In other words,
the theoretical formula of the luminosity distance that is used by someone who treats DM as dust, is
(falsely) written in the form

d̃L(z̃) =
2c
H0

(1 + z)1/2
[
(1 + z)1/2 − 1

]
, (42)

instead of that given by the combination of Equations (35) and (41). This is most prominently
demonstrated in Figure 1, where, on the Hubble diagram of the SNe Ia dataset used by
Davis et al. [181], we have overplotted the theoretically determined (in the context of the iDMF model)
function µ(z), for three values of the combination wΩM, namely, wΩM = 0.10 (red solid line),
wΩM = 0.16 (green solid line) and wΩM = 0.19 (blue solid line), together with the corresponding
collissionless-DM quantity, µ̃(z) (dashed line). We observe that, when the thermodynamical content
of the iDMF model is taken into account, the theoretically-determined distance modulus fits the entire
SNe dataset under consideration quite accurately.
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Figure 1. Overplotted on the Hubble diagram of the SNe Ia sample used by Davis et al. [181], are the
theoretical curves of the distance modulus in the iDMF model, µ(z), for wΩM = 0.10 (red solid line),
wΩM = 0.16 (green line), and wΩM = 0.19 (blue solid line). The dashed line represents the theoretical
curve associated to the distance modulus in the context of the collisionless-DM approach.

We see that, in the iDMF framework, provided that cosmologists no longer insist on adopting
the collisionless-DM approach, the observed dimming of the SNe Ia standard candles would be only
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apparent. In other words, in the iDMF model there is no disagreement between observations and the
theoretical prediction of the distant SNe Ia distribution.

3.3. The Apparent Acceleration of the iDMF Model

According to Kleidis and Spyrou [159], the Hubble parameter that is realized by a supporter of
the collisionless-DM scenario, H̃, is given by

H̃ = H
d
dz

(
1 + z

f

)
= H0(1 + z)

3
2 (1+wΩM) 1− 2wΩM + 3wΩM ln(1 + z)

(1 + wΩM[1 + 3 ln(1 + z)])2 , (43)

where we have used also Equations (23) and (30). With the aid of Equation (32), H̃(z) can be expressed
in terms of z̃, as follows

H̃ = H0 (1 + z̃)
3(1+wΩM)

2(1−3wΩM) (1− 3wΩM)
1− 5wΩM + 3wΩM ln(1 + z̃) + O(wΩM)2

[1− 2wΩM + 3wΩM ln(1 + z̃) + O(wΩM)2]
2 . (44)

In the context of the collisionless-DM approach the deceleration parameter, q̃, is defined as

q̃(z̃) =
dH̃/dz̃
H̃(z̃)

(1 + z̃)− 1, (45)

which, upon consideration of Equation (44), yields

q̃(z̃) =
1
2
·
[

1− 4wΩM + 6wΩM ln(1 + z̃) + O(wΩM)2

1− 10wΩM + 6wΩM ln(1 + z̃) + O(wΩM)2

]
. (46)

To terms linear in wΩM, the condition for accelerated expansion, q̃(z̃) < 0, results in

1− 14wΩM + 12wΩM ln(1 + z̃) < 0 , (47)

from which it is evident that, as far as a supporter of the collisionless-DM scenario is concerned,
q̃(z̃) < 0 at cosmological redshifts

z̃ < z̃tr = e
14wΩM−1

12wΩM − 1. (48)

Equation (48) suggests that, if the Universe matter content is treated as an isothermal DM
fluid with

wΩM > wcΩM =
1
14
≈ 0.0714 (49)

(i.e., w > wc ≈ 0.238), then, from the point of view of an observer who persists in treating DM as
collisionless, there exists a transition value, z̃tr, of the cosmological redshift, below which, such a
cosmological model is accelerating.

In view of all the above, if the universal gravitational field is driven by an isothermal DM
fluid with thermodynamical content, then, what is inferred as acceleration of the cosmic expansion
could be only apparent, based on the misinterpretation of several cosmological parameters, by those
observers who (although living in the iDMF model) simply insist on treating DM as dust.

The combination of Equations (32) and (48) results in a non-linear algebraic equation, which
involves the transition value, ztr, of the truly measured cosmological redshift, z, that is,

(1 + ztr) e0.25/3wΩM = 3.2114 (1 + ztr)
3wΩM . (50)

Admitting that ztr = 0.752± 0.046 [30], Equation (50) can be solved numerically with respect to
the combination wΩM, yielding

(wΩM)tr = 0.1062± 0.0028 . (51)
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In view of Equation (51), w ≥ 1
3 , i.e., compatibility of the iDMF approach with the observational

data currently available, suggests that the DM consists of relativistic particles. For the time being, a
pure HDM model can not reproduce the large-scale structure of the Universe [168], although there
are several scientists disagreeing with such a premise [182,183]. We should also mention that, the
alternative DE model so considered, reproduces to high accuracy (e.g., much more accurately than
the ΛCDM model itself) the observational results concerning the statistically-independent distance
constraint associated with BAOs data [101] (for a detailed analysis, see [159]).

The idea that the DE could be represented by the energy of the internal motions of an isothermal
DM fluid is quite challenging and should be further examined in the search for alternatives to the DE
concept. In this framework, and in an effort to confront with the HDM issue, in the next Section, we
consider a cosmological model with matter content also in the form of a thermodynamically-involved
DM fluid, the volume elements of which, this time, perform polytropic flows (pDMF model) [160].

4. Polytropic Processes in a Cosmological DM Fluid

In realistic astrophysics, polytropic processes are much more physically relevant than isothermal
flows (see, e.g., [184] (pp. 64–69)). On galactic scale, polytropic processes have been proved
very useful in modeling dark galactic haloes, leading to a significant improvement of the galaxies
velocity dispersion profiles [161–167]. In the cosmological framework, polytropic (DM) models were
first encountered as natural candidates for Cardassian cosmology (see, e.g., [59–61]). They have
been used also in the unified DE models, to describe a potential interaction between DM and DE
(see, e.g., [185–195]).

The polytropic process is a general way of treating flow motions, including many
thermodynamic processes in a single formula. It is a reversible process, such that, the specific heat of
a thermodynamical system,

C = dQ
dT

, (52)

varies in a prescribed manner (see, e.g., [196] (p. 2)). In the special case where C = constant, the
thermodynamical system is left with only one independent state variable, the rest-mass density
(barotropic flow). Accordingly, the fundamental equation of state,

p ∝ ρT , (53)

is decomposed to

p = p0

(
ρ

ρ0

)Γ
(54)

and

T = T0

(
ρ

ρ0

)Γ−1
(55)

(see, e.g., [196] (p. 9), [197] (p. 85)), where p0 and T0 denote the present-time values of pressure and
temperature, respectively, and Γ is the polytropic exponent, defined as

Γ =
CP − C
CV − C

(56)

(see, e.g., [196] (p. 5), [198] (p. 86)), where CP (CV) is the specific heat at constant pressure (volume).
At this point, we need to stress that, for the definition of specific heats, the concept of equilibrium is
essential. However, in an expanding Universe such a concept cannot be posed in an unambiguous
way; hence, in a cosmological setup, the definition of specific heats may not coincide with the
corresponding thermodynamic one (in connection, see [198–201]).



Entropy 2016, 18, 94 13 of 31

In the pDMF model, the first law of Thermodynamics yields

U = U0

(
ρ

ρ0

)Γ−1
, (57)

where
U0 = CT0 +

1
Γ− 1

p0

ρ0
(58)

is the present-time value of the cosmic fluid internal energy. In this case, the continuity Equation (14)
results in

ΓU0

(
ρ̇ + 3

Ṡ
S

ρ

)
+ Ė + 3

Ṡ
S
E − 3(Γ− 1)ρ0CT0

Ṡ
S

(
ρ

ρ0

)Γ
= 0 , (59)

where the dot denotes differentiation with respect to cosmic time, t =
∫ η S(η)dη. Recall that, by

definition, each pDMF volume element is assumed to be a closed system, i.e., the total number of its
particles is conserved, so that

ρ̇ + 3
Ṡ
S

ρ = 0 . (60)

According to Equation (60), the evolution of the rest-mass density in the pDMF model is (once
again) given by Equation (14). Now, Equation (59) results in

Ė + 3
Ṡ
S
E − 3(Γ− 1)ρ0CT0

Ṡ
S

(
S0

S

)3Γ
= 0 , (61)

yielding

E = ρ0c2
(

S0

S

)3
− ρ0CT0

(
S0

S

)3Γ
. (62)

In view of Equations (14), (57) and (62), the total energy density of the pDMF model is written in
the form

ε = ρ0c2
(

S0

S

)3
+

p0

Γ− 1

(
S0

S

)3Γ
= ρc2 +

p
Γ− 1

, (63)

upon consideration of which, the evolution of a spatially-flat pDMF model is determined by the
solution of the Friedmann equation(

H
H0

)2
= ΩM

(
S0

S

)3
[

1 +
1

Γ− 1
p0

ρ0c2

(
S0

S

)3(Γ−1)
]

. (64)

Extrapolation of Equation (64) to the present epoch, yields the present-time value of the isotropic
pressure, as

p0 = ρ0c2(Γ− 1)
1−ΩM

ΩM
. (65)

For Γ < 1, Equation (65) suggests that, the pressure of a polytropic-DM perfect fluid is negative.
In this case, the quantity ε + 3p may also become negative, leading to S̈ > 0 (see, e.g., [202]). In other
words, the pDMF model with Γ < 1 may accelerate its expansion.

Upon consideration of Equation (65), Equation (64) is written in the form(
H
H0

)2
=

(
S0

S

)3
[

ΩM + (1−ΩM)

(
S
S0

)3(1−Γ)
]

(66)

and Equation (63) results in
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ε = ρcc2

[
ΩM

(
S0

S

)3
+ (1−ΩM)

(
S0

S

)3Γ
]

. (67)

As a consequence, in the pDMF model, the present-time value of the total energy density
parameter equals to unity, i.e.,

Ω0 =
ε0

εc
=

ρcc2

ρcc2 [ΩM + (1−ΩM)] = 1 . (68)

In view of Equations (65) and (68), the pDMF Universe with Γ < 1 might be an elegant
solution to the DE problem, by addressing both spatial flatness and the accelerated expansion in a
unique theoretical framework. For this reason, in what follows, we shall scrutinize the pDMF model
with Γ < 1.

By virtue of Equation (67), the rest-mass energy density, εmat = ρc2, and the internal (dark)
energy density, εint = ε− εmat, of the Universe matter-energy content satisfy the relation

εint
εmat

=
1−ΩM

ΩM

1
(1 + z)3(1−Γ)

, (69)

which, at the present epoch (z = 0), results in

εint
εmat

∣∣∣∣
0
=

1−ΩM
ΩM

. (70)

On the other hand, for ΩM = 0.274 [40], Equation (65) suggests that, today,
p0 = −2.650(1− Γ)ρ0c2. This result might lead to the assumption that the pDMF model is, in fact,
a phantom Universe, where p0 < −ε0. Today, several observational data indicate that the basic
cosmic ingredient might (very well) consist of phantom DE (see, e.g., [41,203]). However, the latest
Planck results suggest that, this is probably due to a geometric degeneracy, which will be erased as
more data are added [204]. In view of such a perspective, we note that, in the pDMF model, the total
energy density at the present epoch is not given by ρ0c2, but by ε0 = Ω−1

M ρ0c2 (cf. Equation (67)).
Accordingly, Equation (65) results in

p0 = −(1− Γ)(1−ΩM)ε0 , (71)

from which, we deduce that p0 > −ε0, as long as

Γ > − ΩM
1−ΩM

∼= −0.377 . (72)

Clearly, the pDMF model with −0.377 < Γ < 1 does not fall into the realm of
phantom cosmology.

4.1. Aleviating the Age Problem of the Universe

In the pDMF model under consideration, Equation (66) reads[
d
dt

(
S
S0

)3/2
]2

=
1

t2
EdS

ΩM + (1−ΩM)

[(
S
S0

)3/2
]2(1−Γ)

 , (73)

where tEdS = 2
3H0

is the age of the Universe in the EdS model. Equation (73), can be solved explicitly
in terms of hypergeometric functions, 2F1(a , b ; c ; x), of a complex variable, x (see, e.g., [205]
(pp. 1005–1008)), as follows
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(
S
S0

) 3
2

2F1

(
1

2(1− Γ)
,

1
2

;
3− 2Γ

2(1− Γ)
;−
(

1−ΩM
ΩM

) [
S
S0

]3(1−Γ)
)

=
√

ΩM

(
t

tEdS

)
. (74)

Since a + b = 1
2(1−Γ) +

1
2 < 3−2Γ

2(1−Γ) = c, the hypergeometric series involved, converges absolutely

within the unit circle
∣∣∣ S

S0

∣∣∣ ≤ 1, for every value of Γ < 1 (see, e.g., [206] (p. 556)). For ΩM = 1,

Equation (74) yields S = S0

(
t

tEdS

)2/3
, i.e., the scale factor of the EdS model, as it should. On the other

hand, in the (isobaric) Γ = 0 case, Equation (74) is reduced to

(
S
S0

) 3
2

2F1

(
1
2

,
1
2

;
3
2

; −
(

1−ΩM
ΩM

) [
S
S0

]3
)

=
√

ΩM

(
t

tEdS

)
, (75)

which, upon consideration of the identity

2F1

(
1
2

,
1
2

;
3
2

; −x2
)
=

1
x

sinh−1(x) (76)

(cf. [205], Equation 9.121.28, (p. 1007), [206], Equation 15.1.7, (p. 556)), results in

S(t) = S0

(
ΩM

1−ΩM

)1/3
sinh2/3

(√
1−ΩM

t
tEdS

)
. (77)

For 1−ΩM = ΩΛ, Equation (77) represents the scale factor of the ΛCDM model (cf. Equation (5)
of [207]), as it (once again) should.

Using Equation (74), we can also determine the age of the Universe, t0, in the context of the
pDMF approach. In units of tEdS, it is given by

t0

tEdS
=

1√
ΩM

2F1

(
1

2(1− Γ)
,

1
2

; 1 +
1

2(1− Γ)
; −1−ΩM

ΩM

)
, (78)

the behaviour of which, as a function of the polytropic exponent Γ < 1, is presented in Figure 2. In the
isobaric (Γ = 0) case, Equation (78) yields

t0 = tEdS
1√

1−ΩM
sinh−1

√
1−ΩM

ΩM
, (79)

which, for ΩM = 0.274 [40], results in t0 = 1.483 tEdS = 13.778 Gys. This value coincides
to the corresponding nine-year WMAP result [41] and lies well-within range of its (latest) Planck
counterpart [204], concerning the age of the ΛCDM Universe. Clearly, the pDMF model does not
suffer from the (so-called) age problem.

Eventually, from the combination of Equations (74) and (78), we find that, the scale factor of the
pDMF model is given by

(
S
S0

)3/2 2F1

(
1

2(1−Γ) , 1
2 ; 3−2Γ

2(1−Γ) ; −
(

1−ΩM
ΩM

) [
S
S0

]3(1−Γ)
)

2F1

(
1

2(1−Γ) , 1
2 ; 3−2Γ

2(1−Γ) ; − 1−ΩM
ΩM

) =
t
t0

, (80)

the time behaviour of which, for several values of Γ < 1, is presented in Figure 3. We note that, there
is always a value of t < t0, above which, the function S(t) becomes concave, i.e., S̈ > 0. This is a very
important result, suggesting that, the pDMF model with Γ < 1 accelerates its expansion. This can be
readily confirmed, upon the calculation of the deceleration parameter associated to this model.
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Figure 2. The age of the DM fluid perform polytropic flows (pDMF) model, t0, in units of tEdS, as
a function of the polytropic exponent Γ < 1 (red solid line). For every Γ < 1, t0 > tEdS, and t0

approaches tEdS only in the isothermal (Γ → 1) limit. The horizontal solid line denotes the age of the
Universe (t0 = 1.483 tEdS) in the isobaric (Γ = 0) ΛCDM limit of the pDMF model.
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Figure 3. The scale factor, S, of the pDMF model with ΩM = 0.274 (in units of its present-time
value, S0), as a function of the cosmic time t (in units of t0), for Γ = 0.5 (orange), Γ = 0 (dashed),
Γ = −0.5 (blue), Γ = −1 (red), and Γ = −2 (green). For each and every curve, there is a value of
t < t0, above which S(t) becomes concave, i.e., the Universe accelerates its expansion.
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4.2. Confronting with the Coincidence Problem

In the pDMF model with Γ < 1, the Hubble parameter Equation (66), in terms of the cosmological
redshift, is written in the form

H = H0(1 + z)
3
2

[
ΩM +

1−ΩM

(1 + z)3(1−Γ)

]1/2
. (81)

Accordingly, the corresponding deceleration parameter Equation (24), yields

q(z) =
1
2

[
1− 3(1− Γ)(1−ΩM)

ΩM(1 + z)3(1−Γ) + (1−ΩM)

]
. (82)

For z� 1 (i.e., in the distant past), q→ 1
2 and the Universe behaves as the EdS model, i.e., a dust

(in other words, decelerating) FRW model. On the other hand, for z = 0 (i.e., at the present epoch),
we have

q0 =
1
2
[1− 3(1− Γ)(1−ΩM)] . (83)

The minus sign on the rhs of Equation (82) suggests that there is a transition value of z, namely,
ztr, below which, q(z) becomes negative, i.e., the Universe accelerates its expansion. It is given by

ztr =

[
(2− 3Γ)

1−ΩM
ΩM

] 1
3(1−Γ)

− 1 . (84)

For Γ = 0, Equation (84) yields ztr = 0.744, which lies well-within range of the corresponding
ΛCDM result, namely, ztr = 0.752± 0.041 [30]. In view of Equation (84), the condition ztr ≥ 0 imposes
the following constraint on the potential values of Γ,

Γ ≤ 1
3

[
2− ΩM

1−ΩM

]
. (85)

For ΩM = 0.274 [40], Equation (85) yields the upper limit, Γ ≤ 0.540, while the requirement for
a non-phantom Universe, Γ > −0.377, may serve as a lower bound of Γ. The behaviour of ztr, as a
function of Γ ≤ 0.540, is presented in Figure 4.
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Figure 4. The transition redshift, ztr, in the pDMF model as a function of the polytropic exponent,
Γ (blue solid curve). For Γ < −0.377, the Universe resides to the phantom realm (red dashed curve).
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We see that, polytropic acceleration is definitely not a coincidence. The pDMF model with
−0.377 < Γ ≤ 0.540, most naturally accelerates its expansion, at cosmological redshifts lower than the
transition value given by Equation (84), without the need for either any exotic DE or the cosmological
constant. The question that arises now is, whether these theoretical results are confirmed also by the
observational data related to the distant SNe Ia standard candles or not.

4.3. Compatibility with the Recent SNe Ia Data

Today, many samples of SNe Ia data are used, to scrutinize the viability of the various DE
models (see, e.g., [181]). The most extended one is the Union 2.1 Compilation [30], which consists
of 580 SNe Ia events (Available at http://www.supernova.lbl.gov/Union). Accordingly, to estimate
the compatibilty of the pDMF model with the observational data associated to the SNe Ia distant
indicators, once again, we overplot the corresponding theoretically-derived distance modulus on the
Hubble diagram of the Union 2.1 SN Compilation. In this case, the luminosity distance is given by

dL(z) = c(1 + z)
∫ z

0

dz′

H(z′)
(86)

(see, e.g., [170] (p. 76)), where H(z) is given by Equation (81). Equation (86) can be solved explicitly
in terms of hypergeometric functions (see, e.g., [205] (pp. 1005–1008)), resulting in

dL(z) =
2c
H0

1√
1−ΩM

1 + z
2− 3Γ

[
(1 + z)

2−3Γ
2 ×

2F1

(
2− 3Γ

6(1− Γ)
,

1
2

;
8− 9Γ

6(1− Γ)
; −

[
ΩM

1−ΩM

]
(1 + z)3(1−Γ)

)
−

2F1

(
2− 3Γ

6(1− Γ)
,

1
2

;
8− 9Γ

6(1− Γ)
; −

[
ΩM

1−ΩM

])]
. (87)

By virtue of Equation (87), the function µ(z), given by Equation (37), is overplotted on the µ

versus z diagram of the extended Union 2.1 Compilation [30]. The outcome is depicted in Figure 5, for
−0.09 < Γ ≤ 0 (in connection, see Section 4.4). It is evident that, the theoretical curve representing the
distance modulus in the context of the pDMF model, fits the entire dataset quite accurately. In other
words, there is no disagreement between our theoretical prediction and the observed distribution of
the distant SNe Ia events.
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Figure 5. Overplotted to the Hubble diagram of the Union 2.1 Compilation are the best-fit curves (too
close to be distinguished) representing the function µ(z) in the pDMF model, for −0.09 < Γ ≤ 0.
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4.4. Determining the Value of the Polytropic Exponent

In relativistic hydrodynamics, the isentropic velocity of sound is defined as

c2
s = c2

(
∂p
∂ε

)
S

(88)

(see, e.g., [208] (p. 52)), where
(

∂p
∂ε

)
S
≤ 1, in order to avoid violation of causality [209]. In view of

Equation (88), the barotropic flow in the pDMF model yields a velocity of sound that is not constant,
but (rather) a function of the cosmological redshift, parametrized by Γ. A velocity of sound that
varies in a prescribed manner, could help us restore the degeneracy between the constituents of the
dark sector in the unified DE models (see, e.g., [201,210–212]). It may also reveal the functional form
of the coupling parameter in the interactive DE models (see, e.g., [213–215]). In fact, as regards the
former class of models, a constant velocity of sound would require c2

s → 0, in order to match the
(baryon) mass power spectrum to the SDSS DR7 data [158]. Accordingly, we distinguish two cases:

(i) Γ = 0: In this case, p = constant = p0, and, therefore,

c2
s (Γ = 0) = 0 . (89)

In other words, in the isobaric (Γ = 0) limit, the pDMF model does resemble the ΛCDM model,
in which the cosmological constant does not carry any perturbations. For this reason, the Γ = 0
case is often referred to as the ΛCDM limit of the pDMF model.

(ii) Γ 6= 0: In this case, the total energy density of the Universe matter-energy content (63) is written
in the form

ε = ρc2︸︷︷︸
εmat

+
p

Γ− 1︸ ︷︷ ︸
εint

= ρ0c2
(

p
p0

)1/Γ
+

p
Γ− 1

, (90)

the partial differentiation of which, with respect to ε, yields

(
∂p
∂ε

)
S
=

Γ
(

p
ρc2

)
1 + Γ

Γ−1

(
p

ρc2

) =
( cs

c

)2
. (91)

Accordingly, the velocity of sound in the pDMF model, as a function of the cosmological redshift,
is given by ( cs

c

)2
= −

Γ(1− Γ) 1−ΩM
ΩM

(1 + z)3(1−Γ) + Γ 1−ΩM
ΩM

, (92)

in view of which, the requirement for a positive velocity-of-sound square yields a major
constraint on the upper bound of Γ, namely,( cs

c

)2
> 0⇔ Γ < 0 . (93)

There are two values of
( cs

c
)2 of particular interest, namely, (a) at transition (z = ztr), where

( cs

c

)2

tr
=
|Γ|
2
⇒ |Γ| = 2

( cs

c

)2

tr
, (94)

attributing to the polytropic exponent an unexpected physical interpetation, and (b) at the
present epoch (z = 0), when

( cs
c
)2 attains its maximum value, namely,
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( cs

c

)2

0
= (1 + |Γ|)

|Γ| 1−ΩM
ΩM

1− |Γ| 1−ΩM
ΩM

. (95)

Notice that, for a DM fluid consisting of relativistic particles (i.e., HDM), the velocity of sound
would be

( cs
c
)2

= 1
3 (see, e.g., [208] (p. 51), [216] (p. 509)). Accordingly, the requirement for

CDM at the present epoch constrain us to impose( cs

c

)2

0
<

1
3

, (96)

which, in the pDMF model under consideration, results in

|Γ| < 2
3

[√
1 +

3
4

ΩM
1−ΩM

− 1

]
= 0.089 . (97)

We see that, the physical requirements given by Equations (93) and (96), together with
Equation (89), have resulted in a narrower range of values of the polytropic exponent that can
be attributed to a realistic pDMF model, namely,

− 0.09 < Γ ≤ 0 . (98)

In view of Equation (98), in a pDMF model compatible to modern observational cosmology,
the polytropic exponent, if not zero (i.e., the ΛCDM model), is definitely negative and very
close to zero. Equation (98) is in good agreement to the corresponding result that arises for a
generalized Chaplygin gas, p ∼ −ρ−α, from the combination of X-ray and SNe Ia measurements
with data from Fanaroff-Riley type IIb radio-galaxies, namely, α = −0.09+0.54

−0.33 [217]. In addition,
by virtue of Equation (98), the present-time value of the deceleration parameter given by
Equation (83) falls into the range −0.686 < q0 ≤ −0.589, which lies at the lower part
of the observationally-determined range of values for q0, based on the SALT2 fitting to the
SNe+BAO/CMB data, i.e., q0 = −0.53+0.17

−0.13 [218].

4.5. Transition of the pDMF Model to Acceleration

For Γ < 0, the combination of Equations (69) and (84) yields

εint
εmat

=
1

2 + 3|Γ|

(
1 + ztr

1 + z

)3(1+|Γ|)
, (99)

which, at z = ztr, results in
εint
εmat

∣∣∣∣
tr
=

1
2 + 3|Γ| . (100)

Equation (100) suggests that, in contrast to the common perception, the onset of transition
from deceleration to acceleration in the pDMF model does not necessarily requires εint > εmat.
In fact, according to Equation (69), the internal (dark) energy density became equal to its rest-mass
counterpart quite later, at z = 0.384 (in a model with Γ = 0), which is remarkably close to
the observationally-determined value z = 0.391 ± 0.033 [30], associated with the ΛCDM model.
According to Equation (100), for values of the polytropic exponent in the range given by Equation (98),
the transition from deceleration to acceleration took place when

0.44 <
εint
εmat

≤ 0.50 . (101)
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The question is, why does it happen in this way. The answer is both revealing and simple:
Because of the GR itself!

In the context of GR, the dynamics of a spatially-flat FRW model is most appropriately
determined by Equations (7) and (10). In terms of cosmic time, the combination of these two
equations yields

S̈
S
= −4πG

3c2 (ε + 3p) (102)

(see, e.g., [68,202]); hence, the condition for accelerated expansion, S̈ > 0, results in

ε + 3p < 0 . (103)

In terms of the pDMF approach (cf. Equations (54) and (63)), the condition Equation (103) is
written in the form

ε + 3p = ρ0c2(1 + z)3
[

1− (2 + 3|Γ|)1−ΩM
ΩM

1
(1 + z)3(1+|Γ|)

]
< 0 . (104)

According to Equation (104), the pDMF model under consideration accelerates its expansion at
cosmological redshifts lower than a specific value, namely,

z <

[
(2 + 3|Γ|)1−ΩM

ΩM

] 1
3(1+|Γ|)

− 1 ≡ ztr , (105)

in complete agreement to the transition redshift, given by Equation (84). In view of Equations (104)
and (105), the pDMF model could most definitely explain why the Universe transits to acceleration at
ztr, without the need for an extra (dark) energy component or the cosmological constant. Instead, it
would reveal a (conventional) form of DE that so far has been disregarded, i.e., due to the (polytropic)
DM fluid internal motions. It is worth mentioning that the ΛCDM limit (Γ = 0) of the pDMF model
reproduces to high accuracy (also) the value of the (so-called) shift parameter [219], obtained by fitting
the CMB data to the standard ΛCDM model [220] (for a detailed analysis, see [160]).

5. Discussion and Conclusions

In this article, we review a series of recent theoretical results regarding a conventional approach
to the DE concept. In particular, we have explored the possibility that, the DE needed to
flatten the Universe and to accelerate its expansion, is attributed to the energy of the cosmic
fluid internal motions. In this framework, the Universe is filled with a perfect fluid, consisting
mainly of self-interacting dark matter, the volume elements of which perform hydrodynamic flows.
The pressure of this fluid is given by a barotropic equation of state, the functional form of which
depends on the type of thermodynamic processes occuring in its interior. Accordingly, we have
distinguished two cases [159,160].

In the first case [159], we have considered that the volume elements of the cosmic (DM) fluid
perform isothermal flows (iDMF model). This assumption led us to an alternative approach to the
DE concept. In fact, the internal energy of this fluid can compensate the (extra) DE needed for
Ω0 = 1 (cf. Equation (17)), even if the Universe is ever-decelerating (cf. Equation (25)). However,
this is not the case for an observer who insists on treating DM as dust. To find out what is
inferred by such an observer, we need to determine several cosmological parameters on which
he/she relies, in interpreting observations. This can be done most appropriately by means of the
conformal equivalence technique (cf. Equations (27) and (28)), developed by Kleidis and Spyrou [175].
The outcome is quite revealing.

In the iDMF model, there is a characteristic value of the actually-measured cosmological redshift,
zc (cf. Equation (36)), above which, dL > d̃L. In other words, an observer who—although living in the
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iDMF model—treats DM as dust, infers that any SN Ia event located at z > zc lies farther (in other
words, it looks fainter) than what is theoretically predicted (cf. Equation (35)). Furthermore, after the
thermodynamical content of the iDMF model is taken into account, the theoretically-derived distance
modulus, µ(z) (given by the combination of Equations (35), (37) and (41)), fits the Hubble diagram of
an extended sample of SNe Ia events [181] quite accurately (green curve in Figure 1), in contrast to the
corresponding collisionless-DM quantity, µ̃(z̃) (dashed curve in Figure 1). In other words, in the iDMF
model, no disagreement exists between observations and the theoretical prediction for the distant SNe
Ia distribution. Finally, in the context of the iDMF approach, the observers who mistreat DM as dust,
also infer that, recently (cf. Equation (48)), the Universe accelerated its expansion (cf. Equation (47)).

In view of all the above, the iDMF model could (most appropriately) serve as an alternative
to the DE concept. Nevertheless, compatibility of this model with the observational data currently
available, suggests that the DM consists of relativistic particles (cf. Equation (51)). In an effort to
confront with the HDM issue, we have accordingly considered the (astrophysically) more relevant
possibility that the volume elements of the DM fluid perform polytropic flows (pDMF model).

The pDMF model is, simply, a conventional DE model [160]. In the distant past, it behaves
as a dust FRW model (cf. Equation (82), for z � 1), while, on the approach to the present
epoch, the internal physical characteristics of the cosmic fluid take over. In fact, at cosmological
redshifts lower than z = 0.384, the energy density of the internal motions in the pDMF model
dominates over its rest-mass counterpart (cf. Equation (69)). Once again, the internal energy
compensates for the extra energy needed to compromise Ω0 = 1 (cf. Equation (68)). In addition,
for values of the polytropic exponent, Γ, lower than unity, the pressure of the DM fluid is negative
(cf. Equation (65)) and, so, the Universe accelerates its expansion at cosmological redshifts lower
than a transition value (cf. Equation (84)), in a way also consistent with the condition ε + 3p < 0
(cf. Equations (104) and (105)).

Several physical requirements impose successive constraints on the value of the polytropic
exponent. More specifically, the second law of Thermodynamics in an expanding Universe suggests
that Γ ≤ γ, where γ is the adiabatic index (in connection, see [160]). In this context, for Γ < 1,
the pressure becomes negative (cf. Equation (65)). Furthermore, the condition for a non-negative
transition redshift leads to Γ ≤ 0.540 (cf. Equation (85)), while, the requirement for a non-phantom
Universe yields Γ > −0.377 (cf. Equation (72)). A positive velocity-of-sound square at all z, implies
Γ ≤ 0 (cf. Equation (93)), and, eventually, the requirement for CDM at the present epoch results in
Γ > −0.09 (cf. Equation (97)). Hence, in a pDMF model that is compatible with modern observational
cosmology, the polytropic exponent settles down to the range −0.09 < Γ ≤ 0, namely, if it is not zero,
it is definitely negative, and very close to zero.

In the pDMF approach, the theoretically-determined value of the deceleration parameter at
the present epoch (Equation (83)), has a well-shaped cross-section with the lower part of the
corresponding observationally-determined range, q0 = −0.53+0.17

−0.13 [218]. On the other hand, for
Γ = 0, the internal energy density becomes equal to its rest-mass counterpart at z = 0.384
(cf. Equation (69)), a theoretical prediction that lies well-within the corresponding ΛCDM range,
z = 0.391± 0.033 [30]. The pDMF approach can confront with every major cosmological issue, such
as the age problem (see, e.g., Figure 2) and the coincidence problem (cf. Equations (69) and (70),
as well as Equations (104) and (105)). What is most important, is that, in such a model, there is no
disagreement between observations and the theoretical prediction of the distant SNe Ia distribution
(see, e.g., Figure 5). Finally, along the lines of the pDMF framework, we can most naturally interpret
why the Universe accelerates its expansion z < ztr (cf. Equations (104) and (105)).

In view of all the above, we conclude that, the cosmological model with matter content in the
form of a self-interacting DM fluid performing either polytropic or isothermal flows, may serve either
for a conventional DE model or a for viable alternative one, respectively. In fact, the idea that DE is
nothing else but the shadowy reflection of DM, looks very promising and should be further inspected,
in the search for a realistic approach to the DE concept.
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