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Abstract: We study here several simple models of the electron transfer (ET) in a one-dimensional
nonlinear lattice between a donor and an acceptor and propose a new fast mechanism of electron
surfing on soliton-like excitations along the lattice. The nonlinear lattice is modeled as a classical
one-dimensional Morse chain and the dynamics of the electrons are considered in the tight-binding
approximation. This model is applied to the processes along a covalent bridge connecting donors
and acceptors. First, it is shown that the electron forms bound states with the solitonic excitations
in the lattice. These so-called solectrons may move with supersonic speed. In a heated system, the
electron transfer between a donor and an acceptor is modeled as a diffusion-like process. We study in
detail the role of thermal factors on the electron transfer. Then, we develop a simple model based on
the classical Smoluchowski–Chandrasekhar picture of diffusion-controlled reactions as stochastic
processes with emitters and absorbers. Acceptors are modeled by an absorbing boundary. Finally, we
compare the new ET mechanisms described here with known ET data. We conclude that electron
surfing on solitons could be a special fast way for ET over quite long distances.
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1. Introduction

Taking into account the high interest in the development of molecular electronics, we study here
several models for the transfer of electrons along molecular chains modeled as one-dimensional (1d)
nonlinear lattices. It is worth noting that, recently, it has been suggested that DNA and possibly other
(bio)macromolecules could serve as electronic conductors otherwise said (bio)molecular wires that can
conduct charge carriers with virtually no resistance [1–7]. Experiments are now starting to provide the
first clues about the mechanisms that underlie charge transport. The field has recently been revived
with the advent of measurements on artificial DNA-like molecules. Barton and colleagues [3] measured
the fluorescence produced by an excited molecule and found that the fluorescence quenching was due
to the charge on the excited donor molecule leaking along the length of the DNA to a nearby acceptor
molecule, thus indicating that such DNA is a conducting molecular wire. Their findings, however,
are not without criticism as the physical mechanism offering transport has not been clearly identified.
The essential aspect here is the study of the temperature influence on transfer processes; for other
studies of the thermal dependence of macroscopic transport, see [8–14].
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2. One-Dimensional Dynamical Model of Electron Transfer

Long-range electron tunneling through biomolecules (e.g., azurin and DNA) has been studied
in substantial detail both experimentally and theoretically over the past twenty years [2,4,15–20].
In previous work, [11–14,21–27] we studied the influence of nonlinear lattice excitations on electron
transfer (ET). It was shown that electron trapping by solitons and a new form of electron transport
mediated by solitons is possible in an anharmonic 1d lattice. Here, we focus attention on the process
that occurs between two units in the chain, the donor D and the acceptor A, with in-between a bridge
consisting of n elements denoted by b: D-b-b-b-b-b.........-b-b-b-A. We shall show that solitons may
help to transfer electrons along the bridge. We will not consider in detail the processes D-b and b-A,
referring to the literature [17,18].

If solitons are excited by an external source, stable bound states of electrons and solitons may be
formed, which may move with supersonic or slightly subsonic velocity. In a heated system, solitons
are excited thermally. These solitons and the corresponding solectrons have a finite life time and
change their direction stochastically. The electrons may surf on thermal solitons from donor to acceptor.
Under these conditions, we may consider the ET as a process similar to a diffusion-controlled reaction.

Building upon earlier work [11–14,21–27], our interest is here in developing a dynamical theory
which allows the description of ET over long distances, including the influence of thermal excitations.
Adopting a 1d nonlinear lattice model to portray the backbone of the biomolecular chain (polypeptide,
polynucleotide or other), we investigate the consequences of nonlinear, running, lattice excitations on
electron transport. The theoretical model studied here is based the quantum mechanical “tight binding”
approximation (TBA) [28] for the electrons which are moving on a lattice with Morse interactions.
Note that the use of Morse potentials is just for numerical convenience and is not a must for the results.
We study in detail the role of thermal factors on electron transfer and the transition times, and give a
thorough discussion of the role of nonlinearity. One of the tasks is to develop a simple model based on
the Smoluchowski–Chandrasekhar picture of diffusion-controlled reactions as stochastic processes with
emitters and absorbers. We estimate the time-distance relations for the new non-standard mechanisms
of ET and the dependence on temperature at moderate temperatures. The lattice interactions allow
for phonon-and soliton-longitudinal vibrations with compressions governed by the repulsive part
of the potential [11–14,29–32]. Thus, we consider a 1d anharmonic lattice with dynamics described
by the following Hamiltonian: H = Hlattice + Helectron. The lattice part includes nearest-neighbor
Morse interactions:

Hlattice = ∑
n

{
p2

n
2M

+ D (1− exp [−B (qn − qn−1)])
2
}

. (1)

Here, M denotes the mass of a lattice unit (all units have equal mass), the coordinates and
momenta qn, pn; (n = 1, ..., N) describe their respective displacements from equilibrium positions (nσ)
and momenta, B characterizes the stiffness of the spring-like constant in the Morse potential, D is
the depth of the potential well, and σ defines equilibrium lattice spacing. These compressions were
shown to be responsible for electron trapping by the lattice excitations thus leading to the formation
of dynamic bound states (solectrons) of the electron with the soliton (the same phenomenon is valid
also for the solitonic peaks of a periodic cnoidal wave moving through the lattice). Furthermore, we
consider the whole system in a “thermal bath” characterized by a Gaussian white noise, ξ j, of zero
mean and delta-correlated.

We add electrons to the system of Morse particles assuming that the electrons are in reality in 3d
space though the lattice is 1d. Thus, for the electron-lattice dynamics, we have

Hel = En (qk) c∗ncn −∑
n

Vnn−1 (qk)
(
c∗ncn−1 + cnc∗n−1

)
, (2)
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where n denotes the site where one electron is “placed” on the lattice, the complex numbers cn give
the n-th component of the wave function and pn = |cn|2 gives the probability of finding the electron
residing at the site n. The bound state energy at site n may depend on the relative distances between
neighbors. We will use the ansatz

En = E0
n + χ0 (qn+1 − qn−1) . (3)

This is a translation-invariant modification of the linear shift used by Holstein and
Kalosakas et al. [33,34]. In view of its minor role, in what follows, we shall neglect the second term
in Equation (3). With this approximation, we want to keep the effect of energy shifts rather small,
concentrating more on the influence on the transfer elements. The quantity Vnn−1 defines the transfer
matrix element or overlapping integral responsible for the transport of the electron along the chain
(considering only nearest neighbors). This matrix is the key ingredient, allowing for the coupling
of the electron to the lattice displacements, and hence the lattice vibrations, phonons or solitons.
Following Slater [35–37], we take

Vnn−1 = V0 exp [−α0 (qn − qn−1)] , (4)

where the parameter α0 accounts for the strength of the coupling added to parameter V0. If we measure
all energies in units 2D, it is convenient to measure also the energy levels in these V0 which gives

En = 2Dεn. (5)

For the sake of universality, it is best to rescale quantities and consider a dimensionless problem.
We take as unit of time, Ω−1

Morse, where ΩMorse =
(
2DB2/M

)1/2 denotes the frequency of harmonic
oscillations (linear, first-order approximation to the Morse exponential). For displacements, we take
B−1 as the unit, for momenta we take (2MD)−1/2, hence for the interaction force we have α0V0/2BD,
and α0 is measured in

(
B−1) units. Then, expecting no confusion in the reader, denoting the new

dimensionless quantities with the same symbols as the old ones, the dynamics of the Hamiltonian
system Equations (1) and (2), is given by the following equations for the components of the electronic
wave function electron cn, and the lattice vibrations, qn

i
dcn

dt
= εncn − τ {exp [−α (qn+1 − qn)]cn+1 + exp [−α (qn − qn−1)]cn−1} , (6)

d2qn

dt2 = {1− exp [− (qn+1 − qn)]} exp [− (qn+1 − qn)]− (7)

−{1− exp [− (qn − qn−1)]} exp [− (qn − qn−1)]

+αV
{(

c∗n+1cn + cn+1c∗n
)

exp [−α (qn+1 − qn)]−
(
c∗ncn−1 + cnc∗n−1

)
exp [−α (qn − qn−1)]

}
,

where
V = V0/2D, α = α0/B, τ = V0/ΩMorse h̄. (8)

Not counting the energy levels, there are four parameters, the last one relates the time scales of
the electron and lattice dynamics. Needless to say, in general, the two time scales are not the same
(which in frequency terms refer to ultraviolet/electronic versus infrared/acoustic), for most cases
with electrons and phonons. Instead of the ansatz Equation (3), other equivalent expressions may be
used [12,38–40]. For purposes of illustration, we take the following parameter values:

σ = 4.0 Angstrom, B = 4.45 Angstrom−1, α = 1.75B, D = 0.1eV, V0 = 0.05eV, (9)

ΩMorse = 3.04× 1012s−1, csound = 12.1 Angstrom/ps, Ωelectron = V0/h̄ = 0.608× 1014s−1, τ = 10.
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These numerical values are relevant, e.g., for electron transport along hydrogen bonded
polypeptide chains such as α-helices [9,25–27,38–42]. Let us note what Muto et al. [43] give for
DNA other values, which, in our model, correspond to:

σ = 3.4 Angstrom, B = 2.1 Angstrom−1, D = 0.23eV,

csound = 16.9 Angstrom/ps, ΩMorse = 5.0× 1012s−1.

3. Electrons Surfing on Solitons—A Guided Tour of Electrons from Donor to Acceptor

We shall estimate how the path of an electron may be influenced by a lattice soliton which was
generated by an external perturbation of the lattice. The added, excess electron is placed at t = 0 at a
donor located at site n = 100 at time t = 0 (Figure 1). Due to the electron-lattice interaction (α = 1.75),
we observe soliton-assisted ET. The electron is dynamically bound to the soliton thus creating the
travelling supersonic or slightly subsonic solectron excitation. Indeed when the electron-lattice
interaction is operating, we see that the electron moves with the soliton with a slightly subsonic
velocity vel = (130/160)vsound and is running to the right border of the square (n, t) plot. Let us
assume that an acceptor is located there. This means that the electron is guided by the soliton from
donor to acceptor. Note that, in transport processes, several solitons may be involved including those
moving in opposite direction. Therefore, the above given soliton velocity is an upper bound for the
soliton-assisted ET. In order to study the superposition of several solitons acting on one electron, we
studied, in another experiment, the evolution of an electron in the presence of two solitons. Figure 2
illustrates the splitting of the electron probability density. The existence of bound states between
electrons and lattice deformations in 1d-lattices has been first studied in the continuous picture by
Davydov and his school [41,44].

In principle, the above solectron effect may be used as a way to manipulate or otherwise to
control the transport of electrons between donor and acceptor. Clearly, in our case, we may have a
polaron-like effect due to the electron-phonon (or soliton) interaction coupled to a genuinely added
lattice solitonic effect due to the anharmonicity of the lattice vibrations. This permits soliton rather
than phonon-assisted long range hopping.
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Figure 1. Evolution of one electron in probability density starting at position 100 and a soliton starting
at position 70. Then, 20–40 time units after the start the electron is catched by the soliton and forms
with it a bound state (called solectron) which moves with slightly subsonic velocity.
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Figure 2. Evolution of an electron starting at position 100 between two solitons emitted at positions 70
and 130, respectively. The electron probability density splits between the two solitons.

4. Dynamics of Electrons Interacting with Thermal Solitons

Let us study now a lattice heated to some temperature T. Then, thermal solitons are excited due
to the influence of thermal energy-rich collisions. However, we do not have just one or two solitons,
but many of them are generated by the heat bath [38–40]. To be expected is that this completely
changes the picture. In previous work, we have shown that we do not find any more long-living
soliton excitations in the chain [24]. Instead, we see up to the range of physiological temperatures
many small local soliton portions in the system which have a finite lifetime up to a few picoseconds.
The electron probability density may split between all of them.

The general picture is now that the electron probability density is concentrated in the local “hot
spots” created by the local soliton thermal excitations. In order to study the influence of this effect
on donor-acceptor ET in more detail, we performed a series of computer simulations. In this series
of experiments, we release an electron into an already heated lattice by means of the friction and
noise sources. These sources are switched off at an instant that we now denote t = 0. In Figure 3, we
represent the electron probability density developing in a lattice heated up to T = 0.1. We see that the
electron density is for t > 0 confined more or less in a cone. A similar picture is obtained for T = 0.5,
with a mere narrowing of the evolutionary cone. Clearly, the electron probability density splits into
many small spots which are localized at thermally excited solitons. These “hot spots” comprise up to
10 lattice (take up to 50 Å) sites and have a short life time which is in the range of a few picoseconds.
The little maximum of the electron density “dies” with the soliton or without destruction of the latter
and moves eventually to the next nearby soliton. The whole process is time dependent as the “hot
spots” are created and annihilated in the thermal process. Note that the spots denote only probabilities;
in reality, the electron is localized at one of the spots.

Figure 3. Evolution of the electron probability density of an electron released into a heated lattice
(T = 0.1, τ = 10, α = 1.75) gets concentrated at places of local soliton excitations (with a size up to
10 lattice units) and survives there for a finite time (may be a few picoseconds), and then it moves to
another solitonic “hot spot”.
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Modeling the netto-transfer of the electrons theoretically is rather difficult due to the complexity
of the life of an electron after injection. At first glance at the temperatures which we study here, it looks
like a diffusion-like process. Let us discuss whether the ET is a proper diffusion process. As is well
known, according to a linear Schrödinger equation, the electron probability density spreads in some
respect similar to a diffusion process, meaning that the mean square displacement growths linearly in
time. On the other hand, as shown by Brizhik and Davydov [44], the nonlinear Schrödinger equation
corresponds to processes which are much more complicated, e.g., the spreading of the density may
be fractal-like and may depend on the initial conditions. This way, we cannot expect that the ET is at
T = 0 or near to zero temperature a diffusion-like in all respects. Being aware of this complication,
we take here a diffusion approach for temperatures T > 0, or more precisely T > 0.1 (in units 2D),
since we expect that the thermal motion smoothes the expansion processes. Possible complications at
low T including tunneling have been discussed elsewhere [13,14]. The quantum-mechanical processes
at low temperatures, in particular the tunneling at T = 0, is certainly not diffusion-controlled. In
order to decide the question of whether the ET-processes at finite temperatures are diffusion-like, we
have to study in more detail the mean square displacement of the spreading of a free electron on the
heated lattice.

5. Mean Square Displacement of Electrons

For simplicity, we place the injected electron initially at t = 0 at n = n0 = 0 (for simplicity).
The mean square displacement is given by〈

n2 (t)
〉
= ∑ n2cn (t) c∗n (t) , (10)

where the quantities cn(t) have to be calculated according to the discrete Schrödinger Equation (6).
This procedure gives, however, only the quantum-mechanical mean. Still, we need here a second
average with respect to the stochastic trajectories of the lattice according to Equation (10). This way,
we define a diffusion-function of time

d(t) =
〈
< (n(t)− n0)

2 >
〉
=
〈
∑ n2cn(t)c∗n(t)

〉
. (11)

The outer bracket means that we have to take the average over many realizations (time evolutions)
of the lattice dynamics. The result has to be drawn as a function of time. We expect that this function
is linear in time at least in certain temperature range, that is, d(t) = 2De f f t. This is confirmed by
computer simulations (Figure 4). For the case of a linear lattice model, the linear dependence of the
mean square displacement with time was obtained by Lakhno and collaborators [45,46].

 0
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 0   10  20  30  40 t

d

Figure 4. The diffusion function d(t) over the time t for the temperature T = 0.5. It shows this ET
process as diffusion-like.
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The results of a stochastic simulation based on the master equation is shown by the thin line in
Figure 5 [38–40] together with De f f derived using the Schrödinger equation (fat points). We see that
both approaches disagree at low temperatures. As far as we see, the (theoretical) diffusion coefficient
of the hopping process at T = 0 (no lattice dynamics) should be τ (or may be proportional to τ).
Therefore, we believe that the calculation of d Equation (11) at low T < 0.1 with the Schrödinger
equation is incorrect due to the problems of fractality and other difficulties with the Schrödinger
equation [8]. In order to avoid all these difficulties, as already said, we concentrate in this work only
on T > 0.1, where the two approaches go together. In the TBA, we model a heat bath corresponding
to a temperature T by introducing a Langevin source for the temperature and wait for complete
thermalization. Then, we switch-off the heat bath, i.e., the stochastic source and friction, and start with
the initial conditions for velocities and positions the simulations of the coupled TBA-Hamiltonian
system. This procedure guarantees for a short simulation time thermal conditions. In the case of
using a master equation the method corresponds to a standard Monte-Carlo thermalization. For the
diffusional regime, the diffusion theory is telling us that an electron initially concentrated at the
position n0 has an evolving probability density described by

ρ (n, t) = C exp

[
− (n− n0)

2

2De f f t

]
. (12)

 
0

 10

 20

 30

 0.1  0.2  0.3  0.4  0.5 T

Deff

Figure 5. The effective diffusion coefficient, De f f , based on thermal electron hopping between solitons
leads to two different outcomes. The fat points are based on quantum-mechanical hopping modeled in
TBA whereas the thin line is obtained by solving quantum-statistical master equations and include
quantum-mechanical and thermal hopping effects in the stochastic description.

If we identify n0 with the donor, this formula shows how the electron probability density evolves
at some distance, in particular, also at the place where the absorber is located. For diffusion processes,
the mean square displacement is given by〈

(n (t)− n0)
2
〉
= 2De f f t. (13)

This tells us that the distance travelled by the electron goes as the square root of time t. This is
still a relatively fast mechanism, though is slower than ballistic surfing on solitons. On the other hand,
the density decays exponentially with the distance, this means the log of the density decays with the
square of the distance from the source. As we will discuss later, many authors report a linear decay of
the log of time with the distance. This remains still an open problem. Evidently, the ET donor-acceptor
is not solely diffusion-controlled. Surely there are other contributions such as tunneling [4,14,47].

Let us discuss now the findings (and conjectures) on ET presented so far. Electrons injected
into the lattice may form very stable bound states which move with supersonic or slightly subsonic
velocity along the lattice and may transfer the electron over hundreds of lattice sites. This affects points
in the direction of the observation of electron transfer over long distances with only a small loss of
energy [17,18]. The problem, however, remains how stable solitons may be excited. In principle, any
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fast mechanical deformation or structural reconformation could be responsible for the emission of
solitons running along the lattice. This, however, requires some coincidence between the electron
emission and the soliton emission. It seems to be more natural to use the assistance of thermal solitons,
which are always present in the nonlinear lattice.

We have seen above that the electron probability density may spread freely according to the
Schrödinger equation, and then it may be trapped in solectron bound states, a process which is not
diffusion-like, described by a nonlinear Schrödinger equation. The most important step is, however, the
decay of the hot spot and the occupation of the electron by another hot spot. Such charge trapping in
vibrational hot spots was observed also in the work of Kalosakas, Rasmussen and Bishop [34]. From the
overall view, our process is diffusion-like in spite of the fact that it might be not diffusion-like in some
steps. However, in the thermal average, it seems to be well approximated as “normal diffusion”. As a
consequence of the fact that, at least in our model, the ET is diffusion-like it is characterized by a
mean-square displacement and not by a well-defined speed. From this background (of a diffusion-like
character), we will develop now an absorber model.

6. A Diffusion-Type Absorber Model of the ET Donor-Acceptor

The model which we will develop now is based on the concept developed by Smoluchowski
and Chandrasekhar that an acceptor reaction can be modeled as a stochastic absorber problem [48,49].
Accordingly, we study a 1d model with periodic boundary conditions but containing an absorbing
boundary. In fact, we consider the (1d) chain including a barrier consisting of some sites where
electron probability density is absorbed, but these sites are fully transparent for the chain excitations.
The absorbing coefficient is defined by a Gaussian function

ρ (n) = exp

[
− (n− N + M)2

2m2

]
. (14)

We use N = 100 as the number of particles and here M = 4 (where ρ = 1 that is maximal),
m = 1 (m defines the width of the absorbing barrier). To start, we used an absorbing gap ρ = 1 at
n = 100 (that is at the right wall only), ρ = 0 at other sites, but then the electron is reflected mainly
from such a barrier. Therefore, we used a smooth absorbing barrier, preventing reflection of the
wave function of an electron from the barrier. The procedure of computer simulation is the following.
We make a step of integration as usual, then multiply the component of an electron wave function
by the absorbing coefficient (more precisely by 1− ρ(n)). It means that the absorption process in an
insertion is considered to be instantaneous, without inertia.

To demonstrate the influence of thermal effects, we studied first the absorption of the electron
of a solectron in a cold lattice (Figure 6) by following the electron probability density and the total
probability (Figure 7)

P = ∑
n
|cn|2 . (15)
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Figure 6. Evolution of the probability density, pn, of an electron approaching an absorbing boundary.
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Figure 7. Total probability P(t) according to Equation (15) to find the electron in the lattice system, the
probability decreases due to escape through the absorbing boundary. The blue line shows the value
1/e which is used for defining the “life-time” of residence of the electron in the lattice before being
absorbed by the boundary.

We observe that the solectron reaches the absorbing boundary at time t ∼ 42, then the electron
is absorbed almost entirely. Note that this corresponds in our model to the “time of arrival at the
acceptor” or, in other words, as the “transition time donor-acceptor”. Note also that within the model
a very small “part” of the electron probability density penetrates across the barrier. That the soliton
keeps on moving is a specific feature of our model and may even increase its velocity when loosing its
electron in the absorbing barrier. (Parameter values for the simulation are N = 100, α = 1.75, Bσ = 1,
V = 1, τ = 10). Next, we considered the heated lattice with the same parameter values for several
temperature values. Initially, the electron is supposed to be localized (in the form of the Gaussian
function) in the center of the chain.
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Figure 8. Heated lattice (top-down values: T = 0.01, 0.1 and 0.5 in 2D units). (Left panels): evolution
of the local electron probability density (pn). (Right panels): total density (P) at different temperatures
in the regime of thermal solitons.
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The results presented in Figure 8 are based so far on one computer simulation for each temperature.
Those figures show typical distributions of probability |cn|2(t) (to find an electron at site “n”, the local
electron density, left) and the total density P(t) (right). However, in order to estimate the transition time
in a more correct way, we have to perform a set of computer simulations with different realizations of
noise influence and then calculate an average characteristic value (Figure 9).

 0

 0.2

 0.4

 0.6

 0.8

 P

 0  40  80  120  160 t

Figure 9. The same problem as in Figure 8 but for a set of noise realizations (T = 0.15, in 2D units).

The averaged transition time as a function of temperature is presented in Figure 10. The transition
time is defined as a time when the total probability to fix an electron in a lattice becomes less than
e−1 ≈ 0.37 (note that sometimes authors use as criterium “1/3” instead of 1/e). One may see that
there is a minimum at temperature T ∼ 0.15, corresponding to the most effective interaction of the
electron with solitons. Note that the transiton time is here a sum of two time intervals: first, the time to
extract an electron from an “electron” potential well and, second, the travelling time of an electron
along the lattice from the donor to the acceptor. Note also that the tunneling does not “work” at such
long distances δn = 40, as the tunneling time is practically infinite [13,14]. In the case studied here,
thermal transitions interfering with quantum effects dominate. The large values of the transition time
ttr at low temperatures observed in Figure 10 are to be explained by the fact that the first time interval
grows sharply with temperature decreasing, although the electron travels along a lattice quickly. In
contrast, at high temperature the electron is extracted from a well rapidly, but thermal solectrons
become less stable.

 0

 100

 200

 300

 400

 0  0.1  0.2  0.3  0.4 T

ttr

Figure 10. Transition time ttr for moving from the donor to an absorbing acceptor divided by the
distance δn = 40 as a function of temperature. These results were obtained using TBA. (dotted green
line with the portion for T < 0.1 being spurious as discussed in the main text) and a master equation
approach (solid red line [13]).

To exclude the influence of characteristics of an initial potential well and exclude the contribution
of “extracting” time to the transition time, a set of computer simulations have been performed for the
initial state of an electron in the form of a narrow localized Gaussian bell in a non-deformed lattice
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consisting only of an absorber at the same position (Figure 10). These results were obtained with a
stochastic algorithm solver of master equations.

The results shown in Figures 9 and 10 agree for high enough temperatures T > 0.1 but disagree
somehow for lower temperatures T < 0.1. This is due to the different behavior of the diffusion
coefficient obtained in both formalisms (the purely quantum-mechanical and the quantum-statistical).
In some sense, these two curves (Figure 10) remind the two curves presented in Figure 5; however,
the details and the deeper reasons still remain unexplained. We have to take into account that the
quantum mechanical diffusion (dispersion of the density) is not a physical diffusion process but just
dispersion of wave functions. Our results strictly speaking are reliable only for T > 0.1.

7. Discussion of the ET Donor-Absorber and the Transition Times

At very low temperature T = 0.01, an initially localized wave function of the electron spreads
along the lattice and the total probability P(t) to find the electron along the chain decreases in time
approximately like an exponential function of time. Note that (1 − P(t)) is the probability of absorption.
At T = 0.1 (weak nonlinearity), the total electron density P(t) decreases much slower and does not
look like an exponential function of time. At T = 0.2, several steps in the dependence P(t) are
observed. In this case, the electron originally localized is quickly transformed to several solectronic
maxima; the steps in P(t) correspond to the absorption of these solectronic maxima. At T = 0.5,
several solitons are excited which are moving oppositely carrying parts of the electron probability
density. The probability of existence decreases rather slowly, it takes a very long time before the
absorption occurs, and the electron may overcome a quite a long distance before absorption, provided
the acceptor is placed far enough from the donor. In our diffusion model, the process is considered as
a diffusion-controlled reaction. In the framework of the the Smoluchowski theory, the reaction rate of
an electron with density ne and one absorber with radius rA at a fixed position is given by

r = nerADe. (16)

We see that the rates are proportional to the diffusion coefficient of the electron, De. The electron
probability density is decreasing with the distance and develops in time according to the diffusion law
Equation (12).

According to our estimate of the diffusion constant, reaction rates based on diffusion would first
increase with temperature, then reach a maximum at T ∼ 0.2 and then decay. The optimal temperature
is somewhere around T ∼ 0.2 in units of 2D. At this time, we are not aware of data which are in
agreement with this prediction. Most data seem to show an exponential relation between distance and
time. This point to the existence of other mechanisms for ET, such as tunneling [4,13,14,47,50,51].

Nevertheless, let us try to give some estimates based on the two mechanisms studied here: surfing
on external solitons and diffusion-like transport on thermal solitons.

Different computer simulations with absorbing boundary have been shown in Figure 9. As shown
by Chandrasekhar, diffusion transport is based on the mean square displacement which is given
by Equation (13) [49]. He estimated the mean flow through an absorbing boundary located at x1

and found

q (t, x1) =
x1

t
√

4De f f t
exp

[
−

x2
1

4De f f t

]
. (17)

Introducing here a dimensionless time τ, we get

q(τ) =
q (t, x1)(

4De f f /x2
1

) =
1√
τ3

exp
[
− 1

τ

]
. (18)

We show the flow d’ as a function of time according to the Chandrasekhar model in Figure 11.
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Figure 11. The (dimensionless) flow through an absorbing boundary at, say, location x1 according to
the model of Chandrasekhar as a function of (dimensionless) time.

As Figure 11 shows, the overwhelming amount of probability is absorbed within the
(dimensionless) time

τ = 2 =
4De f f t

x2
1

, x2
1 = 2De f f t. (19)

By returning to quantities with dimensions as Å and picoseconds,

t = 2σ2D′e f f
t
t0

, De f f =
σ2

t0
D′e f f . (20)

This corresponds just to the mean square displacement which is

x2
1 =

〈
∆x2

〉
= 2De f f t = 2σ2D′e f f

t
t0

. (21)

For the dimensionless effective diffusion coefficient D′e f f , we estimated a value around 30 close to
to the maximum with respect to the temperature. This way, we estimate in dimensional quantities a
value around 80 Å2/ps and, correspondingly, we find〈

(x1 [Angstrom])2
〉
= 160

(
Angstrom2/ps

)
t(ps) (22)

The empirical data are usually given as a log of the reciprocal time over the traveled distance
given in Å [18]. In our case, we get for the log of the reciprocal time the electron needs to travel the
distance l(t) the following estimate

lg [1/t (s)] = 14.2− 2 lg [l (t) /Angstrom] (23)

This estimate in Figure 12 is shown by the green curve (time is measured in seconds and the
distance in Å, so the 12 (ordinate) corresponds to a picosecond, the six to a microsecond).
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Figure 12. Estimated time t (log-scale) which an electron needs to travel a distance l(t) (on the abscissa
in Å units) by using several alternative mechanisms. On the y-axis, we represent (corresponding to
standard plots) the log of the reciprocal time in seconds. The green curve shows the estimate obtained
from our diffusion mechanism. The blue curve corresponds to the surf on an externally excited soliton
which moves with sound velocity. The red curve represents an average of data points (denoted by
crosses) measured for azurin and other biomolecules [18].

The estimate based on the diffusion mechanism is surely only a first rough result; in detail, things
might be more complicated. Indeed, ET is more complicated than the simple diffusion-controlled
reaction studied by Smoluchowski and Chandrasekhar [48,49]. Let us consider now the other
mechanism of surfing on one externally excited soliton such that the electron will travel approximately
with sound velocity from the donor to the acceptors: l(t) = ct. We estimate the sound velocity c here
as approximately 20 Å/ps. Let us mention that in some experimental work [52] a sound velocity of
16.9 Å/ps was measured for DNA. We have

lg [1/t (s)] = 12 +
20

l (Angstrom)
. (24)

This is the blue curve we have drawn in Figure 12. We see that the soliton-assisted mechanism
(blue curve), which we discussed here is much faster than the estimated average of the observed data
given by the lowest (red) curve where slower processes not yet understood seem to dominate in the
overall balance.

8. Conclusions

We studied here several mechanisms of electron transfer in nonlinear lattices. We have shown
that soliton-assisted electron transfer is one possible rather fast mechanism in a heated nonlinear
lattice. We modeled the lattice dynamics with Morse interactions and the electron dynamics as well as
the electron-lattice interaction in the quantum mechanical “tight binding” approximation. We have
shown that, while the thermal solitons which comprise around 10 lattice sites provide the carrier,
the electron “localization” on the lattice, strongly affects the ET-dynamics. The general tendency is
that, due to this mechanism, the transfer is much slower and the living times of the solectrons are
much higher than previously expected. A similar conclusion has been made based on a completely
different method [53]. These authors conclude, that “electronic coupling is most likely determined by
nonequilibrium geometries beyond a critical distance (6–7 Å in proteins and 2–3 Å in water)”. In our
work, some kind of “nonequilibrium geometries” are identified as local deformations due to thermal
lattice soliton excitations.

In conclusion, regarding the role of solitons, we may say that electron surfing on lattice solitons
generated by external sources provides an extremely fast way of ET (see the blue curve in Figure 12);
however, in this case, the source of solitons is yet to be identified. A possible candidate for the
source for externally excited solitons are Volkenstein’s conformons [54–56]. An alternative way of
ET studied here, which is more natural, is the surfing on thermal solitons. The latter provides a
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slower transport mechanism, due to the quick change of thermal soliton directions. However, this
surf is free since thermal solitons are always present. Note that this is a significant improvement
relative to the less realistic model used in [11]. A second mechanism, which is slower but still rather
fast, is diffusion-based on thermal solitons (green curve in Figure 12). We estimated here the needed
times for donor-acceptor transitions based on the Smoluchowski–Chandrasekhar model of absorbing
boundaries. The comparison with times observed in experiments (see lowest curve and data points
in Figure 12) shows that, under realistic conditions, the transition times are much longer, which means,
in reality, the transitions are slowed down by other yet unknown mechanisms such as capturing by
impurities. Indeed, as noted by Giese [4] and others, the question of how electrons migrate over long
distances was raised about thirty years ago and still is a matter of debate. One may assume that, in
reality, one has a combination of several mechanisms, between them the very slow mechanism of
tunneling may play quite a significant role [4,13,14,38–40,47].

In conclusion, the computer simulations based on our simple models show that the real processes
of donor-acceptor transitions may be very complex. It is to be understood with the interplay of several
components such as tunneling, thermal activation, diffusion, electron surfing on lattice solitons and
other effects. Clearly, the soliton-assisted transport is the fastest of them all eventually allowing the
longest path (or shortest time). All this illustrates the rather difficult problem of dissipative quantum
transport [47].
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