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Abstract: Recently, a new blind adaptive deconvolution algorithm was proposed based on a new
closed-form approximated expression for the conditional expectation (the expectation of the source
input given the equalized or deconvolutional output) where the output and input probability
density function (pdf) of the deconvolutional process were approximated with the maximum
entropy density approximation technique. The Lagrange multipliers for the output pdf were set
to those used for the input pdf. Although this new blind adaptive deconvolution method has
been shown to have improved equalization performance compared to the maximum entropy blind
adaptive deconvolution algorithm recently proposed by the same author, it is not applicable for
the very noisy case. In this paper, we derive new Lagrange multipliers for the output and input
pdfs, where the Lagrange multipliers related to the output pdf are a function of the channel noise
power. Simulation results indicate that the newly obtained blind adaptive deconvolution algorithm
using these new Lagrange multipliers is robust to signal-to-noise ratios (SNR), unlike the previously
proposed method, and is applicable for the whole range of SNR down to 7 dB. In addition, we also
obtain new closed-form approximated expressions for the conditional expectation and mean square
error (MSE).

Keywords: Lagrange multipliers; Bayesian approach; conditional expectation; deconvolution;
maximum entropy density approximation technique

1. Introduction

In this paper, we consider a blind adaptive deconvolution problem in which we observe
the output of an unknown, possibly non-minimum phase, linear system from which we want to
recover its input using an adjustable linear filter (equalizer) [1]. A blind deconvolution process
arises in many applications, such as seismology, underwater acoustic, image restoration and digital
communication [1–28].

In this paper, we consider the application in digital communications where the received symbol
sequence has been affected by intersymbol interference (ISI), whereby symbols transmitted before
and after a given symbol corrupt the detection of that symbol [2]. ISI causes harmful distortions
and presents a major difficulty in the recovery process. Thus, a blind adaptive filter is usually used
to remove the convolutive effect of the system to recover the source signal. Equalizers with the
sampling rate equal to the symbol rate are referred to as T-spaced equalizers. Equalizers with the
sampling rate higher than the symbol rate are referred to as fractionally-spaced equalizers (FSE).
A fractionally-spaced adaptive equalizer is a linear equalizer that is similar to a symbol-spaced
linear equalizer (T-spaced equalizer, where T denotes the baud, or symbol, duration). However, a
fractionally-spaced equalizer receives, say, U input samples before it produces one output sample
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and updates the weights, where U is an integer. The output sample rate and the input sample rate are
1/T and U/T, respectively. The weight updating occurs at the output rate, which is the slower rate.
Since the output of the fractionally-spaced equalizer needs to be calculated once in every symbol
period, the fractionally-spaced equalizer can be modeled as a parallel combination of a number of
baud-spaced equalizers (T-spaced equalizers). This parallel combination of baud-spaced equalizers is
known as the multi-channel model of FSE. Among fractionally-spaced constant modulus algorithms,
we may find [29] and [30], where [29] shows the robustness of the constant modulus algorithm to
noise and [30] shows that the constant modulus criterion is well suited for any subgaussian input
distribution as all quadrature amplitude modulation (QAM) signals. The main disadvantage with
using fractionally-spaced equalizers is that all processing before the equalization must be done at
a higher rate than would be needed for T-spaced equalizers. This can increase the cost and power
consumption of systems based on fractionally-spaced equalizers. However, fractionally-spaced
equalizers have several advantages that often can justify this increase of complexity. One advantage
of fractionally-spaced equalizers over T-spaced equalizers is relative immunity to the sampling
phase, where sampling phase refers to the time offset of the sampling instance relative to the
symbol clock. As already mentioned earlier, a fractionally-spaced equalizer can be modeled with
a single-input-multiple-output (SIMO) system. In the field of communication, SIMO channels appear
either when the signal is oversampled at the receiver or from the use of an array of antennas in
the receiver [31–33]. It should be pointed out that for the SIMO case, the same information is
transmitted through different subchannels; all received sequences will be distinctly distorted versions
of the same message, which accounts for a certain signal diversity [34]. Therefore, it is reasonable to
assume that more information about the transmitted signal will be available at the receiver end [34].
SIMO transmission is widely replacing the single-input-single-output (SISO) approach to enhance the
performance via diversity combining [35]. Since the SIMO approach consists of a parallel combination
of baud-spaced (T-spaced) adaptive equalizers, it is reasonable to think that if those T-spaced blind
adaptive equalizers already lead to good equalization performance for the SISO case, they also may
make a major contribution to the equalization performance for the SIMO approach. We focus in
this paper on the SISO case where a T-spaced blind adaptive equalizer is used to overcome the ISI
problem. We do not deal in this paper with techniques that can improve the overall equalization
performance, such as the use of multiple receive antennas, the oversampling technique or the use of
multiple adaptive T-spaced equalizers connected in series, as was shown in [36].

Blind deconvolution algorithms are essentially adaptive filtering algorithms designed such that
they do not require the external supply of a desired response to generate the error signal in the
output of the adaptive equalization filter [2,37,38]. The algorithm itself generates an estimate of the
desired response by applying a nonlinear transformation to sequences involved in the adaptation
process [2,37,38]. In this paper, we consider the Bussgang blind equalization algorithms, where
the nonlinear function is applied at the output of the deconvolutional process (equalizer). In the
literature, we may find two different approaches for designing this nonlinear function. According
to one approach, the nonlinearity is designed to minimize a cost function that is implicitly based
on higher order statistics (HOS) and characterizes the ISI [1,39–48]. Minimizing this cost function
with respect to the equalizer’s coefficients reduces the ISI to such a level that the sent symbol
can be recovered. According another approach, the conditional expectation (the expectation of the
source input given the equalized or deconvolutional output) is the nonlinear function. Namely,
the conditional expectation based on Bayes rules is derived for estimating the desired response.
The relationship between the two approaches will be shown in the next section. In this paper,
we consider the approach where the conditional expectation has to be obtained for estimating the
desired response. In [38,49–51], the conditional expectation was derived for uniformly distributed
source signals. Thus, [38,49–51] cannot cope with a source having a general pdf shape. In [20,52,53],
the conditional expectation was given as approximated closed-form expressions suitable for the real
or two independent quadrature carrier input case. Those expressions [20,52,53] are suitable for
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a wider range of source probability density function compared to [38,49–51]. The input pdf was
approximated in [20,52] with the maximum entropy density approximation technique, while in [53],
the input pdf was approximated with the Edgeworth expansion series. The equalized output pdf
was calculated in [20] and [53] via the approximated input pdf, while in [52], the equalized output
pdf was approximated with the maximum entropy density approximation technique. According to
simulation results carried out in [52] for the 16QAM constellation input case, the equalization method
based on the conditional expectation from [52] has better equalization performance compared to the
maximum entropy equalization technique [20], which was shown to have significant equalization
improvement compared to Godard’s [39], the reduced constellation algorithm (RCA) [54], the sign
reduced constellation algorithm (SRCA) [55] and others. The equalization performance improvement
seen in [52] over the maximum entropy equalization method [20] was in the high SNR environment,
as well as in the medium SNR case. However, the blind adaptive deconvolution algorithm proposed
in [52] is not applicable for the very noisy case, since the Lagrange multipliers related to the output
pdf were set in [52] to those used for the input pdf of the deconvolutional process. In other words,
the noise component at the equalized output was ignored in [52]. In this paper, we do not ignore the
noise component at the equalized output as was done in [52]. We derive new Lagrange multipliers for
the output and input pdfs where the Lagrange multipliers related to the output pdf are a function of
the channel noise power. We will show via simulation results that the blind adaptive deconvolution
algorithm obtained with the new Lagrange multipliers is robust to SNR, while the recently-obtained
blind adaptive deconvolution algorithm [52] with the same Lagrange multipliers for the input and
output pdfs is not. By robust to SNR, we mean that the same step size parameter or parameters
involved in the update mechanism of the equalizer’s taps do not have to be changed for equalization
convergence purposes due to changes in the SNR environment. In addition, we will show via
simulation results that the blind adaptive deconvolution algorithm with the newly obtained Lagrange
multipliers is applicable for the whole range of SNR down to 7 dB. We also obtain in this paper
new closed-form approximated expressions for the conditional expectation and MSE. The paper
is organized as follows: after having described the system under consideration in Section 2, we
introduce in Section 3 our new closed-form approximated expressions for the conditional expectation,
MSE and Lagrange multipliers. In Section 4, we present our simulation results, and in Section 5, we
present our conclusion.

2. System Description

The system under consideration is the same system from [52], illustrated in Figure 1, where we
make the following assumptions:

1. The input sequence x[n] can be written as x[n] = x1[n] + jx2[n], where x1[n] and x2[n] are the real
and imaginary parts of x[n], respectively. We assume that x1[n] and x2[n] are independent and
that E[x[n]] = 0, where E[·] stands for the expectation operation.

2. The unknown channel h[n] is a possibly non-minimum phase linear time-invariant filter in which
the transfer function has no “deep zeros”, namely the zeros lie sufficiently far from the unit circle.

3. The filter c[n] is a tap-delay line.
4. The channel noise w[n] is an additive Gaussian white noise.
5. The function T[·] is a memoryless nonlinear function that satisfies the additivity condition:

T[z1[n] + jz2[n]] = T[z1[n]] + jT[z2[n]], where z1[n], z2[n] are the real and imaginary parts of
the equalized output, respectively.
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Figure 1. Block diagram of the system.

As was described in [52], the sequence x[n] is transmitted through the channel h[n] and is
corrupted with channel noise w[n]. The ideal equalized output is expressed in [37] as:

z[n] = x[n− D]ejθ (1)

where D is a constant delay and θ is a constant phase shift. Therefore, in the ideal case, we could write:

c[n] ∗ h[n] = δ[n− D]ejθ (2)

where “∗” denotes the convolution operation and δ is the Kronecker delta function. In this paper, we
assume that D = 0 and θ = 0, since D does not affect the reconstruction of the original input sequence
x[n], and θ can be removed by a decision device [37]. According to [56], if the input sequence is
stationary and the channel is linear time-invariant, then the observed sequence z[n] is also stationary;
its pdf is therefore invariant to the constant delay D. The constant phase shift θ is also of no immediate
consequence when the pdf of the input sequence remains symmetric under rotation [56], which is the
case in this paper. Thus, according to [56], we may simplify the condition for perfect equalization by
requiring that z[n] = x[n], which means D = 0 and θ = 0. Next, convolving c[n] with the received
sequence, we obtain:

z [n] = x [n] + p̃ [n] + w̃ [n] (3)

where p̃[n] is the convolutional noise, arising from the difference between the ideal and the guessed
value for c[n] and w̃ [n] = w [n] ∗ c [n]. The intersymbol interference (ISI) is often used as a measure
of performance in deconvolutions’ applications, defined by:

ISI = ∑m̃ |s̃[m̃]|2 − |s̃|2max
|s̃|2max

(4)

where |s̃|max is the component of s̃, given in (5), having the maximal absolute value.

s̃[n] = c [n] ∗ h [n] = δ [n] + ξ [n] (5)

where ξ[n] stands for the difference (error) between the ideal and the guessed value for c[n]. The
function d[n] is an estimation of the input sequence x[n], which is produced by the function T[z[n]].
Thus, the error signal is: ẽ [n] = T [z [n]]− z [n]. This error is fed into the adaptive mechanism, which
updates the equalizer’s taps:

c[n + 1] = c[n] + µẽ [n] y∗[n] (6)
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where ()∗ is the conjugate operation, µ is the step size parameter and c[n] is the equalizer vector,
where the input vector is y[n] = [y[n]...y[n − N + 1]]T . The operator ()T denotes the transpose
of the function (), and N is the equalizer’s tap length. As was mentioned earlier in this paper,
according to the first approach for designing the nonlinear function, a predefined cost function F[n]
that characterizes the ISI is minimized with respect to the equalizer’s coefficients. Minimization
is performed with the gradient descent algorithm that searches for an optimal filter tap setting by
moving in the direction of the negative gradient −∇cF[n] over the surface of the cost function in the
equalizer filter tap space [57]. Thus, the adaptive mechanism that updates the equalizer’s taps can be
given by:

c[n + 1] = c[n] + µ (−∇cF[n]) = c[n]− µ
∂F[n]
∂z[n]

y∗[n] (7)

Please note that by ẽ [n] = T [z [n]] − z [n], (6) and (7): T[z[n]] = z[n] − ∂F[n]
∂z[n] ; thus, choosing the

cost function F[n] results in a corresponding choice of T[z[n]] [57]. According to [37], the conditional
expectation (E[x[n]|z[n]]) is touted as a good estimate of T[z[n]]. Thus, we may say that according to
the first approach (the cost function approach), the conditional expectation (E[x[n]|z[n]]) is obtained
implicitly, while according to the second approach, the conditional expectation (E[x[n]|z[n]]) is
obtained explicitly. In [52], the conditional expectation (E[x[n]|z[n]]) was applied for T[z[n]] by
using T[z1[n] + jz2[n]] = T[z1[n]] + jT[z2[n]] (Assumption 5). The conditional expectation for the
real valued and noiseless case was obtained [52] via:

E [x[n]|z[n]] =

∞∫
−∞

x[n] fz|x(z|x) fx(x)dx

fz (z)
(8)

where fz|x (z|x) was given by:

fz|x (z|x) = 1√
2πσp̃

exp
(
− (z[n]−x[n])2

2σ2
p̃

)
(9)

the convolutional noise power was expressed as σ2
p̃ , and fx(x), fz(z) were denoted as the source

and equalized output pdfs, respectively. The source and equalized output pdfs ( fx(x), fz(z)) were
approximated in [52] with the maximum entropy density approximation technique:

f̂x(x) = exp
(

∑K
k=0 λkxk[n]

)
; f̂z(z) = exp

(
∑K

k=0 λ̃kzk[n]
)

(10)

where λk and λ̃k (k = 0, 1, 2, ..., K) are the Lagrange multipliers, f̂x(x), f̂z(z) are the approximated
probability density function of the source and equalized output, respectively, and K controls the
number of Lagrange multipliers in the maximum entropy density approximation technique (10) and
plays a role in how successful that approximation will be. For example, the pdf approximation
of a non-Gaussian input sequence with zero mean would be less successful with the choice of
K = 2 than with the choice of K > 2. As already mentioned earlier in this paper, [52] assumed
that λk = λ̃k. Next, the conditional expectation (8) was extended in [52] to the two independent
quadrature carrier case. According to [49], the conditional mean estimate of the complex datum x[n]
(x[n] = x1[n] + jx2[n]) given the complex observation z[n] (z[n] = z1[n] + jz2[n]) can be written as:
E [x[n]|z[n]] = E [x1[n]|z1[n]] + jE [x2[n]|z2[n]] . Therefore, the real and imaginary parts of the data
could be estimated separately on the basis of the real and imaginary parts of the equalized output.
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3. The New Lagrange Multipliers

In this section, we derive new Lagrange multipliers related to the input and output pdfs valid
for the real valued and noisy case. Namely, we consider (10), but unlike [52], we assume:

λ̃k = λk + ε̃k for k = 0, 2, 4 (11)

where ε̃k will tend to zero only when both the convolutional noise p̃[n] and the channel noise
w̃[n] tend to zero. Please note that we consider only the even numbers for k, since according to
Assumption 1 from the previous section, the input sequence has zero mean. In addition, we consider
here K = 4, since this value was used in [52] for approximating the input and equalized output
pdfs and has been shown to lead to good equalization performance. Thus, K = 4 may not be
the optimal value in the pdf approximation of a 16QAM constellation input used in [52], but for
equalization purposes, this value for K was enough. Since we compare the equalization performance
obtained in this paper with [52], the same number of Lagrange multipliers should be taken in the
pdf approximations for a fair comparison. This section is divided as follows: In Subsection 3.1, we
derive for the real valued case, closed-form approximated expressions for ε̃0, ε̃2 and ε̃4 as a function
of the convolutional noise power, channel noise power and Lagrange multipliers (λ2 and λ4) related
to the input pdf. In Subsection 3.2, we derive, for the real valued case, a closed-form approximated
expression for the expected MSE of the system as a function of ε̃0, ε̃2, ε̃4, convolutional noise power,
channel noise power and Lagrange multipliers (λ2 and λ4) related to the input pdf. In Subsection 3.3,
we substitute the closed-form approximated expressions for ε̃0, ε̃2 and ε̃4 obtained in Subsection 3.1
into the obtained MSE expression from Subsection 3.2; thus obtaining a closed-form approximated
expression for the MSE depending only on the convolutional noise power, channel noise power and
Lagrange multipliers (λ2 and λ4) related to the input pdf. Next, this new expression for the MSE
is minimized in Subsection 3.3 with respect to λ2 and λ4, and newly derived expressions for both
λ2 and λ4 are obtained depending only on the source moments. Please note that in [52], only λk
(k = 0, 2, 4) were considered in (10). In addition, no closed-form expression was needed for λ0 in [52],
as is the case also in this paper due to the fact that λ0 is reduced in (8) when using (10) with (11) for
approximating the input and output pdfs.
In this section, we use the following additional assumptions, which were also made in [52]:

1. The convolutional noise p̃[n] is a zero mean, white Gaussian process with variance σ2
p̃ =

E[ p̃[n] p̃∗[n]] (where (·)∗ is the conjugate operation on (·)).
2. The source signal x[n] is an independent non-Gaussian signal with known variance and higher

moments.
3. The convolutional noise p̃[n] and the source signal are independent.
4. The convolutional noise power σ2

p̃ is sufficiently low.

Assumptions 1 and 3 were also made in [37,38,49,51]. As already was noted in [20,58],
the described model for the convolutional noise p[n] is applicable during the latter stages of the
process, where the process is close to optimality [38]. According to [38], in the early stages of
the iterative deconvolution process, the ISI is typically large with the result that the data sequence
and the convolutional noise are strongly correlated, and the convolutional noise sequence is more
uniform than Gaussian [59]. However, satisfying equalization performance was obtained by [51] and
others [20] in spite of the fact that the described model for the convolutional noise p[n] was used.
These results [51], [20] may indicate that the described model for the convolutional noise p[n] can be
used (maybe not in the optimum way) also in the early stages where the :eye diagram: is still closed.

3.1. Closed-Form Approximated Expressions for ε̃0, ε̃2 and ε̃4

In this subsection, we derive closed-form approximated expressions for ε̃0, ε̃2 and ε̃4.
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Theorem 1. ε̃0, ε̃2 and ε̃4 can be expressed as:

ε̃0 = −ε0; ε̃2 = −ε2; ε̃4 = −ε4 (12)

where:
ε0 = −2λ2σ2

p ; ε2 = −σ2
p
(
4λ2

2 + 12λ4
)

; ε4 = −16λ2λ4σ2
p (13)

and:
σ2

p = σ2
p̃ + σ2

w̃; σ2
w̃ = E[w̃[n]w̃∗[n]] (14)

Proof of Theorem 1. For simplicity, we use in the following x = x[n], z = z[n] and p = p[n]. The
equalized output sequence (3) can be expressed as:

z = x + p (15)

where p = p̃[n] + w̃[n]. By using Assumption 1 and Assumption 4 from this section and the previous
section, respectively, we may conclude that p is a white Gaussian process. Furthermore, based on
Assumption 3 from this section, p is independent of the source sequence x. Thus, according to [60], if
x and p are independent, the equalized output pdf equals to:

fz (z) =
∫ ∞

−∞
fx (x) fp (z− x) dx (16)

where fx (x) is the source pdf and fp (z− x) is the pdf of p. Now, by using the maximum entropy
density approximation technique (10) for approximating the input pdf and the Gaussian pdf for
approximating the pdf of p, (16) can be approximately written as:

fz (z) '
1√

2πσp

∫ ∞

−∞
g(x) exp(−Ψ(x)

ρ
)dx (17)

where:

g(x) = exp

(
K

∑
k=0

λkxk

)
for k = 0, 2, 4; Ψ(x) = (z− x)2; ρ = 2σ2

p (18)

Next, we use Laplace’s method [61] for solving the integral in (17). According to [20,61], the Laplace’s
method is a general technique for obtaining the asymptotic behavior as ρ → 0 of integrals in which
the large parameter 1/ρ appears in the exponent. The main idea of Laplace’s method is: if the real
continuous function Ψ(x) has its minimum at x0, which is between infinity and minus infinity, then
it is only the immediate neighborhood of x = x0 that contributes to the full asymptotic expansion of
the integral for large 1/ρ. Therefore, according to [20,61], we may write:∫ ∞

−∞ g(x) exp(−Ψ(x)
ρ )dx '[

exp(−Ψ(x)
ρ )
√

2πρ
d2Ψ(x)

dx2

(g(x) + 1
2

d2

dx2 (g(x)) ρ
d2

dx2 (Ψ(x))
+ 1

8
d4

dx4 (g(x)) ( ρ
d2

dx2 (Ψ(x))
)2 + O( ρ

d2
dx2 (Ψ(x))

)3)

]
x=x0

(19)
where O(x) is defined as limx→0 O(x)/x = R and R is a constant. The functions d2Ψ(x)

dx2 and x0 are
obtained via:

dΨ(x)
dx = −2(z− x); d2Ψ(x)

dx2 = 2;

dΨ(x0)
dx = −2(z− x0) = 0⇒ x0 = z

(20)
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Next, by using (18)–(20), the equalized output pdf (17) can be written as:

fz (z) ' g(z)
[(

32λ4
4σ4

p

)
z12 +

(
64λ2λ3

4σ4
p

)
z10 + 1

8 σ4
p
(
384λ2

2λ2
4 + 1152λ3

4
)

z8+(
16λ2

4σ2
p +

1
8 σ4

p
(
128λ3

2λ4 + 1344λ2λ2
4
))

z6 +
(

1
8 σ4

p
(
16λ4

2 + 480λ2
2λ4 + 816λ2

4
)
+ 16λ2λ4σ2

p

)
z4+(

σ2
p
(
4λ2

2 + 12λ4
)
+ 1

8 σ4
p
(
48λ3

2 + 336λ4λ2
))

z2 +
(

1
8 σ4

p
(
12λ2

2 + 24λ4
)
+ 2λ2σ2

p + 1
)]

(21)
where:

g(z) = exp

(
K

∑
k=0

λkzk

)
for k = 0, 2, 4 (22)

However, according to (10) and (11), the approximated equalized output pdf can be written as:

f̂z (z) = exp

(
K

∑
k=0

λ̃kzk

)
= exp

(
K

∑
k=0

λkzk

)
exp

(
K

∑
k=0

ε̃kzk

)
for k = 0, 2, 4 (23)

which with the help of (12) and (22) is:

f̂z (z) = g(z) exp
(
−
(

ε0 + ε2z2 + ε4z4
))

(24)

Next we use Taylor expansion [62] up to order three and obtain:

f̂z (z) ' g(z)
(

1−
(

ε0 + ε2z2 + ε4z4
)
+

1
2!

(
−
(

ε0 + ε2z2 + ε4z4
))2

+
1
3!

(
−
(

ε0 + ε2z2 + ε4z4
))3

)
(25)

where (25) can also be written as:

f̂z (z) ' g(z)
((
− 1

6 ε3
4

)
z12 +

(
− 1

2 ε2ε2
4

)
z10 +

(
1
2 ε2

4 −
1
6 ε4
(
ε2

2 + 2ε0ε4
)
− 1

6 ε0ε2
4 −

1
3 ε2

2ε4

)
z8+(

ε2ε4 − 1
6 ε2
(
ε2

2 + 2ε0ε4
)
− 2

3 ε0ε2ε4

)
z6 +

(
1
2 ε2

2 −
1
6 ε0
(
ε2

2 + 2ε0ε4
)
− ε4 + ε0ε4 − 1

3 ε0ε2
2 −

1
6 ε2

0ε4

)
z4+(

ε2ε0 − 1
2 ε2ε2

0 − ε2

)
z2 +

(
1
2 ε2

0 −
1
6 ε3

0 − ε0 + 1
))

(26)
When the equalizer has converged, the convolutional noise power is considered as very small. Thus,
by comparing (26) to (21) and neglecting the terms of σu

p where u ≥ 4, we obtain:(
1
2 ε2

0 −
1
6 ε3

0 − ε0 + 1
)
=
(

1
8 σ4

p
(
12λ2

2 + 24λ4
)
+ 2λ2σ2

p + 1
)
⇒ ε0 ' −2λ2σ2

p (27)

(
ε2ε0 − 1

2 ε2ε2
0 − ε2

)
=
(

σ2
p
(
4λ2

2 + 12λ4
)
+ 1

8 σ4
p
(
48λ3

2 + 336λ4λ2
))
⇒ ε2ε0 − ε2 '

(
σ2

p
(
4λ2

2 + 12λ4
))

(28)
where by the use of (27) and [62], (28) can be written as:

ε2 (ε0 − 1) ' σ2
p
(
4λ2

2 + 12λ4
)
⇒ ε2 '

−σ2
p(4λ2

2+12λ4)
−ε0+1 ' −σ2

p
(
4λ2

2 + 12λ4
)
(1 + ε0)

ε2 ' −σ2
p
(
4λ2

2 + 12λ4
) (

1− 2λ2σ2
p

)
' −σ2

p
(
4λ2

2 + 12λ4
) (29)
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and with the help of (21), (26), (27) and [62], we have:(
1
2 ε2

2 −
1
6 ε0
(
ε2

2 + 2ε0ε4
)
− ε4 + ε0ε4 − 1

3 ε0ε2
2 −

1
6 ε2

0ε4

)
=
(

1
8 σ4

p
(
16λ4

2 + 480λ2
2λ4 + 816λ2

4
)
+ 16λ2λ4σ2

p

)
⇓

(−ε4 + ε0ε4) '
(

16λ2λ4σ2
p

)
⇒ ε4 (1− ε0) ' −16λ2λ4σ2

p

ε4 '
−16λ2λ4σ2

p
1−ε0

' −16λ2λ4σ2
p (1 + ε0) ' −16λ2λ4σ2

p

(
1− 2λ2σ2

p

)
' −16λ2λ4σ2

p

(30)

3.2. Closed-Form Approximated Expression for the MSE

In this subsection, we derive the MSE, which is defined by:

MSE = E[(E[x|y]− x)2] (31)

Thus, we have first to derive the relevant expression for the conditional expectation E[x|y] with the
new Lagrange multipliers for the input and output pdfs.

Theorem 2. The conditional expectation can be approximately written as:

E [x|z] '
(

1 + (ε0 + ε2z2 + ε4z4) + 1
2 (ε0 + ε2z2 + ε4z4)2

)(
z +

σ2
p

2
g
′′
1 (z)
g(z) +

(σ2
p)

2

8
g
′′′′
1 (z)
g(z)

)

where :

g
′′
1 (z)
g(z) = 2z

(
8z6λ2

4 + 8z4λ2λ4 + 2z2λ2
2 + 10z2λ4 + 3λ2

)
g
′′′′
1 (z)
g(z) = 4z

(
64z12λ4

4 + 128z10λ2λ3
4 + 96z8λ2

2λ2
4 + 352z8λ3

4 + 32z6λ3
2λ4 + 432z6λ2λ2

4+

4z4λ4
2 + 168z4λ2

2λ4 + 348z4λ2
4 + 20z2λ3

2 + 180z2λ2λ4 + 15λ2
2 + 30λ4

)

(32)

Proof of Theorem 2. According to Bayes rules, we have:

E [x|z] =
∫ ∞
−∞ x fz/x (z/x) fx (x) dx

fz (z)
(33)

where:

fz|x (z|x) =
1√

2πσp
exp

(
− (z− x)2

2σ2
p

)
(34)

Next, we use (10) and (23) with k = 0, 2, 4 for approximating the equalized output and input pdfs,
respectively. Thus, by using (10), (18), (23), (34) and with k = 0, 2, 4 in (33), we obtain:

E [x|z] ' 1√
2πσp

∫ ∞
−∞ xg(x) exp

(
− (z−x)2

2σ2
p

)
dx

exp
(

∑K
k=0 λkzk

)
exp

(
∑K

k=0 ε̃kzk
) for k = 0, 2, 4 (35)
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which with the help of (12) and (22) leads to:

E [x|z] ' 1√
2πσp

exp
(

∑K
k=0 εkzk

) ∫ ∞
−∞ xg(x) exp

(
− (z−x)2

2σ2
p

)
dx

g(z)
for k = 0, 2, 4 (36)

The integral in (36) can be written as:

∫ ∞

−∞
xg(x) exp

(
− (z− x)2

2σ2
p

)
dx =

∫ ∞

−∞
g1(x) exp(−Ψ(x)

ρ
)dx (37)

where:
g1(x) = xg(x) (38)

Next, by using Laplace’s method [20,61] for solving the integral in (37), we get:∫ ∞
−∞ g1(x) exp(−Ψ(x)

ρ )dx '[
exp(−Ψ(x)

ρ )
√

2πρ
d2Ψ(x)

dx2

(g1(x) + 1
2

d2

dx2 (g1(x)) ρ
d2

dx2 (Ψ(x))
+ 1

8
d4

dx4 (g1(x)) ( ρ
d2

dx2 (Ψ(x))
)2 + O( ρ

d2
dx2 (Ψ(x))

)3)

]
x=x0

(39)
which can be simplified with the help of (18) and (20) as:

∫ ∞
−∞ g1(x) exp(−Ψ(x)

ρ )dx '
√(

2πσ2
p

)
g(z)

(
z +

σ2
p

2
g
′′
1 (z)
g(z) +

(σ2
p)

2

8
g
′′′′
1 (z)
g(z)

)

where:

g
′′
1 (z) =

[
d2

dx2 (g1(x))
]

x=z
; g

′′′′

1 (z) =
[

d4

dx4 (g1(x))
]

x=z

(40)

Next, we use the Taylor expansion [62] in order to get:

exp(ε0 + ε2z2 + ε4z4) ' 1 + (ε0 + ε2z2 + ε4z4) +
1
2
(ε0 + ε2z2 + ε4z4)2 (41)

Now, by using (40) and (41) in (36), the expression for the conditional expectation (32) is obtained.

Our next step is to substitute (32) into (31) and to get an MSE expression depending on ε0, ε2, ε4,
λ2, λ4 and on σt

p for t ≤ 4:

MSE ' 4m4λ2
2ε0σ2

p + 4m6λ2
2ε2σ2

p + 4m8λ2
2ε4σ2

p + 12m2λ2
2σ4

p+

16m6λ2ε0λ4σ2
p + 6m2λ2ε0σ2

p + 16m8λ2λ4ε2σ2
p + 16m10λ2λ4ε4σ2

p+

80m4λ2λ4σ4
p + 6m4λ2ε2σ2

p + 6m6λ2ε4σ2
p + 6λ2σ4

p + m2ε2
0+

16m8ε0λ2
4σ2

p + 20m4ε0λ4σ2
p + 2m4ε0ε2 + 2m6ε0ε4+

2ε0σ2
p + 16m10λ2

4ε2σ2
p + 16m12λ2

4ε4σ2
p+

112m6λ2
4σ4

p + 20m6λ4ε2σ2
p + 20m8λ4ε4σ2

p + 60m2λ4σ4
p + m6ε2

2+

2m8ε2ε4 + 6m2ε2σ2
p + m10ε2

4 + 10m4ε4σ2
p + σ2

p

(42)

3.3. Closed-Form Approximated Expressions for λ2 and λ4

In this subsection, we derive the Lagrange multipliers related to the input pdf. Namely, we
derive closed-form approximated expressions for λ2 and λ4.
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Theorem 3. The Lagrange multipliers related to the input pdf can be approximately expressed by:

λ2 ' 1
40m2(20 736m2

4+1280m2m6)

(
41 472m2

4 + 2560m2m6 − 144m4
(
480m2

2 + 288m4
))

λ4 ' 1
20 736m2

4+1280m2m6

(
480m2

2 + 288m4
) (43)

where mG is the G-th moment of the real part of the input sequence. Namely, for the real valued input case,
we have:

mG = E[xG] (44)

Proof of Theorem 3. Let us first substitute the expressions for ε0, ε2 and ε4 given in (13) into (42).
Thus, we obtain a new closed-form approximated expression for the MSE depending on the source
moments, λ2, λ4 and σr

p with r ≥ 2 only. Please note that we are looking for a linear closed-form
approximated expressions for λ2 and λ4. Thus, we ignore in the MSE expression all those terms
having λi

2λ
j
4 with i, j > 1, λl

2 and λl
4 with l > 2. In addition, we ignore terms of σu

p with u > 4,
since the MSE is calculated when the equalizer has converged where σ2

p is already considered as very
low, thus making σu

p with u > 4 negligible. By considering all of this, the approximated MSE can be
written as:

MSE ' −σ2
p

(
20m2λ2

2σ2
p + 144m4λ2λ4σ2

p − 2λ2σ2
p − 16m6λ2

4σ2
p + 12m2λ4σ2

p − 1
)

(45)

Next, we search for those Lagrange multipliers (λ2,λ4) that bring the MSE (45) to the minimum. Thus,
we have:

d(MSE)
dλ2

= 0 ⇒ 40λ2m2 + 144λ4m4 − 2 = 0

d(MSE)
dλ4

= 0 ⇒ 12m2 + 144λ2m4 − 32λ4m6 = 0
(46)

Solving (46) for λ2 and λ4 leads to (43).

4. Simulation

In this section, we show the usefulness of our newly-derived Lagrange multipliers (43) compared
to those derived in [52]. Namely, we show via simulation results the robustness to SNR of our
new blind adaptive equalization method based on our newly-derived Lagrange multipliers (43)
compared to [52]. In addition, we also add Godard’s [39] and maximum entropy [20] algorithm
for comparison. Please note that Godard’s [39] algorithm is one of the most popular, computationally
simple, tested and best performing blind equalization algorithm in the signal processing domain
according to [28]. In addition, please note that according to [20], the maximum entropy [20] algorithm
has better equalization performance compared to Godard’s [39] algorithm for the high SNR case. The
equalizer’s taps for [20] were updated according to:

cl [n + 1] = cl [n]− µENTWy∗[n− l] (47)

with:

W =

E [x1|z1]

 (z1 [n] E [x1|z1])〈
(z1)

2
〉

n

+ jE [x2|z2]

 (z2 [n] E [x2|z2])〈
(z2)

2
〉

n

− z [n]

 (48)

where µENT is a positive step size parameter and:
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E [x1|z1] =
z1+

ĝ′′1 (z1)
2ĝ(z1)

(
σ2

x1
−σ2

z1

)
+

ĝ(4)1 (z1)
8ĝ(z1)

(
σ2

x1
−σ2

z1

)2

1+ ĝ′′(z1)
2ĝ(z1)

(σ2
x1−σ2

z1)+
ĝ(4)(z1)
8ĝ(z1)

(σ2
x1−σ2

z1)
2

E [x2|z2] =
z2+

ĝ′′1 (z2)
2ĝ(z2)

(
σ2

x2
−σ2

z2

)
+

ĝ(4)1 (z2)
8ĝ(z2)

(
σ2

x2
+σ2

z2

)2

1+ ĝ′′(z2)
2ĝ(z2)

(σ2
x2−σ2

z2)+
ĝ(4)(z2)
8ĝ(z2)

(σ2
x2−σ2

z2)
2

(49)

where:

s = 1, 2; ĝ (zs) =
{

exp
(

∑k=K
k=2 λ̂s

kxk
s

)}
xs=zs

ĝ′′(zs) =
{

d2

dx2
s

[
exp

(
∑k=K

k=2 λ̂s
kxk

s

)]}
xs=zs

; ĝ(4)(zs) =
{

d4

dx4
s

[
exp

(
∑k=K

k=2 λ̂s
kxk

s

)]}
xs=zs

ĝ′′1 (zs) =
{

d2

dx2
s

[
xs exp

(
∑k=K

k=2 λ̂s
kxk

s

)]}
xs=zs

; ĝ(4)1 (zs) =
{

d4

dx4
s

[
xs exp

(
∑k=K

k=2 λ̂s
kxk

s

)]}
xs=zs

(50)

and σ2
x1

,σ2
x2

are the variances of the real and imaginary parts of the source signal, respectively.
The variances of the real and imaginary parts of the equalized output are defined as σ2

z1
and σ2

z2
,

respectively, and estimated by [20]:〈
z2

s

〉
= (1− βENT)

〈
z2

s

〉
n−1

+ βENT (zs)
2
n (51)

where 〈〉 stands for the estimated expectation,
〈
z2

s
〉

0 > 0, l stands for the l-th tap of the equalizer and
βENT is a positive step size parameter. The Lagrange multipliers λ̂s

k from (50) are according to [20]:

k(k− 1)ms
k−2 + 2λ̂s

kk2ms
2k−2 + 2k ∑L=K

L=2L 6=k
λ̂s

LLms
kL−2 = 0

k = 2, 4, 6, ..., K
(52)

where m
1

G, m
2

G are the G-th moment of the real and imaginary parts of the source signal respectively,
defined by:

m
s

G = E
[

xG
s

]
(53)

According to [20], the equalizer’s taps are updated only if N̂s > ε, where ε is a small positive

parameter and N̂s = 1 + ĝ′′(z1)
2ĝ(z1)

(
σ2

xs − σ2
zs

)
+ ĝ(4)(z1)

8ĝ(z1)

(
σ2

xs − σ2
zs

)2.

The equalizer’s taps for Godard’s algorithm [39] were updated according to:

cl [n + 1] = cl [n]− µG

|z|2 − E
[
|x|4

]
E
[
|x|2

]
 y∗ [n− l] (54)

where µG is a positive step size parameter. The equalizer’s taps for [52] were updated according to:

cl [n + 1] = cl [n]− µNEWWy∗[n− l] (55)
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with W given in (48), but with:

E [x1|z1] ' z1[n] +
ḡ
′′
1 (z1)

2ḡ(z1)

(
σ2

z1
− σ2

x1

)
+

ḡ
′′′′
1 (z1)
8ḡ(z1)

(
σ2

z1
− σ2

x1

)2

E [x2|z2] ' z2[n] +
ḡ
′′
1 (z2)

2ḡ(z2)

(
σ2

z2
− σ2

x2

)
+

ḡ
′′′′
1 (z2)
8ḡ(z2)

(
σ2

z2
− σ2

x2

)2

(56)

where s = 1, 2; ḡ(zs) = exp
(

∑K
k=2 λ̄s

kzk
s

)
ḡ
′′
1 (zs) =

{
d2

dx2
s

[
xs exp

(
∑K

k=2 λ̄s
kxk

s

)]}
xs=zs

ḡ
′′′′
1 (zs) =

{
d4

dx4
s

[
xs exp

(
∑K

k=2 λ̄s
kxk

s

)]}
xs=zs

(57)

with λ̄s
k for k = 2, 4 is given according to [52] by solving the following equation:

6 + 24λ̄s
2ms

2 + 80λ̄s
4ms

4 = 0
60ms

2 + 224λ̄s
4ms

6 + 80λ̄s
2ms

4 = 0
(58)

and: 〈
z2

s

〉
= (1− βNEW)

〈
z2

s

〉
n−1

+ βNEW (zs)
2
n (59)

βNEW and µNEW are positive step size parameters. The equalizer’s taps of our newly-derived blind
adaptive equalizer with our newly-derived Lagrange multipliers (43) were updated according to:

cl [n + 1] = cl [n]− µANEWWy∗[n− l] (60)

with W given in (48), but with:

E [x1|z1] '
(

1 + (ε0 + ε2z2
1 + ε4z4

1) +
1
2 (ε0 + ε2z2

1 + ε4z4
1)

2
)(

z1 +
σ2

p1
2

g
′′
1 (z1)
g(z1)

+

(
σ2

p1

)2

8
g
′′′′
1 (z1)
g(z1)

)

E [x2|z2] '
(

1 + (ε0 + ε2z2
2 + ε4z4

2) +
1
2 (ε0 + ε2z2

2 + ε4z4
2)

2
)(

z2 +
σ2

p2
2

g
′′
1 (z2)
g(z2)

+

(
σ2

p2

)2

8
g
′′′′
1 (z2)
g(z2)

)
where :

s = 1, 2

g
′′
1 (zs)
g(zs)

= 2zs
(
8z6

s λ2
4 + 8z4

s λ2λ4 + 2z2
s λ2

2 + 10z2
s λ4 + 3λ2

)
g
′′′′
1 (zs)
g(zs)

= 4zs
(
64z12

s λ4
4 + 128z10

s λ2λ3
4 + 96z8

s λ2
2λ2

4 + 352z8
s λ3

4 + 32z6
s λ3

2λ4 + 432z6
s λ2λ2

4+

4z4
s λ4

2 + 168z4
s λ2

2λ4 + 348z4
s λ2

4 + 20z2
s λ3

2 + 180z2
s λ2λ4 + 15λ2

2 + 30λ4
)

σ2
ps = σ2

zs − σ2
xs

(61)

〈
z2

s

〉
= (1− βANEW)

〈
z2

s

〉
n−1

+ βANEW (zs)
2
n (62)

and ε0, ε2, ε4 and λ2, λ4 are given in (13) and (43), respectively. βANEW and µANEW are positive
step size parameters. In the following, we denote “MaxEnt”, “MaxEntNEW”, “MaxEntANEW”
and “Godard” as the algorithms given in [20], [52], (60) and [39], respectively. For the ”MaxEnt”,
“MaxEntNEW” and “MaxEntANEW” algorithms, we used E[z2

s ] = E[x2
s ] for initialization. The
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following channel was considered: Channel 1 (initial ISI = 0.44): Taken according to [1]: hn ={
0 for n < 0; −0.4 for n = 0; 0.84× 0.4n−1 for n > 0

}
.

We used an equalizer with 13 taps. The equalizer was initialized by setting the center tap
equal to one and all others to zero. Two input sources were considered: A 16QAM source (a
modulation using ± {1,3} levels for in-phase and quadrature components) and another complex
input where the real and imaginary parts of the input are random independent processes uniformly
distributed within [−1,+1]. Figure 2 shows the equalization performance of our new proposed
equalization method (“MaxEntANEW” (60)), namely the ISI as a function of iteration number for the
16QAM constellation input sent via Channel 1 for the high SNR case (SNR = 30 dB), compared
to the equalization performance obtained from the maximum entropy [20,52] and Godard’s [39]
algorithm. Please note that for Figure 2, the step size parameters of the algorithms were chosen
for fast convergence with low steady-state ISI. According to simulation results (Figure 2), our new
proposed algorithm (“MaxEntANEW” (60)) has better equalization performance, namely a much
lower residual ISI compared to Godard’s [39] algorithm, but at the same time, leaves the system with
a higher residual ISI compared to the maximum entropy [20] and the algorithm given in [52]. Figure 3
shows the equalization performance of our new proposed equalization method (“MaxEntANEW”
(60)), namely the ISI as a function of the iteration number for the 16QAM constellation input sent
via Channel 1 for SNR = 15 dB, compared to the equalization performance obtained from [52] and
Godard’s [39] algorithm. Please note that the maximum entropy [20] algorithm is applicable only for
the high SNR case. Therefore, we ignore this algorithm [20] for the lower SNR cases. According to
Figure 3, the “MaxEntNEW” algorithm [52] does not converge with the step size parameters used
from the case of SNR = 30 dB (Figure 2). However, unlike the “MaxEntNEW” algorithm [52],
our new proposed algorithm (“MaxEntANEW” (60)) and “Godard” [39] work very well according to
Figure 3. In addition, based on Figure 3, our new proposed algorithm (“MaxEntANEW” (60)) shows
equalization improvement from the residual ISI point of view of approximately 8 dB compared to
“Godard’s” [39] method. It is worth noting that, if the algorithm does not diverge at 50 trials, it does
not mean that the algorithm will not diverge at 100 or 200 trials, for example. Now, by decreasing the
step size parameter (βNEW) for the “MaxEntNEW” algorithm [52], the algorithm converges Figure 4.
However, as can be seen from Figure 4, our new proposed algorithm (“MaxEntANEW” (60)) shows
equalization improvement from the residual ISI point of view of approximately 8 dB and 7 dB
compared to “Godard’s” [39] method and the “MaxEntNEW” [52] algorithm, respectively. Figures 5–7
show the equalization performance of our new proposed equalization method (“MaxEntANEW” (60)),
namely the ISI as a function of the iteration number for the 16QAM constellation input sent via
Channel 1 for SNR = 10 dB, compared to the equalization performance obtained from [52] and
Godard’s [39] algorithm. According to Figures 5–7, the “MaxEntNEW” [52] algorithm does not
converge despite the fact that step size parameters were decreased for the algorithm. Please note
that the other algorithms (“MaxEntANEW” and “Godard”) continued working well with the original
step size parameters from the case of SNR = 30 dB. Thus, we have seen so far from Figures 2–7
the robustness to SNR of our new proposed algorithm (“MaxEntANEW” (60)). Once the step size is
optimized for the very high SNR case, no changes are needed in the step size parameters for the lower
SNR case. Figures 8 and 9 show the equalization performance of our new proposed equalization
method (“MaxEntANEW” (60)), namely the ISI as a function of the iteration number for the 16QAM
constellation input sent via Channel 1 for SNR = 10 dB and SNR = 7 dB, respectively, compared
to the equalization performance obtained with Godard’s [39] algorithm. According to Figures 8
and 9, our new proposed algorithm (“MaxEntANEW” (60)) shows equalization improvement from
the residual ISI point of view of approximately 6dB compared to “Godard’s” [39] method for both
cases (SNR = 10 dB and SNR = 7 dB). Now, “Godard’s” [39] method can achieve better equalization
performance for SNR = 7 dB if the step size parameter is changed, as is shown in Figure 10.
However, even then (Figure 10), “Godard’s” [39] method does not achieve better equalization
performance compared to the “MaxEntANEW” algorithm. Finally, we turn to check our new proposed
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algorithm (“MaxEntANEW” (60)) with a different input sequence. Figures 11–13 show the equalization
performance of our new proposed equalization method (“MaxEntANEW” (60)), namely the ISI as
a function of the iteration number for a uniformly-distributed input sequence within [−1,+1] sent
via Channel 1 for SNR = 30 dB, SNR = 15 dB and SNR = 10 dB, respectively, compared to
the equalization performance obtained with Godard’s [39] algorithm. According to Figures 11–13,
our new proposed algorithm (“MaxEntANEW” (60)) has better equalization performance in the
residual ISI point of view (Figures 11 and 12) compared to Godard’s [39] algorithm or has the same
equalization performance as “Godard” [39] (Figure 13).

In blind equalization, the desired signal is unknown to the receiver, except for its probabilistic
or statistical properties over some known alphabets. As both the channel and its input are unknown,
the objective of blind equalization is to recover the unknown input sequence based solely on its
probabilistic and statistical properties; see [2]. In this paper, we used the maximum entropy density
approximation technique for approximating the input and output pdfs, respectively. Thus, the input
pdf was a function of the source signal and a function of some Lagrange multipliers, while the output
pdf was a function of the equalized output sequence and a function of some Lagrange multipliers
that were different from those used for the input pdf. The Lagrange multipliers used for the input pdf
depended only on the source moments. Namely, the Lagrange multipliers are used for the input pdf
based solely on the input sequence statistical properties. The Lagrange multipliers used for the output
pdf depended on the Lagrange multipliers related to the input pdf, on the convolutional noise power
and on the channel noise power seen at the equalized output. Obviously, if there is no channel noise
and the equalizer succeeded to reduce the convolutional noise to zero (which means that there is no
residual ISI), the Lagrange multipliers related to the input sequence will be the same as the Lagrange
multipliers related to the equalized output sequence. The closed-form approximated expression for
the conditional expectation was obtained by using the above-mentioned approximations for the input
and output pdfs. It depends on the input sequence statistical properties (on the input variance and
some higher moments), which are also needed, for example, in Godard’s algorithm [39]. The newly
derived equalizer based on the newly derived expression for the conditional expectation does not
need to know if the sent symbol was now −1 + 3j or 1 − 3j, for example, as is needed for the
non-blind case; nor does it need to know, for example, if the input sequence belongs to a 16QAM
constellation or to an uniformly-distributed input within [−1,+1]. However, the input sequence
statistical properties need to be known, as is also the case in Godard’s algorithm [39]. This means
that when the input sequence changes from a 16QAM constellation to a uniformly-distributed input
within [−1,+1], the algorithm needs the new input sequence statistical properties, which, again, is
also the case in Godard’s algorithm [39]. As already mentioned above, the input pdf was derived
as a function of the source signal and as a function of some Lagrange multipliers that depend on
the input sequence statistical properties (on the input variance and some higher moments). Thus,
for each input sequence with different statistical properties, we obtain different Lagrange multipliers
and, therefore, also a different input pdf. Thus, we have not considered in this work a specific input
pdf, but rather a successful approximation for the input pdf that can be applied for a very wide
range of input signals with different statistical properties (thus having different input pdfs). In this
work, we considered only the following Lagrange multipliers for the input pdf: λk for k = 0, 2, 4.
It is reasonable to think that the use of only three Lagrange multipliers (λk for k = 0, 2, 4) in the
approximation of the input pdf may describe as less successful the real input pdf for some input
signals than for others. This may explain the simulation results we have seen for the 16QAM input
constellation and for the uniformly-distributed input within [−1,+1]. It is also reasonable to think
that the use of four Lagrange multipliers (λk for k = 0, 2, 4, 6) or more instead of only three would
have led to a more successful approximation for the input pdf related to the uniformly-distributed
input sequence within [−1,+1] and, thus, to further improved equalization performance. However,
using more Lagrange multipliers increases the computational complexity of the algorithm, which is
already much higher compared to Godard’s algorithm [39].
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Figure 2. Performance comparison between equalization algorithms for a 16QAM source input going
through Channel 1. The averaged results were obtained in 50 Monte Carlo trials for an SNR = 30 dB.
µNEW = 0.0001, βNEW = 1× 10−4, µENT = 3× 10−4, βENT = 2× 10−4, µG = 7× 10−5, µANEW =

0.00009, βANEW = 1× 10−5.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−30

−25

−20

−15

−10

−5

0

Iteration Number

IS
I [

dB
]

 

 
Godard
MaxEnt

NEW

MaxEnt
ANEW

Figure 3. Performance comparison between equalization algorithms for a 16QAM source input going
through Channel 1. The averaged results were obtained in 10 Monte Carlo trials for an SNR = 15 dB.
µNEW = 0.0001, βNEW = 1× 10−4, µG = 7× 10−5, µANEW = 0.00009, βANEW = 1× 10−5.
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Figure 4. Performance comparison between equalization algorithms for a 16QAM source input going
through Channel 1. The averaged results were obtained in 50 Monte Carlo trials for an SNR = 15 dB.
µNEW = 0.0001, βNEW = 1× 10−5, µG = 7× 10−5, µANEW = 0.00009, βANEW = 1× 10−5.
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Figure 5. Performance comparison between equalization algorithms for a 16QAM source input going
through Channel 1. The averaged results were obtained in one Monte Carlo trial for an SNR = 10 dB.
µNEW = 0.0001, βNEW = 1× 10−5, µG = 7× 10−5, µANEW = 0.00009, βANEW = 1× 10−5.
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Figure 6. Performance comparison between equalization algorithms for a 16QAM source input going
through Channel 1. The averaged results were obtained in 10 Monte Carlo trials for an SNR = 10 dB.
µNEW = 0.00009, βNEW = 1× 10−5, µG = 7× 10−5, µANEW = 0.00009, βANEW = 1× 10−5.
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Figure 7. Performance comparison between equalization algorithms for a 16QAM source input going
through Channel 1. The averaged results were obtained in 10 Monte Carlo trials for an SNR = 10 dB.
µNEW = 0.00007, βNEW = 1× 10−5, µG = 7× 10−5, µANEW = 0.00009, βANEW = 1× 10−5.



Entropy 2016, 18, 65 19 of 24

0 1 2 3 4 5 6

x 10
4

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

Iteration Number

IS
I [

dB
]

 

 
Godard
MaxEnt

ANEW

Figure 8. Performance comparison between equalization algorithms for a 16QAM source input going
through Channel 1. The averaged results were obtained in 50 Monte Carlo trials for an SNR = 10 dB.
µG = 7× 10−5, µANEW = 0.00009, βANEW = 1× 10−5.
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Figure 9. Performance comparison between equalization algorithms for a 16QAM source input going
through Channel 1. The averaged results were obtained in 50 Monte Carlo trials for an SNR = 7 dB.
µG = 7× 10−5, µANEW = 0.00009, βANEW = 1× 10−5.
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Figure 10. Performance comparison between equalization algorithms for a 16QAM source input
going through Channel 1. The averaged results were obtained in 50 Monte Carlo trials for an SNR = 7
dB. µG = 2.5× 10−5, µANEW = 0.00008, βANEW = 1× 10−5.
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Figure 11. Performance comparison between equalization algorithms for a uniformly-distributed
source input within [−1,+1] going through Channel 1. The averaged results were obtained in 50
Monte Carlo trials for an SNR = 30 dB. µG = 0.002, µANEW = 0.00055, βANEW = 1× 10−6.
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Figure 12. Performance comparison between equalization algorithms for a uniformly-distributed
source input within [−1,+1] going through Channel 1. The averaged results were obtained in 50
Monte Carlo trials for an SNR = 15 dB. µG = 0.002, µANEW = 0.00055, βANEW = 1× 10−6.
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Figure 13. Performance comparison between equalization algorithms for a uniformly-distributed
source input within [−1,+1] going through Channel 1. The averaged results were obtained in 50
Monte Carlo trials for an SNR = 10 dB. µG = 0.002, µANEW = 0.00055, βANEW = 1× 10−6.
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5. Conclusions

In this paper, we derived new approximated closed-form expressions for the Lagrange
multipliers (λ2, λ4, λ̃2, λ̃4) related to the input and output pdfs. In addition, we obtained new
closed-form approximated expressions for the conditional expectation and MSE inspired by the
maximum entropy density approximation technique. Based on the newly-derived expression for
the conditional expectation, a new blind adaptive equalization method was obtained that is robust to
SNR and is applicable for the whole range of SNR down to 7 dB. Simulation results have shown that
our newly-obtained equalization method has also significant equalization performance improvement
in the residual ISI point of view compared to Godard’s algorithm [39], the maximum entropy method
[20] and [52] for 7 dB ≤ SNR ≤ 15 dB.
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