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Abstract: The distribution of word probabilities in the monkey model of Zipf’s law is associated
with two universality properties: (1) the exponent in the approximate power law approaches −1 as
the alphabet size increases and the letter probabilities are specified as the spacings from a random
division of the unit interval for any distribution with a bounded density function on [0, 1]; and (2),
on a logarithmic scale the version of the model with a finite word length cutoff and unequal letter
probabilities is approximately normally distributed in the part of the distribution away from the
tails. The first property is proved using a remarkably general limit theorem from Shao and Hahn
for the logarithm of sample spacings constructed on [0, 1] and the second property follows from
Anscombe’s central limit theorem for a random number of independent and identically distributed
(i.i.d.) random variables. The finite word length model leads to a hybrid Zipf-lognormal mixture
distribution closely related to work in other areas.

Keywords: Zipf’s law; random division of the unit interval; power law exponent; Anscombe’s
central limit theorem; universality

1. Introduction

In his popular expository article on universality examples in mathematics and physics Tao [1]
mentions Zipf’s empirical power law of word frequencies as lacking any “convincing explanation
for how the law comes about and why it is universal”. By universality he means the idea where
systems follow certain macroscopic laws that are largely independent of their microscopic details.
In this article we drop down many levels from natural language to discuss two universality properties
associated with the toy monkey model of Zipf’s law. Both of these properties were previously
considered in Perline [2], but the presentation there was incompletely developed, and here we clarify
and greatly expand upon these two ideas by showing: (1) how the model displays a nearly universal
tendency towards a −1 exponent in its approximate power law behavior; and (2) the significance
of the central limit theorem (CLT) for a random number of i.i.d. variables in the model with a
finite word length cutoff. We will sometimes refer to the case with a finite word length cutoff as
Monkey Twitter, as explained in Section 3. Our analysis regarding the very general tendency towards
a −1 exponent when letter probabilities are drawn as a sample from any of an enormous class of
probability distributions is a new result in the literature on this topic. Our application of the CLT
with a random number of summands was first introduced with respect to the monkey model in [2],
and we want to emphasize here that this is a significant aspect of the structure of the model.

Our paper is laid out as follows. In Section 2 we prove the strong tendency towards an
approximate−1 exponent under very broad conditions by means of a limit theorem for the logarithms
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of random spacing due to Shao and Hahn [3]. An equivalent but relatively longer proof of this,
still based on [3], has been given in [4]. In Section 3, we explain the underlying lognormal structure
of the central part of the distribution of word probabilities in the case of a finite word length cutoff and
show how it leads to a hybrid Zipf-lognormal distribution (called a lognormal-Pareto distribution
in [2]). These are universality properties in exactly Tao’s sense because the distribution of the word
probabilities (the macro behavior) is within very broad bounds independent of the details of how
the letter probabilities for the monkey’s typewriter are selected (the micro behavior). In Section 4,
we discuss the multiple connections between these results and well-known research from other areas
where Pareto–Zipf type distributions have been investigated. In the remainder of this section we
sketch some historical background.

It has been known for many years that the monkey-at-the-typewriter scheme for generating
random “words” conforms approximately to an inverse power law of word frequencies and therefore
roughly mimics the approximate inverse power form of Zipf’s [5] statistical regularity for many
natural languages [6]. However, Zipf’s empirical word frequency law not only approximates a power
distribution, but as he emphasized, it also very frequently exhibits an exponent in the neighborhood of −1.
That is, letting f1 ≥ f2 ≥ . . . fr · · · ≥ ... represent the observed ranked word frequencies, Zipf found
fr ≈ Cr−1, with C > 0 a constant depending on the sample size. Many qualifications have been raised
regarding this approximation (including the issue of the divergence of the harmonic series); yet as
I.J. Good [7] commented: “The Zipf law is unreliable but it is often a good enough approximation
to demand an explanation”. Figure 1 illustrates the fascinating universal character of this word
frequency law using the text from four different authors writing in four different European languages
in four different centuries. The plots are shown in the log-log form that Zipf employed, and they
resemble countless other examples that researchers have studied since his time. The raw text files for
the four books used in the graphs were downloaded from the Public Gutenberg databank [8].

Figure 1. Log-log plots of relative word frequencies by rank for four authors writing in four different
European languages in four different centuries. The approximate −1 slope in all the graphs is an
iconic feature of Zipf’s word frequency law.
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The monkey model has a convoluted history. The model can be thought of as actually embedded
within the combinatoric logic of Mandelbrot’s early work providing an information-theoretic
explanation of Zipf’s law. For example, in Mandelbrot [9] there is an appendix entitled
“Combinatorial Derivation of the Law pr = Pr−B” (his notation) that effectively specifies a
monkey model, including a Markov version, but is not explicitly stated as such. However,
his derivation there is informal, and the first completely rigorous analysis of the general monkey
model with independently combined letters was given only surprisingly recently by Conrad and
Michenmacher [10]. Their analysis utilizes analytic number theory and is, as a result, somewhat
complicated—a point they note at the end of their article. A simpler analysis using only elementary
methods based on the Pascal pyramid has now been given by Bochkarev and Lerner [11]. They have
also analyzed the more general Markov problem [12] and hidden Markov models [13]. Edwards,
Foxall and Perkins [14] have provided a directly relevant analysis in the context of scaling properties
for paths on graphs explaining how the Markov variation can generate both an approximate power
law or a weaker scaling law, depending on the nature of the transition matrix.

A clarifying and important milestone in the history of this topic came from the cognitive
psychologist, G.A. Miller [15,16]. Miller used the simple model with equal letter probabilities and
an independence assumption to give a heuristic analysis showing that this version generates a
distribution of word probabilities that yields a step function approximation to an inverse power law
such that the probability Pr of the rth largest word probability is (in a sense that needs to be made
precise) roughly of the form Pr ≈ Cr−β, for −β < −1. In addition, he made the very interesting
empirical observation that by using a keyboard of K = 26 letters and one space character, with
the space character having a probability of 0.18 (about what is seen in empirical studies of English
text), the value of −β in this case is approximately −1.06, very close to the nearly −1 value in
samples of natural language text as illustrated in Figure 1. In his simplified model, it turns out that
−β = −1 + ln(1− s)/ ln K, where 0 < s < 1 is the space probability, so that −β approaches −1 from
below as K increases. (Natural logarithms are denoted ln(x) and logarithms with any other radix will
be explicitly indicated, as in logK(x). Note that Miller’s −β involves a a ratio of logarithms, so that it
is invariant with respect to the radix used in the numerator and denominator.) In this article we give a
broad generalization of Miller’s observation to the case of unequal letter probabilities. In light of our present
results given in Section 2, the application of sample spacings from a uniform distribution in [2] to
study the −1 behavior using an asymptotic regression line should now be viewed as just a step in a
direction that ultimately led us to the Shao and Hahn limit used here.

2. Proof that −β Tends Towards −1 from the Asymptotics of Log-Spacings

For our analysis we specify a keyboard with an alphabet of K ≥ 2 letters {L1 . . . , LK} and a
space character S. The letter characters have non-zero probabilities q1, q2, . . . , qK. The space character
has probability s, so that ∑K

i=1 qi + s = 1. A word is defined as any sequence of non-space letters
terminating with a space. A word W of exactly n letters is a string such as W = Li1 Li2 . . . Lin S and
has a probability of the form P(W) = P = qi1 qi2 . . . qin s because letters are struck independently.
The space character with no preceding letter character will be considered a word of length zero.
The rank ordered sequence of descending word probabilities in the ensemble of all possible words is
written P1 = s > P2 ≥ . . . Pr ≥ . . . (P1 = s is always the first and largest word probability). We break
ties for words with equal probabilities by alphabetical ordering, so that each word probability has a
unique rank r.

Conrad and Mitzenmacher [10] give a carefully constructed definition of power law behavior in
the context of the monkey model as the situation where there exist C1, C2, β such that the inequality

C1r−β ≤ Pr ≤ C2r−β (1)

holds for sufficiently large r. It turns out that β > 1. A few comments about this definition are in
order. First, note that there will always be many words with tied probability values. For example,
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the words L1L2S and L2L1S have the same probability q1q2s. Because of this, the word probabilities
in this model could never exactly conform to a perfect inverse power law Pr = Cr−β. The asymptotic
behavior for Pr is more subtle than this and highlights the significance of Conrad and Mitzenmacher’s
analysis. They are able to give a stronger result when at least two letter probabilities have an irrational
log-ratio ln qi/ ln qj. For this case, they show that there exists a constant C such that Pr ∼ Cr−β,
where ∼ denotes asymptotic equivalence, limr→∞ Pr/(Cr−β) = 1. For our purposes here, we will
simply refer to the Conrad and Mitzenmacher results as generally implying that Pr has approximate
power law behavior. Note that inequality (1) implies the weaker asymptotic condition ln Pr ∼ −β ln r as
r → ∞. We’ll call this asymptotic log-log linear behavior and observe that on a log-log scale, ln C1 and
ln C2 are asymptotically negligible so that only the exponent −β becomes significant. As can be seen
in Figure 2b–d, to be explained shortly, monkey model word probabilities generated from unequal
letter probabilities in the manner described below produce graphs distinctly log-log linear.

Conrad and Mitzenmacher derive the exponent value −β but do not express it in what we
consider its simplest form. Following Bochkarev and Lerner [11], the parameter β can be represented
as the solution to

q1/β
1 + q1/β

2 + · · ·+ q1/β
K = 1, (2)

with β > 1. Bochkarev and Lerner [11] indicate ln p(r)− ln r/γ in the inequality for their Theorem 1,
but what was evidently intended is ln p(r) + ln r/γ. Their 1/γ is equal to our β. In the Miller model
with equal letter probabilities, q1 = · · · = qK = (1− s)/K, so from Equation (2), β in this case is found
to be 1− ln(1− s)/ ln K. In the Fibonacci example given by Conrad and Mitzenmacher [10] and in
Mitzenmacher [17] they use K = 2 letters with probabilities q1, q2 = q2

1 and q1 < (−1+
√

5)/2 so that

q1 + q2 < 1. Then β is the solution to q1/β
1 + q2/β

1 = 1, giving

β =
ln q1

ln((−1 +
√

5)/2).
(3)

Conditions leading to −β ≈ −1 were not explored in [10,11]. To understand how this behavior
can emerge, we define spacings through a random division of the unit interval and then state the
Shao-Hahn limit law. Let X1, X2, . . . , XK−1 be a sample of K − 1 i.i.d. random variables drawn from
a distribution on [0, 1] with a bounded density function h(x) ≤ M. Shao and Hahn present the
conditions for this limit in a more general way that reduces to this simpler statement when a density
function exists. Write the order statistics of the sample as X1:K−1 ≥ X2:K−1 · · · ≥ XK−1:K−1. The K
spacings Di are defined as the differences between the successive order statistics: D1 = 1− X1:K−1,
Di = Xi−1:K−1 − Xi:K−1 for 2 ≤ i ≤ K − 1 and DK = XK−1:K−1. We’ll refer to this as a generalized
broken stick process. By Shao and Hahn [3] Corollary 3.6, we have

1
K

K

∑
i=1

ln(KDi)
a.s−→ −

∫ 1

0
h(x) ln h(x)dx− λ, (4)

as K → ∞ and where a.s. signifies almost sure convergence, λ = 0.577 . . . is the Euler constant and
−
∫ 1

0 h(x) ln h(x)dx is the differential entropy of h(x). Clearly,

1
K

K

∑
i=1

ln(KDi) = ln K +
1
K

K

∑
i=1

ln Di, (5)

so dividing through by ln K gives

ln K
ln K

+
1
K

∑K
i=1 ln Di

ln K

a.s−→
−
∫ 1

0 h(x) ln h(x)dx
ln K

− λ

ln K
, (6)
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as K → ∞. The right side of the limit in (6) goes to 0 because −
∫ 1

0 h(x) ln h(x)dx/ ln K goes to 0 by
the boundedness of the density h(x). Expressing logarithms with a radix = K then leads to the limit

∑K
i=1 logK Di

K
a.s−→ −1 as K → ∞. (7)

Our universality property for β will now follow almost immediately from this. We use
sample spacings to populate the K letter probabilities for the monkey keyboard. Since s is the
probability of the space character, define qi = (1 − s)Di (1 ≤ i ≤ K) so that ∑K

i=1 qi = 1 − s.
Let mK = ∑K

i=1 logK qi/K. Then from the limit (7), we have

mK =
K

∑
i=1

logK qi

K
=

K

∑
i=1

logK((1− s)Di)

K

= logK(1− s) +
∑K

i=1 logK Di

K
a.s−→ −1 (8)

as K → ∞. Observe that logK(1− s) = ln(1− s)/ ln K → 0. Since mK
a.s−→ −1 from (8) and since

−β < −1, showing that mK ≤ −β will prove the argument that −β ≈ −1 for finite but sufficiently
large K. To see that this is the case, note:

K

∑
i=1

logK q1/β
i

K
= logK

[(
q1/β

1 q1/β
2 . . . q1/β

K
)1/K

]
(9)

≤ logK

( q1/β
1 + q1/β

2 · · ·+ q1/β
K

K

)
(10)

= logK
1
K

= −1, (11)

where the inequality in Equation (10) follows from the geometric-arithmetic mean inequality.
Therefore, from

K

∑
i=1

logK q1/β
i

K
=

1
β

K

∑
i=1

logK qi

K
=

1
β

mK ≤ −1, (12)

it has now been established that mK ≤ −β. In the special case of Miller’s model using all equal letter
probabilities, mK = −β.

We want to complement this analytic result for −β using a natural and insightful approximation
Prof. David Mumford kindly brought to our attention after looking at a preprint of this article.
Consider the function p(x) = ∑K

i=1 q1/x
i for x > 0. Then p′(x) = −∑K

i=1 q1/x ln qi/x2 and a first order
approximation from a Taylor expansion about x = 1 gives p(x) ≈ p(1) + (x− 1)p′(1) = 1− s + (x− 1)
(−∑K

i=1 qi ln qi). Since β satisfies p(β) = 1, it follows that 1 = p(β) ≈ 1− s + (β− 1)(−∑K
i=1 qi ln qi),

giving β ≈ 1 + s/(−∑K
i=1 qi ln qi). If the term −∑K

i=1 qi ln qi is sufficiently large, then β ≈ 1.
For the class of random variables that we considered in partitioning [0, 1− s] to populate the letter
probabilities, this will be the case for large K.

Figure 2 presents graphical results using simulations of sample spacings from several
distributions to illustrate our result for β. In Figure 2a we plot log10 Pr by log10 r for the Miller
model with exactly the parameter values he used, i.e., K = 26 letters, a space probability s = 0.18
and equal letter probabilities q1 = · · · = q26 = (1 − 0.18)/26. The graph is based on the ranks
1 ≤ r ≤ 475, 255 = ∑4

i=0 26j, corresponding to all words of length ≤ 4 non-space letters. Figure 2b
through 2d are based on generating K = 26 letter probabilities from three different continuous
distributions with bounded densities h(x) on [0, 1] using a generalized broken stick method to obtain
the sample spacings. Again s = 0.18 was used for the probability of the space character and the letter
probabilities were populated with values from the spacings with qi = (1− s)Di, 1 ≤ i ≤ 26, so that
in each case, ∑26

i=1 qi = 0.82, as in Miller’s example. For each graph in Figure 2b–d, we generated the
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largest 475,255 word probability values in order to match the Miller example of Figure 2a. The three
continuous distributions, all defined on [0, 1], are:

- a uniform distribution with density h(x) = 1;
- a beta B(3, 2) distribution with density

h(x) =
Γ(3 + 2)
Γ(3)Γ(2)

x3−1(1− x)2−1; (13)

- a triangular distribution with density

h(x) =

{
4x, if 0 ≤ 1/2
4(1− x) if 1/2 ≤ x ≤ 1.

(14)

Figure 2. Log-log plots of monkey word probabilities by rank showing the asymptotic tendency
towards a −1 exponent (slope on the log-log scales) using four different distributions to generate
letter probabilities: equal probabilities in (a) and a generalized broken stick process in (b–d). K = 26
letters were used in all cases and the largest ∑4

i=0 26i = 475, 255 word probabilities are displayed.

The graphs in Figure 2b–d illustrate our theoretical derivation, but we also note that the very
linear plots indicate what appears to be an almost “immediate” convergence to approximate power
law behavior exceeding what might be expected from the asymptotics of Conrad-Mitzenmacher and
Bochkarov-Lerner.

3. Monkey Twitter: Anscombe’s CLT for the Model with a Finite Word Length Cutoff

The discussion of the finite word length version of the monkey model in [2] was incomplete
because it did not explicitly provide the normalizing constants for the application of Anscombe’s
CLT for a random number of i.i.d. variables, as we do here. We also want to explain more clearly the
nature of the hybrid Zipf-lognormal distribution that results from a finite length cutoff when letter
probabilities are not identical.

The focus in Section 2 on the infinite ensemble of word probabilities P∞ ranked to give
P1 > P2 ≥ P3 . . . has actually obscured the significant hierarchical structure of the monkey
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model—what Mandelbrot (p. 345, [18]), called a lexicographic tree—which only becomes evident
when word length is considered. To see this, write Plen=n for the multiset of all word probabilities
for monkey words of exactly length n. There are Kn probabilities in Plen=n having a total sum of
(q1 + q2 + · · · + qK)

ns = (1− s)ns and an average value of ((1− s)/K)ns, declining geometrically
with n. Now taking word length into account, Mandelbrot’s lexicographic tree structure becomes
clear with the simple case of K = 2 letters: the root node of the tree has a probability of s (for the
”space” word of length 0); it has two branches to the next level consisting of nodes for words of
length 1 with probabilities q1s and q2s; these each branch out to the next level with four nodes having
probability values q2

1s, q1q2s, q2q1s, q2
2s and so on.

The formation of word probabilities as the product of letter probabilities immediately suggests
lognormal structure (normal on a log scale). A simple way to exhibit the underlying approximate
lognormal character of the finite multisets of word probabilities for all words of exactly length n
and those of length ≤ n is to construct their natural product probability spaces using the basic
counting measure for letter probability values. For this analysis it makes no difference how the letter
probabilities qi have been specified. We only require that they are positive values and at least two of
them are different from each other.

The relevance of the CLT is first seen by representing any probability P ∈ Plen=n as a product
of i.i.d. random variables times the constant s: P = X1X2 . . . Xns, where each Xi takes on one of the
letter probability values q1, q2, . . . , qK with probability 1/K (i.e., we use the natural counting measure
to construct a probability space on Plen=n). Let µ1 = ∑K

i=1 ln qi/K and σ2
1 = ∑K

i=1(ln qi − µ1)
2/K.

Assume that σ2
1 > 0, i.e., the letter probabilities are not all equal. Then µ1 + ln s is the mean and

σ2
1 is the variance of ln P for P ∈ Plen=1, and it follows that nµ1 + ln s and nσ2

1 are the respective

mean and variance of ln P = Sn = ∑n
i=1 ln Xi + ln s for P ∈ Plen=n. Therefore, (Sn − nµ1)/

√
nσ2

1 is
asymptotically normally distributed N(0, 1) (the term ln s is rendered negligible in the asymptics) so
that for sufficiently large n, P itself will be approximately lognormal LN(nµ1, nσ2

1 ). This approximate
normality for the log-probabilities of words of fixed length is quite obvious and was noted in passing
by Mandelbrot (p. 210, [19]). However, he missed a stronger observation that the Nn = ∑n

i=0 Ki word
probabilities for P ∈ Plen≤n = ∪n

i=0Plen=i have a distribution that behaves in its central part away
from the tails very much like P ∈ Plen=n. That is, a version of the CLT can be applied to words of
length ≤ n, not just to words of length n, and the two distributions, in one sense, are very close to
each other.

To show this, we make use of CLT results that pertain to a random number of i.i.d. random
variables. In the preceding paragraph, we explained how for P ∈ Plen=n, ln P could be regarded as the
sum Sn of a fixed number of i.i.d. random variables (plus a constant). Now we will apply an extended
version of this same logic to the multiset of all words of length ≤ n . For P ∈ Plen≤n, there are K j

word of length j, 0 ≤ j ≤ n. Think of ln P as represented by a sum ln X1 + ln X2 + · · ·+ ln XRn + ln s,
where 0 ≤ Rn ≤ n is the number of letters in the word. As before, we regard the Xi as random
variables taking on the values q1, q2, . . . , qK, each with probability 1/K. Now we will also let Rn be a
random variable assuming the values 0, 1, . . . , n. Define the distribution of Rn in terms of the natural
counting measure for word length: since there are K j words of length j and a total of Nn = ∑n

j=0 Ki

words in all, then Prob{Rn = j} = K j/Nn, 0 ≤ j ≤ n.
We first state Anscombe’s generalization of the CLT (Theorem 3.1, p.15, [20]) before applying it.

Let Tn = ∑n
i=1 Yi be the sum of n i.i.d. random variables with mean 0 and variance σ2, so that Tn

σ
√

n
converges in distribution to N(0, 1). Let νn be an integer random variable such that νn/n → θ in
probability as n→ ∞ (0 < θ < ∞). Then by Anscombe the sum Tν = ∑ν

i=1 Yi normalized as Tν

σ
√

nθ
also

converges in distribution to N(0, 1), just as Tn does. Note the presence of θ in the denominator in the
case for Tν.

It is now clear how to apply this theorem to SRn as we have constructed it. We will not repeat the
calculations of [2] here, but it is easily shown that Rn/n → θ = 1 in probability as n → ∞. Because
this limiting constant θ is 1, Anscombe’s generalization can be applied with the identical normalizing
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constants nµ1 and
√

nσ2
1 as used above with ln P for P ∈ Plen=n. Consequently, it is also true that

for P ∈ Plen≤n, the normalized sum (SRn − nµ1)/
√

nσ2
1 has an asymptotic N(0, 1) distribution. In

other words the two random sums Sn and SRn behave so similarly in their centers that the word
probabilities in Plen=n and Plen≤n are both approximately LN(nµ1, nσ2

1 ). (Again, the constant ln s can
be ignored in dealing with the asymptotics for both Sn and SRn .) However, it is essential to remark that
the two distributions have very different upper tail behavior. In this regard, Le Cam’s [21] comment
that French mathematicians use the term “central” referring to the CLT “because it refers to the center
of the distribution as opposed to its tails” is particularly relevant.

The behavior of P ∈ Plen≤n is illustrated in the graphs of Figure 3a,b. The plot in Figure 3a was
generated just as in Figure 2b except that a finite length cutoff of n ≤ 4 letters has been applied.
To make this clear, in Figure 2b the plot shows the top 475,255 word probabilities in P∞ generated
using K = 26 letters derived from uniform spacings. In contrast, using the same letter probabilities,
the plot in Figure 3a shows the 475,255 word probabilities generated with word length ≤ 4 letters,
i.e., all the values of P ∈ Plen≤4. Word length in the case of unequal letter probabilities is certainly
correlated, but not perfectly, with word probability: words of shorter length will, on average, have a
higher probability than those of longer length, but except in Miller’s degenerate case, there will
always be reversals where a longer word will have a higher probability than a shorter word. In natural
languages, Zipf [5] underscored that “the length of a word tends to bear an inverse relationship to its
relative frequency”, which he called the Law of Abbreviation. In many respects, this is the starting point
for his Principle of Least Effort. However, writing P1:Nn > P2:Nn · · · ≥ PNn :Nn for the ranked values of
Plen≤n, it should be evident that for any rank r, Pr:Nn ≤ Pr and that Pr:Nn = Pr when n is sufficiently
large. In short, Plen≤n inherits its upper tail approximate power law behavior from P∞, which is
illustrated by comparing the top part of the curve in Figure 3a with the corresponding part of Figure 2b.

Figure 3. Figure 3a is a log-log plot of monkey word probabilities by rank for all words of length ≤ 4
non-space characters using letter probabilities from uniform spacings. The linear upper tail coincides
closely with the previous Figure 2b, but the approximate power law clearly breaks down. Figure 3b
shows the same word probabilities in a standard normal quantile plot. Its rough linearity confirms an
approximate Gaussian fit over the whole distribution even though the upper tail is an approximate
power law as seen on the left in Figure 3a. We refer to this distribution as a Zipf-lognormal hybrid,
and it has many connections to other distributions discussed in the statistical literature.
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Figure 3b uses the same data points from Figure 3a graphed as a normal quantile plot, and its
roughly linear appearance for the logarithm of word probabilities for P ∈ Plen≤n conforms to an
approximate Guassian fit, although certainly the bending in the upper half of the distribution departs
a bit from the linear trend of the lower half. The fact that a distribution can have a power law tail
and lognormal central part and still look lognormal over essentially its entire range may seem surprising.
The discussion in [22] about power law mimicry in the upper tail of lognormal distributions helps to
explain why this can happen. We will call the distribution for Plen≤n a Zipf-lognormal distribution.

The monkey model with a fixed word length cutoff can prove useful as a motivating idea. In the
next section, we will discuss how models with the same branching tree structure have been proposed
many times in the past, typically in settings where something like a finite word length is natural to
consider. For the moment, think of the social networking service, Twitter, which allows members to
exchange messages limited to at most 140 characters. Define Monkey Twitter with a finite limit of n+ 1
characters. For convenience, in any implementation of a Monkey Twitter random experiment we will
assume that monkeys would always fill up their allotted message space of n + 1 characters. Monkey
words still require a terminating space character, so it is possible for a monkey to type (at most) one
“non-word”, which can vary in length from 1 to n + 1 characters, and will always be the last part of
a message string. Non-words are discarded, and the probabilities for the legitimate monkey words,
varying in length from 0 to n non-space characters plus a terminating space character, will correspond
to the values in Plen≤n.

4. Connections to Other Work

The subject of power law distributions is a vast topic of research reaching across diverse scientific
disciplines [17,22–24]. Here we provide a brief sketch of how our results connect to some other work
and how they can be considered in a much more general light.

The monkey model viewed in terms of its hierarchical tree structure is the starting point for
understanding its general nature. Though Miller did not explicitly present his model as a branching
tree, several researchers at almost the same time in the mid-to-late 1950s were highlighting this form
using the equivalent of equal letter probabilities to motivate the occurrence of empirical power law
distribution in other areas. For example, Beckman [25] introduced this idea in connection with the
power law of city populations within a country (“Auerbach’s law” [26]). Using essentially the same
logic as Miller, but in a completely different setting, Beckman assumed that a given community will
have K satellite communities, each with a constant decreasing fraction of the population at a higher
level. That is, if A is the population of the largest city and 0 < p < 1, there will be K nearby
satellite communities with population pA, K2 smaller communities nearby to these with population
p2 A, and so on. Mandelbrot (p. 226, [27]) had an apt expression for this pattern: he described
it as “compensation between two exponentials” because the number of observations at each level
increases geometrically while the mean value decreases geometrically. Beckman then went on to
note that if instead of using a constant decreasing fraction p, one used a random variable X on
(0, 1), the population at the nth level down would be a random variable of the form X1X2 · · ·Xn A,
leading to an approximate lognormal distribution of populations at this level. This corresponds to
our discussion of monkey word probabilities in Plen=n, although Beckman was not aware of the still
stronger statement of lognormality for the probabilities of words of length ≤ n in Plen≤n that we
demonstrated using Anscombe’s CLT.

Many more examples of a branching tree structure essentially equivalent to Miller’s monkey
model with equiprobable letters have been proposed over the years to motivate the occurrence of a
huge variety of empirical power law distributions, including such size distributions as lake areas,
island areas (“Korcak’s law”), river lengths, etc. Indeed, Mandelbrot’s [18] classic book on fractals
is a rich source of these. This equiprobability case is so simple to analyze that it has been invoked
over and over again to illustrate how power law behavior can arise. However, the more complicated
case using unequal letter probabilities (or proportions) and a finite word length cutoff is what really
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underscores the close analogy between the monkey Zipf-lognormal distribution and other mixture
models exhibiting hybrid power law tails and approximately lognormal central ranges.

Empirical distributions of this form have appeared with great frequency. In fact there is a long
history of researchers, including Pareto, first discovering what appears to be an empirical power
law over an entire distribution because they start out by looking at only the largest observations
(cities, corporations, islands, etc.). However, when they extend their measurements to the part of
the distribution below the upper tail, which is always more difficult to observe, the power law behavior
typically breaks down. Several examples of this are chronicled in [22]. The power law for city sizes
noted above is a perfect illustration. Auerbach in 1913 [26] looked at the 94 largest German cities
from a 1910 census and showed a good power law fit, but because he did not include the thousands
of smaller communities, he may not have been aware that this relationship breaks down. Modern
studies of the full distribution of communities, such as Eeckhout’s [28] analysis of the populations
of 25,359 places from U.S. Census 2000, prove with high confidence that the bulk of the community
populations fit an approximate lognormal distribution and that the power law behavior is confined
to the upper tail.

Montroll and Shlesinger [29,30] explained how to generate a Pareto-lognormal hybrid for income
distributions by using a hierarchical mixture model of lognormal distributions. This is motivated
from several angles, including the notion that higher classes amplify their income by organizing
in such a way as to benefit from the efforts of others. Reed and Hughes [31] have provided a
far-ranging framework for understanding these hybrid distributions across the entire spectrum of
disciplines where they have been discovered: “physics, biology, geography, economics, insurance,
lexicography, internet ecology, etc.” In [31] he and Hughes give a condensed summary showing that
“if stochastic processes with exponential growth in expectation are killed (or observed) randomly,
the distribution of the killed or observed state exhibits power law behavior in one or both tails”.
This work encompasses: (1) geometric Brownian motion (GBM); (2) discrete multiplicative processes;
(3) homogeneous birth and death processes; and (4) Galton–Watson branching processes. In one of
many variations on this theme, in his GBM model [32] Reed specifies a stochastic process that uses
lognormal distributions varying continuously in time with an exponential mixing distribution and
shows that this generates a “Double Pareto-Lognormal Distribution”. This has an asymptotic Pareto
upper tail and a central part approximately lognormal; in addition, it exhibits interesting asymptotic
behavior in the it lower tail where it is characterized by a direct (rather than an inverse) power law.
Reed has gone to great effort to demonstrate the high quality of the fit of this distribution for all
ranges of values (low, middle, high) across a wide variety of size distributions such as particle and oil
field sizes [32], incomes [33], internet file sizes and the sizes of biological general [31].

In today’s nomenclature, the term Zipf’s law has come to mean any empirical distribution with an
approximate power law form and an exponent close to the value−1, not just the word frequency law.
(To be clear here, when we refer to power law distributions, we also mean the hybrids with power
law tails that we have been considering.) The subset of power laws with this restricted exponent
value is surprisingly large and includes the distribution of firm sizes [34], city sizes [35], the famous
Gutenberg–Richter law for earthquake magnitudes [36] and many others.

Gabaix [35] pointed out that while it has long been known that stochastic growth processes could
generate power laws, “these studies stopped short of explaining why the Zipf exponent should be 1.”
To address this question, he has given a theoretical explanation of the genesis of a −1 exponent for
the Zipf law for city populations, but in fact, his approach can be regarded more generally. His key
idea is a variation of Gibrat’s [37] Law of Proportion Effect: using a fixed number of normalized
city population quantities that sum to 1 and assuming growth processes (expressed as percentages)
randomly distributed as i.i.d. variables with a common mean and variance, he proves that a steady
state will satisfy Zipf’s law. This proof requires an additional strong assumption in order to reach a
steady state, namely, a lower bound for the (normalized) population size. Gabaix goes on to discuss
relaxed versions of his model and how it fits into the larger context of similar work done by others.
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In their monograph on Zipf’s law Saichev et al. [38] modify and extend the core Gabaix idea
in numerous ways that render it more realistic. For concreteness, they present their work using the
terminology of financial markets and corporate asset values, but they are very clear on how their
models are relevant to a broad range of “physical, biological, sociological and other applications”.
As with Reed, GBM plays an important role in their investigations, which incorporate birth and death
processes, acquisitions and mergers, the subtleties of finite-size effects and other features. Notably,
they focus on the sets of conditions that lead to an approximate −1 exponent.

In both Harrëmoes and Topsøe [39] and Corominas-Murtra and Solé [40] −1 emerges as
a consequence of certain information theoretic ideas pertaining to the entropy function under
growth assumptions. In [39] the focus is on language and the expansion of vocabulary size while
simultaneously maintaining finite entropy. The perspective in [40] is broader, but still based on the
idea of systems with an expanding number of possible states “characterized by special features on
the behavior of the entropy”.

There is another topic area of statistical research that impacts on our work. Natural language
word frequency distributions have been characterized as Large Number of Rare Events (LNRE)
distributions because when collections of text are examined, no matter how big, there are always
a large number of words that occur very infrequently in the sample [41]. LNRE behavior indicates a
tip-of-the-iceberg phenomenon resulting from a sampling bias that captures the most common words,
but necessarily misses a vast quantity of rarely used words. This is a classic and much studied
problem encountered in species abundance surveys in ecological research, where a key question
becomes estimating the size of the zero abundance class—the typically great number of species not
observed in a sample because of their rarity [42].

To get an idea of the significance of this issue, consider that Figure 3a graphs the parent
distribution of word probabilities for the Zipf-lognormal distribution, and not the sample frequencies
as would be obtained from actually carrying out the Monkey Twitter experiment. Simple visual
inspection of Figure 3a indicates that the linear part of the graph (i.e., the power law tail) holds
for about 5 logarithmic decades or about the first 100,000 word probabilities out of the total of
475,255 probabilities plotted there. However, these 100,000 probabilities comprise 97.4% of the
total probability mass of all 475,255 values. Intuitively, it should be clear that sampling from
this Zipf-lognormal population distribution will be dominated by the Zipf part, not the lognormal
part. Unless the sample size was astronomically large, so that the large number of low probability
words showed up, the underlying structure of the parent distribution would not reveal itself.
To carry this idea still further, imagine the situation if the word length cutoff was on the order of
n = 140 characters, such as with real Twitter. No experiment could be run within any realistic time
frame to ever hope to obtain a sample sufficiently large to uncover the true hybrid character of the
population distribution—the sample would always appear as a Zipf law, not a Zipf-lognormal law.
This kind of visibility bias has been a constant and recurring theme in all areas where Pareto-Zipf type
distributions have been studied [2,22]. We believe its significance has been poorly appreciated in
relation to this topic.

Indeed, there are many challenging questions in connection with the sampling properties of
variations of the monkey model and how they compare to natural language text. Ferrer-i-Concho
and Gavaldà [43] show that even using the simple Miller model, there is a need for careful analysis
to properly evaluate the deviations between actual frequency histograms from finite samples and
their theoretical expected values. The analysis in [44] demonstrates that the monkey model of
independently combined characters, even when the number of characters and their probabilities are
populated with values corresponding to specific real language target text samples, yields sample
distributions that depart in systematic ways from that of the target text. Bernhardsson et al. [45] and
Yan and Minnhagen [46] have highlighted how real language corpora have frequency distributions
whose characteristics vary with the size of the sample and do not correspond to sampling properties
of the monkey model. As just one example, in [46] it is argued that an approximate power law
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form such as Zipf’s law cannot account for the fact that the scaling exponent typically increases with
increasing sample sizes in real language. Their Figure 2d shows the clear fluctuations in the exponent
as a function of text length.

We conclude by emphasizing how the monkey monkey fits into a much larger conceptual scheme
than appears at first glance. For example, by viewing the model as a branching tree—Mandelbrot’s
lexicographic tree—the self-similar character of its construction becomes clear. In fact, the model can
be construed as a fractal object with a fractal dimension of 1/β, where −β < −1 is the exponent
studied in Section 2 ([18,47]). Our application of random spacings is also very much in the spirit of
the enormously fruitful study of random matrix theory and a class of stochastic systems referred to
as the KPZ universality class. Along these lines Borodin and Gorin [48] have discussed a variety of
probabilistic systems “that can be analyzed by essentially algebraic method”, yet are applicable to a
broad array of topics. Miller’s model, analyzable with simple algebra, appears to us as an elementary
example perhaps falling into this category.

5. Conclusions

Sample spacings provide a natural way to populate the letter probabilities in the monkey model
through a random division of the unit interval. The Shao and Hahn asymptotic limit law for the
logarithms of spacings then leads to the result that the exponent in the approximate power law of
word frequencies will tend towards a −1 value under broad conditions as the number of letters in
the alphabet increases. A first order approximation for β provides a good intuitive understanding
of this behavior. The monkey model can also be viewed as a branching tree structure. In that light,
Anscombe’s CLT reveals an underlying lognormal central part of the word frequency distribution
when a finite word length cutoff is imposed. The resulting hybrid Zipf-lognormal distribution has
many connections to other work. The visibility bias inherent in sampling from this distribution is
similar to what has been noted as a characteristic of many different empirical power laws.
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