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Abstract:

 In this work, we propose a new approach of deriving the bounds between entropy and error from a joint distribution through an optimization means. The specific case study is given on binary classifications. Two basic types of classification errors are investigated, namely, the Bayesian and non-Bayesian errors. The consideration of non-Bayesian errors is due to the facts that most classifiers result in non-Bayesian solutions. For both types of errors, we derive the closed-form relations between each bound and error components. When Fano’s lower bound in a diagram of “Error Probability vs. Conditional Entropy” is realized based on the approach, its interpretations are enlarged by including non-Bayesian errors and the two situations along with independent properties of the variables. A new upper bound for the Bayesian error is derived with respect to the minimum prior probability, which is generally tighter than Kovalevskij’s upper bound.
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1. Introduction


In information theory, the relations between entropy and error probability are one of the important fundamentals. Among the related studies, one milestone is Fano’s inequality (also known as Fano’s lower bound for the error probability of decoders), which was originally proposed in 1952 by Fano but formally published in 1961 [1]. It is well known that Fano’s inequality plays a critical role in deriving other theorems and criteria in information theory [2,3,4]. However, within the research community, it has not been widely accepted exactly who was first to develop the upper bound for the error probability [5]. According to [6,7], Kovalevskij [8] was recognized as the first to derive the upper bound of the error probability in relation to entropy in 1965. Later, several researchers, such as Chu and Chueh in 1966 [9], Tebbe and Dwyer in 1968 [10], Hellman and Raviv in 1970 [11], independently developed upper bounds.



The lower and upper bounds of error probability have been a long-standing topic in studies on information theory [6,7,12,13,14,15,16,17,18,19,20,21]. However, we consider two issues that have received less attention in these studies:

	
What are the closed-form relations between each bound and error components in a diagram of entropy and error probability?



	
What are the lower and upper bounds in terms of the non-Bayesian errors if a non-Bayesian rule is applied in the information processing?








The first issue implies a need for a complete set of interpretations to the bounds in relation to joint distributions, so that both error probability and its error components are known for a deeper understanding. We will discuss the reasons of the need in the later sections of this paper. Up to now, most existing studies derived the bounds through an inequality means without using joint distribution information. Therefore, their bounds are not described by a generic relation to joint distributions so that their error component information cannot be gained. Several significant studies have achieved Fano’s bound from the joint distributions but through different means [16,20,21]. They all did not show the explicit relations to error components. Regarding the second issue, to the best of our knowledge, it seems that no study is shown in open literature on the bounds in terms of the non-Bayesian errors. We will define the Bayesian and non-Bayesian errors in Section 3. The non-Bayesian errors are also of importance because most classifications are realized within this category.



The issues above form the motivation behind this work. We take binary classifications as a problem background since it is more common and understandable from our daily-life experiences. Moreover, we intend to simplify settings within a binary state and Shannon entropy definitions for a case study from an expectation that the central principle of the approach is well highlighted by simple examples. The novel contribution of the present work is given from the following three aspects:

	
A new approach is proposed for deriving bounds directly through the optimization process based on a joint distribution, which is significantly different from all other existing approaches. One advantage of using the approach is the closed-form expressions to the bounds and their error components.



	
A new upper bound in a diagram of “Error Probability vs. Conditional Entropy” for the Bayesian errors is derived with a closed-form expression in the binary state, which has not been reported before. The new bound is generally tighter than Kovalevskij’s upper bound. Fano’s lower bound receives novel interpretations.



	
The comparison study on the bounds in terms of the Bayesian and non-Bayesian errors are made in the binary state. The bounds of non-Bayesian errors are explored for a first time in information theory and imply a significant role in the study of machine learning and classification applications.








In the first aspect, we also conduct the actual derivation using a symbolic software tool, which presents a standard and comprehensive solution in the approach. The rest of this paper is organized as follows. In Section 2, we present related works on the bounds. For a problem background of binary classifications, several related definitions are given in Section 3. The bounds are given and discussed for the Bayesian and non-Bayesian errors in Section 4 and Section 5, respectively. Interpretations to some key points are presented in Section 6. We summarize the work in Section 7 and present some discussions in Section 8. The source code from using symbolic software for the derivation is included in Figure A1 and Figure A2.


Figure A1. Maple code for deriving the lower bound.
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Figure A2. Maple code for deriving the upper bound.
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2. Related Works


Two important bounds are introduced first, which form the baselines for the comparisons with the new bounds. They were both derived from inequality conditions [1,8]. Suppose the random variables X and Y representing input and output messages (out of m possible messages), and the conditional entropy [image: there is no content] representing the average amount of information lost on X when given Y [22]. Fano’s lower bound for the error probability [1,22] is given in a form of:


[image: there is no content]



(1)




where [image: there is no content] is the error probability (sometimes, also called error rate or error for short), and H([image: there is no content]) is the binary entropy function defined by [23]:


H([image: there is no content])=−[image: there is no content]log2[image: there is no content]−(1−[image: there is no content])log2(1−[image: there is no content]).



(2)




The base of the logarithm is two so that the units are bits.



The upper bound for the error probability is given by Kovalevskij [8] in a piecewise linear form [10]:


H(X|Y)≥log2k+k(k+1)(log2k+1k)([image: there is no content]−k−1k)andk<m,m≥2,



(3)




where k is a positive integer number, but defined to be smaller than m. For a binary classification ([image: there is no content]), Fano–Kovalevskij bounds become:


H−1([image: there is no content])=G(H(X|Y))≤[image: there is no content]≤[image: there is no content]2,



(4)




where H−1([image: there is no content]) denotes an inverse function of H([image: there is no content]) and has no closed-form expression. Hence, we set it as a function form, [image: there is no content], in terms of the variable [image: there is no content]. Feder and Merhav [24] depicted bounds of Equation (4) and presented interpretations on the two specific points from the background of data compression problems.



Studies from the different perspectives have been reported on the bounds between error probability and entropy. The initial difference is made from the entropy definitions, such as Shannon entropy in [12,14,25,26], and Rényi entropy in [6,7,15]. The second difference is the selection of bound relations, such as “[image: there is no content]vs. [image: there is no content]” in [12,24], “[image: there is no content]vs. [image: there is no content]” in [6,7,14,15,20], “[image: there is no content]vs. [image: there is no content]” in [27,28], and “[image: there is no content]vs. A” in [25], where A is the accuracy rate, [image: there is no content] and [image: there is no content] are the mutual information and normalized mutual information between variables X and Y, respectively. Another important study is made on the tightness of bounds. Several investigations [17,19,20,29] have been reported on the improvement of bound tightness. Recently, a study in [26] suggested that an upper bound from the Bayesian errors should be added, which is generally neglected in the bound analysis.




3. Binary Classifications and Related Definitions


Classifications can be viewed as one component in pattern recognition systems [30]. Figure 1 shows a schematic diagram of the pattern recognition systems. The first unit in the systems is termed representation in the present problem background but called encoder in communication background. This unit processes the tasks of feature selection, or feature extraction. The second unit is called classification or classifier in applications. Three sets of variables are involved in the systems, namely, target variable T, feature variables X, and prediction variable Y. While T and Y are univariate discrete random variables for representing labels of the samples, X can be high-dimensional random variables either in forms of discrete, continuous, or their combinations.


Figure 1. Schematic diagram of the pattern recognition systems (adapted from Figure 1.7 in [30]).
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In this work, binary classifications are considered as a case study because they are more fundamental in applications. Sometimes, multi-class classifications are processed by binary classifiers [31]. In this section, we will present several necessary definitions for the present case study. Let [image: there is no content] be a random sample satisfying [image: there is no content]∈X⊂Rd, which is in a d-dimensional feature space and will be classified. The true (or target) state t of [image: there is no content] is within the finite set of two classes, [image: there is no content], and the prediction (or output) state y=f([image: there is no content]) is within the two classes, [image: there is no content], where f is a function for classifications. Let [image: there is no content] be the prior probability of class [image: there is no content] and p([image: there is no content]|[image: there is no content]) be the conditional probability density function (or conditional probability) of [image: there is no content] given that it belongs to class [image: there is no content].



Definition 1. 

(Bayesian error in binary classification) In a binary classification, the Bayesian error, denoted by [image: there is no content], is defined by [30]:


[image: there is no content]=∫R2p([image: there is no content]|t1)p(t1)d[image: there is no content]+∫R1p([image: there is no content]|t2)p(t2)d[image: there is no content],



(5)




where [image: there is no content] is the decision region for class [image: there is no content]. The two regions are determined by the Bayesian rule:


DecideR1ifp([image: there is no content]|t1)p(t1)p([image: there is no content]|t2)p(t2)≥1DecideR2ifp([image: there is no content]|t1)p(t1)p([image: there is no content]|t2)p(t2)<1.



(6)




In statistical classifications, the Bayesian error is the theoretically lowest probability of error [30].





Definition 2. 

(Non-Bayesian error) The non-Bayesian error, denoted by [image: there is no content], is defined to be any error which is larger than the Bayesian error, that is:


[image: there is no content]>[image: there is no content],



(7)




for the given information of [image: there is no content] and p([image: there is no content]|[image: there is no content]).





Remark 1. 

Based on the definitions above, for the given joint distribution, the Bayesian error is unique, but the non-Bayesian errors are multiple. Figure 2 shows the Bayesian decision boundary, [image: there is no content], on a univariate feature variable x for equal priors. The Bayesian error is [image: there is no content]=[image: there is no content]+[image: there is no content]. Any other decision boundary different from [image: there is no content] will generate the non-Bayesian error for [image: there is no content]>[image: there is no content].


Figure 2. Bayesian decision boundary [image: there is no content] for equal priors [image: there is no content] in a binary classification (adapted from Figure 2.17 in [30]).
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In a binary classification, the joint distribution, p(t,y)=p(t=[image: there is no content],y=yj)=pij, is given in a general form of:


p11=[image: there is no content]−[image: there is no content],p12=[image: there is no content],p21=[image: there is no content],p22=[image: there is no content]−[image: there is no content],



(8)




where [image: there is no content] and [image: there is no content] are the prior probabilities of Class 1 and Class 2, respectively; their associated errors (also called error components) are denoted by [image: there is no content] and [image: there is no content]. Figure 3 shows a graphic diagram of the probability transformation between target variable T and prediction variable Y via their joint distribution [image: there is no content] in a binary classification. The constraints in Equation (8) are given by [30]:


0<[image: there is no content]<1,0<[image: there is no content]<1,[image: there is no content]+[image: there is no content]=10≤[image: there is no content]≤[image: there is no content],0≤[image: there is no content]≤[image: there is no content].



(9)






Figure 3. Graphic diagram of the probability transformation between variables T and Y in a binary classification (or channel). Instead of using conditional probability [image: there is no content], joint probability distributions [image: there is no content] are applied to describe the channel.
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In this work, we use e to denote error probability, or error variable, for representing either the Bayesian error or non-Bayesian error. They are calculated from the same formula:


e=[image: there is no content]+[image: there is no content]=[image: there is no content]ifeistheminimum,[image: there is no content]otherwise..



(10)







Definition 3. 

(Minimum and maximum error bounds in binary classifications) Classifications suggest the minimum error bound as:


([image: there is no content])min=([image: there is no content])min=0,



(11)




where the subscript min denotes the minimum value. The maximum error bound for the Bayesian error in binary classifications is [26]:


([image: there is no content])max=[image: there is no content]=min{[image: there is no content],[image: there is no content]},



(12)




where the symbol min denotes a minimum operation. For the non-Bayesian error, its maximum error bound becomes


([image: there is no content])max=1.



(13)







The Equations from Equations (11) to (13) describe the initial ranges of Bayesian and non-Bayesian errors respectively. When they share the same minimum, their maximums are always different.





Remark 2. 

For a given set of joint distributions in the bound studies, one may fail to tell if it is the solution from using the Bayesian rule or not. Only when [image: there is no content], we can say the set is corresponding to the non-Bayesian solution.





In a binary classification, the conditional entropy, [image: there is no content], is calculated from the joint distribution in Equation (8):


[image: there is no content]=H(T)−MI(T;Y)=−[image: there is no content]log2[image: there is no content]−[image: there is no content]log2[image: there is no content]−[image: there is no content]log2[image: there is no content]([image: there is no content]+[image: there is no content]−[image: there is no content])[image: there is no content]−[image: there is no content]log2[image: there is no content]([image: there is no content]−[image: there is no content]+[image: there is no content])[image: there is no content]−([image: there is no content]−[image: there is no content])log2([image: there is no content]−[image: there is no content])([image: there is no content]−[image: there is no content]+[image: there is no content])[image: there is no content]−([image: there is no content]−[image: there is no content])log2([image: there is no content]−[image: there is no content])([image: there is no content]+[image: there is no content]−[image: there is no content])[image: there is no content],



(14)




where [image: there is no content] is a binary entropy of the random variable T, and [image: there is no content] is mutual information between variables T and Y.



Remark 3. 

When a joint distribution [image: there is no content] is given, its associated conditional entropy [image: there is no content] is uniquely determined. However, for the given [image: there is no content], it is generally unable to reach a unique solution to [image: there is no content] but receives multiple solutions shown later in this work.





Definition 4. 

(Admissible point, admissible set, and their properties in diagram of entropy and error probability) In a given diagram of entropy and error probability, if a point in the diagram is possibly to be realized from a non-empty set of joint distributions for the given classification information, it is defined to be an admissible point. Otherwise, it is a non-admissible point. All admissible points will form an admissible set (or admissible region(s)), which is enclosed by the bounds (also called boundary). If every point located on the boundary is admissible (or non-admissible), we call this admissible set closed (or open). If only a partial portion of boundary points is admissible, the set is said to be partially closed. For an admissible point with the given conditions, if it is realized only by a unique joint distribution, it is called a one-to-one mapping point. If more than one joint distribution is associated to the same admissible point, it is called a one-to-many mapping point.





We consider that classifications present an exemplary justification of raising the first issue in Section 1 about the bound studies. The main reason behind the issue is that a single index of error probability may not be sufficient for dealing with classification problems. For example, when processing class-imbalance problems [32,33], we need to distinguish error types. In other words, for the same error probability e (or even the same admissible point), we are required to know the error components of [image: there is no content] and [image: there is no content] as well. Suppose one encounters a medical diagnosis problem, where [image: there is no content] (say, [image: there is no content]=0.98) generally represents the majority class for healthy persons (labeled with negative or −1 in Figure 3), and [image: there is no content] ([image: there is no content]) the minority class for abnormal persons (labeled with positive or 1). A class-imbalance problem is then formed. While [image: there is no content] (also called type I error ) is tolerable (say, [image: there is no content]=0.01), [image: there is no content] (or type II error) seems intolerable (say, [image: there is no content]=0.01) because abnormal persons are considered to be “healthy”. In class-imbalance problems, the performance measure from error probability may become useless. For example, a classification having e=[image: there is no content]=[image: there is no content]=0.02 does not support a high, yet reasonable, performance. Hence, from either theoretical or application viewpoint, it is necessary for establishing relations between bounds and joint distributions, which can provide error type information within error probability for better interpretations to the bounds.




4. Lower and Upper Bounds for Bayesian Errors


In this work, we select the bound relations between entropy and error probability. Furthermore, the bounds and their associated error components are also given by the following two theorems in a context of binary classifications.



Theorem 1. 

(Lower bound and associated error components) The lower bound in a diagram of “[image: there is no content] vs. [image: there is no content]” and the associated error components with constraints Equations (9) and (12) are given by:


[image: there is no content]≥max{0,[image: there is no content](H(T|Y))},



(15a)






forG1−1([image: there is no content])=−[image: there is no content]log2[image: there is no content]−(1−[image: there is no content])log2(1−[image: there is no content]),[image: there is no content]=[image: there is no content]+[image: there is no content]≤[image: there is no content],



(15b)






([image: there is no content],[image: there is no content])=(0.5,0)or(0,0.5),if[image: there is no content]=0.5,([image: there is no content](1−[image: there is no content]−[image: there is no content])1−2[image: there is no content],[image: there is no content]([image: there is no content]−[image: there is no content])1−2[image: there is no content]),otherwise,



(15c)




where [image: there is no content] is the conditional entropy of T when given Y, and [image: there is no content] is called the lower bound function (or lower bound). However, one can only achieve the closed-form solution on its inverse function, [image: there is no content], not on [image: there is no content](·) itself.





Proof. 

Based on Equation (14), the lower bound function is derived from the following definition:


G1−1(e)=argmaxeH(T|Y)subjecttoEquations(9)and(12),



(16)




where we take e for the input variable in the derivations Equation (16) describes the function of the maximum [image: there is no content] with respect to e, and the function needs to satisfy the general constraints of joint distributions in Equation (9). [image: there is no content] seems to be governed by the four variables from [image: there is no content] and [image: there is no content] in Equation (14). However, only two independent parameter variables determine the solutions of Equations (14) and (16). The variable reduction from four to two is due to the two specific constrains imposed between parameters, that is, [image: there is no content]+[image: there is no content]=1 and [image: there is no content]+[image: there is no content]=e. When we set [image: there is no content] and [image: there is no content] as two independent variables, (16) is then equivalent to solving the following problem:


G1−1([image: there is no content],[image: there is no content])=argmaxe=[image: there is no content]H(T|Y)subjecttoEquations(9)and(12).



(17)







G1−1([image: there is no content],[image: there is no content]) is a continuous and differentiable function with respect to the two variables. A differential approach is applied analytically for searching the critical points of the optimizations in Equation (17). We achieve the two differential equations below and set them to be zeros:


∂H(T|Y)∂[image: there is no content]=log2([image: there is no content]−[image: there is no content])([image: there is no content]−[image: there is no content])(1+2[image: there is no content]−[image: there is no content]−[image: there is no content])2[image: there is no content](1+[image: there is no content]−[image: there is no content]−[image: there is no content])([image: there is no content]+[image: there is no content]−2[image: there is no content])2=0,∂H(T|Y)∂[image: there is no content]=log2([image: there is no content]−2[image: there is no content]+[image: there is no content])(1+[image: there is no content]−[image: there is no content]−[image: there is no content])([image: there is no content]−[image: there is no content])(1+2[image: there is no content]−[image: there is no content]−[image: there is no content])=0.



(18)







By solving them simultaneously, we obtain the three pairs of the critical points through analytical derivations:


[image: there is no content]=[image: there is no content](1−[image: there is no content]−[image: there is no content])1−2[image: there is no content],[image: there is no content]=[image: there is no content]+2[image: there is no content][image: there is no content]−[image: there is no content]−Pe2[image: there is no content],



(19a)






[image: there is no content]=[image: there is no content]([image: there is no content]+[image: there is no content]−1)2[image: there is no content]−1,[image: there is no content]=1−[image: there is no content]2+[image: there is no content]+121+Pe2+4e12−4[image: there is no content][image: there is no content]−2[image: there is no content],



(19b)






[image: there is no content]=[image: there is no content]([image: there is no content]+[image: there is no content]−1)2[image: there is no content]−1,[image: there is no content]=1−[image: there is no content]2+[image: there is no content]−121+Pe2+4e12−4[image: there is no content][image: there is no content]−2[image: there is no content].



(19c)







The highest order of each variable, [image: there is no content] and [image: there is no content], in Equation (18) is four. However, we can see the quadratic component within the first function in Equation (18), (1+2[image: there is no content]−[image: there is no content]−[image: there is no content][image: there is no content]+[image: there is no content]−2[image: there is no content])2, will degenerate the total solution order from four to three. Therefore, the three pairs of critical points exhibit a complete set of possible solutions to the problem in Equation (17). The final solution should be the pair(s) that satisfies both the maximum [image: there is no content] with respect to [image: there is no content] for the given e=[image: there is no content] and the Equations constraints (9) and (12). Due to high complexity of the nonlinearity of the second-order partial differential equations on [image: there is no content], it seems intractable to examine the three pairs analytically for the final solution.



To overcome the difficulty above, we apply a symbolic software tool, Maple™9.5 (a registered trademark of Waterloo Maple, Inc.), for a semi-analytical solution to the problem (see Maple code in Figure A1). For simplicity and without loss of generality in classifications, we consider [image: there is no content] and [image: there is no content] are known constants in the function. The concavity property of [image: there is no content] with respect to [image: there is no content] in the ranges defined in Equation (19a) is confirmed numerically by varying data on [image: there is no content] and [image: there is no content]. Hence, a maximum solution on [image: there is no content] is always received from the possible solutions of the critical points. Among them, only Equation (19a) satisfies the constraints to be the final solution. When [image: there is no content] is set, the expression of [image: there is no content] is known as shown in Equation (15c). The singular case is given specifically and the solution of ([image: there is no content],[image: there is no content])=(0,0.5) is obtained when [image: there is no content] is used in the error expressions.  ☐





Remark 4. 

Theorem 1 achieves the same lower bound found by Fano [1] (Figure 4), which is general for finite alphabets (or multiclass classifications). One specific relation to Fano’s bound is given by the marginal probability (see (2-144) in [2]):


p(y)=(1−[image: there is no content],[image: there is no content]m−1,…,[image: there is no content]m−1),



(20)




which is termed sharp for attaining equality in Equation (1) [2]. We call Fano’s bound an exact lower bound because every point on it is sharp. The sharp conditions in terms of error components in Equation (15c) are a special case of the study in [20], and can be derived directly from their Theorem 1.


Figure 4. Plot of bounds in a “[image: there is no content]vs. [image: there is no content]” diagram.
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Theorem 2. 

(Upper bound and associated error components) The upper bound and the associated error components with constraints Equations (9) and (12) are given by:


[image: there is no content]≤min{[image: there is no content],[image: there is no content](H(T|Y))},



(21a)






forG2−1([image: there is no content])=−[image: there is no content]log2[image: there is no content][image: there is no content]+[image: there is no content]−[image: there is no content]log2[image: there is no content][image: there is no content]+[image: there is no content],



(21b)






and[image: there is no content]=[image: there is no content]+[image: there is no content]≤[image: there is no content],[image: there is no content]=pj,ej=0,[image: there is no content]≥pj,i≠j,i,j=1,2,



(21c)




where [image: there is no content] is called the upper bound function (or upper bound). The closed-form solution can be achieved only on its inverse function, [image: there is no content].





Proof. 

The upper bound function is obtained from solving the following equation:


G2−1([image: there is no content],[image: there is no content])=argmine=[image: there is no content]H(T|Y),subjecttoEquations(9)and(12).



(22)







Because the concavity property holds for [image: there is no content] with respect to [image: there is no content] as discussed in the proof of Theorem 1, the possible solutions of [image: there is no content] should be located at the two ending points, that is, either at [image: there is no content]=0 or at [image: there is no content]=[image: there is no content]. We can take the point which produces the smaller [image: there is no content] and satisfies the constraints as the final solution. The solution from Maple code in Figure A2 confirms the closed-form expressions in (21).  ☐





Remark 5. 

Theorem 2 describes a novel set of upper bounds which is in general tighter than Kovalevskij’s bound [8] for binary classifications (Figure 4). For example, when [image: there is no content] is given, the upper bounds defined in Equation (21) shows a curve “[image: there is no content]” plus a line “[image: there is no content]”. Kovalevskij’s upper bound, given by a line “[image: there is no content]”, is sharp only at Point O and Point C. The solution in Equation (21c) confirms an advantage of using the proposed optimization approach in derivations so that a closed-form expression of the exact bound is possibly achieved.





In comparison, Kovalevskij’s upper bound described in Equation (3) is general for multiclass classifications. This bound misses a general relation to error components like Equation (21c), although the relation is restricted to a binary state. For distinguishing from the Kovalevskij’s upper bound, we also call [image: there is no content] a curved upper bound. The new linear upper bound, ([image: there is no content])max=[image: there is no content], shows the maximum error for the Bayesian decisions in binary classifications [26], which is also equivalent to the solution of a blind guess when using the maximum-likelihood decision [30]. If [image: there is no content]=[image: there is no content], the upper bound becomes a single curved one.



Remark 6. 

The lower and upper bounds defined by Equations (15) and (21) form a closed admissible region in the diagram of “[image: there is no content]vs. [image: there is no content]”. The shape of the admissible region changes depending on a single parameter of [image: there is no content].






5. Lower and Upper Bounds for Non-Bayesian Errors


In classification problems, the Bayesian errors can be realized only if one has the exact information about all probability distributions of classes. The assumption above is generally impossible in real applications. In addition, various classifiers are designed by employing the non-Bayesian rules or resulted in non-Bayesian errors, from the conventional decision trees, artificial neural networks, and supporting vector machines [30], to the emerging deep learning [34]. Therefore, the analysis of the non-Bayesian errors presents significant interests in classification studies, although the conventional information theory does not distinguish the error types.



Definition 5. 

(Label-switching in binary classifications) In binary classifications, a label-switching operation is an exchange between two labels. Suppose the original joint distribution is denoted by:


pA(t,y):p11=a,p12=b,p21=c,p22=d.



(23a)







A label-switching operation will change the prediction labels in Figure 3 to be [image: there is no content] and [image: there is no content], and generate the following joint distribution:


pB(t,y):p11=b,p12=a,p21=d,p22=c.



(23b)









Proposition 1. 

(Invariant property from label-switching) The related entropy measures, including [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content], will be invariant to labels, or unchanged from a label-switching operation in binary classifications. However, the error e will be changed to be [image: there is no content].





Proof. 

Substituting the two sets of joint distributions in Equation (23) into each entropy measure formula respectively, one can obtain the same results. The error change is obvious.  ☐





Theorem 3. 

(Lower bound and upper bound for non-Bayesian error without information of [image: there is no content] and [image: there is no content]) In a context of binary classifications, when information about [image: there is no content] and [image: there is no content] is unknown (say, before classifications), the lower bound and upper bound for the non-Bayesian error with constraints Equations (9) and (13) are given by:


[image: there is no content](H(T|Y))≤[image: there is no content]≤1−[image: there is no content](H(T|Y)),



(24a)






forG1−1([image: there is no content])=−[image: there is no content]log2[image: there is no content]−(1−[image: there is no content])log2(1−[image: there is no content]),[image: there is no content]=[image: there is no content]+[image: there is no content]≤1,



(24b)






([image: there is no content],[image: there is no content])=(0.5,0)or(0,0.5),if[image: there is no content]=[image: there is no content]=[image: there is no content]=0.5,([image: there is no content](1−[image: there is no content]−[image: there is no content])1−2[image: there is no content],[image: there is no content]([image: there is no content]−[image: there is no content])1−2[image: there is no content]),if(1−[image: there is no content]−[image: there is no content])([image: there is no content]−[image: there is no content])≥0([image: there is no content]([image: there is no content]+[image: there is no content]−1)2[image: there is no content]−1,(1−[image: there is no content])([image: there is no content]−[image: there is no content])2[image: there is no content]−1),otherwise,



(24c)




where we call the upper bound in Equation (24a), 1−[image: there is no content](H(T|Y)), the general upper bound (or mirrored lower bound), which is a mirror of Fano’s lower bound with the mirror axis along [image: there is no content]=0.5. Both bounds share the same expression for calculating the associated error components in Equation (24c). When [image: there is no content]≤0.5, their components, [image: there is no content] and [image: there is no content], correspond to the lower bound, otherwise, to the upper bound.





Proof. 

When the error probability is relaxed by Equation (13), all possible solutions in Equation (19) are applicable but within the special ranges respectively. Suppose an admissible point is located at the lower bound which shows [image: there is no content]≤0.5. By a label-switching operation, one can obtain the mirrored admissible point at 1−[image: there is no content]≥0.5, which is located at the mirrored lower bound. Proposition 1 suggests both points share the same value of [image: there is no content]. Because [image: there is no content] is the smallest one for the given conditional entropy [image: there is no content], its mirrored point is the biggest one for creating the general upper bound.  ☐





Remark 7. 

Han and Verdù [16] achieved Fano’s bound from the joint distributions by including the independent condition pij=p([image: there is no content])p(yj) [2]. The condition will only lead to the last set of error equations in Equation (24c), not to the complete sets. In addition, the set is only applicable to the non-Bayesian errors, not to the Bayesian ones except for a special case in Equation (20). Equation (24c) confirms again the advantage of using the optimization in derivations which achieves the complete sets of solutions to describe Fano’s bound for non-Bayesian errors.





Remark 8. 

The bounds from Equation (24) are derived only when [image: there is no content] and [image: there is no content] are given. They exist even one does not have such information. In this situation, Fano’s lower bound, its mirror bound, and the axis of [image: there is no content] form an admissible region, denoted by a boundary “[image: there is no content]” in Figure 5. The axis of [image: there is no content] encloses the region, but only Points O and D are admissible. Hence, the admissible region is partially closed.


Figure 5. Plot of bounds in a “[image: there is no content] vs. [image: there is no content]” diagram.



[image: Entropy 18 00059 g005 1024]








Theorem 4. 

(Admissible region(s) for non-Bayesian error with known information of [image: there is no content] and [image: there is no content]) In binary classifications, when information about [image: there is no content] and [image: there is no content] is known, a closed admissible region for the non-Bayesian error with constraints Equations (9) and (13) is generally formed (Figure 5) by Fano’s lower bound, the general upper bound, the curved upper bound [image: there is no content], the mirrored upper bound of [image: there is no content], and the upper bound [image: there is no content]. For the [image: there is no content] bound, its associated error components are given by:


forH(T|Y)=H(T|Y)max=H([image: there is no content]),([image: there is no content],[image: there is no content])=(0.25,0.25),if[image: there is no content]=[image: there is no content]=[image: there is no content]=0.5,([image: there is no content](1−[image: there is no content]−[image: there is no content])1−2[image: there is no content],[image: there is no content](1−[image: there is no content])−[image: there is no content](1−[image: there is no content])1−2[image: there is no content]),otherwise.



(25)









Proof. 

Following the proof in Theorem 3, one can get the mirrored upper bound of [image: there is no content]. The upper bound [image: there is no content] is calculated from the condition of [image: there is no content] [2]. For the given [image: there is no content] and [image: there is no content], [image: there is no content] is a constant. Because [image: there is no content] also implies a minimization of [image: there is no content] in Equation (14), its associated error components can be obtained from the following equivalent relation (see (11) in [35]):


MI(T;Y)=0↔p11p21=p12p22.



(26)




 ☐





Remark 9. 

Equations (25) and (26) equivalently represent a zero value for the mutual information, which suggests no correlation [30] or statistically independent [2] between two variables T and Y.





Remark 10. 

When information of [image: there is no content] and [image: there is no content] is known, the admissible region(s) is much compact than that when without such information. The shape of the admissible region(s) is fully dependent on a single parameter [image: there is no content]. For example, if [image: there is no content]=0.1, the area is enclosed by the four-curve-one-line boundary “[image: there is no content]” in Figure 5. However, if [image: there is no content]=[image: there is no content]=0.5, two admissible areas are formed. They are “[image: there is no content]” and “[image: there is no content]”, respectively.






6. Classification Interpretations to Some Key Points


For a better understanding of the theoretical insights between the bounds and errors, some key points shown in Figure 4 and Figure 5 are discussed. Those key points may hold special features in classifications. Novel interpretations are expected from the following discussions.



Point O: This point represents a zero value of [image: there is no content]. It also suggests an exact classification without any error ([image: there is no content]=[image: there is no content]=0) by a specific setting of the joint distribution:


p11=[image: there is no content],p12=0,p21=0,p22=[image: there is no content].



(27)







This point is always admissible and independent of error types.



Point A: This point shows the maximum ranges of [image: there is no content] for class-balanced classifications ([image: there is no content]=[image: there is no content]). Three specific classification settings can be obtained for representing this point. The two settings from Equation (24c) are actually no classification:


p11=1/2,p12=0,p21=1/2,p22=0,orp11=0,p12=1/2,p21=0,p22=1/2.



(28)







They also indicate zero information [36] from the classification decisions. The other setting is a random guessing from Equation (25):


p11=1/4,p12=1/4,p21=1/4,p22=1/4.



(29)







For the Bayesian errors, this point is always included by both Fano’s bound and Kovalevskij’s bound. However, according to the upper bounds defined in Equation (21a), this point is non-admissible whenever the relation [image: there is no content]≠[image: there is no content] holds. For the non-Bayesian errors, the point is either admissible or non-admissible depending on the given information about [image: there is no content] and [image: there is no content]. This example suggests that the admissible property of a point should generally rely on the given information in classifications.



Point D: This point occurs for the non-Bayesian classifications in a form of:


p11=0,p12=[image: there is no content],p21=[image: there is no content],p22=0.



(30)







In this case, one can exchange the labels for a perfect classification.



Point B: This point is located at the corner formed by the curved and linear upper bounds, with [image: there is no content] and [image: there is no content]. In apart from Point O, this is another point obtained from Equation (21) that locates at Kovalevskij’s upper bound. The point can be realized from either Bayesian or non-Bayesian classifications. Suppose [image: there is no content]>[image: there is no content]=0.4 for the Bayesian classifications. One will achieve Point B by Equation (21):


p11=0.2,p12=0.4,p21=0.0,p22=0.4,



(31)




for a one-to-one mapping. In other words, this point is uniquely determined by Equation (31) and only corresponding to [image: there is no content]=0.4 within the Bayesian classifications. If non-Bayesian classifications are considered, this point becomes a one-to-many mapping and shows [image: there is no content]≠0.4. For example, one can get another setting of joint distribution from solving H([image: there is no content])=0.8 for [image: there is no content]=0.2430 first. Then, by substituting the relations of [image: there is no content]=[image: there is no content] and [image: there is no content]=0.4 into Equation (25), one can get the error components, that is, [image: there is no content]=0.2312 and [image: there is no content]=0.1688, for the new setting of joint distribution on Point B.



Point B becomes non-admissible when [image: there is no content]=0.5 (Figure 4), which means no joint distribution exists to satisfy Equation (9). In this situation, we can understand why the new upper bound is generally tighter than Kovalevskij’s upper bound.



Point [image: there is no content]: The point is with [image: there is no content] and [image: there is no content] in the diagram (Figure 4). It is exactly located at the lower bound and is able to produce a one-to-many mapping for either the Bayesian errors or non-Bayesian errors. One specific setting in terms of the Bayesian errors is:


p11=0.6,p12=0.0,p21=0.4,p22=0.0,



(32)




which suggests zero information from classifications. More settings can be obtained from Equation (15). For example, if given [image: there is no content]=0.55, [image: there is no content]=0.45 and [image: there is no content]=0.4, one can have:


p11=0.45,p12=0.10,p21=0.30,p22=0.15.



(33)







Another setting is for the balanced error components:


p11=0.3,p12=0.2,p21=0.2,p22=0.3.



(34)







The non-Bayesian errors will enlarge the set of one-to-many mapping for an admissible point due to the relaxed condition of Equation (13). Equation (24c) will be applicable for deriving a specific setting when [image: there is no content] and e are given. For example, two settings can be obtained:


if[image: there is no content]=0.250,[image: there is no content]=0.400,thenp11=0.075,p12=0.175,p21=0.225,p22=0.525,



(35)






if[image: there is no content]=0.300,[image: there is no content]=0.400,thenp11=0.075,p12=0.225,p21=0.175,p22=0.525,



(36)




for representing the same Point [image: there is no content].



Remark 11. 

One can observe that Equations (35) and (36) will lead to a zero mutual information, but Equations (33) and (34) are not. The observations reveal new interpretations about Fano’s bound in association with two situations in the independent properties of the variables, which have not been reported before.





Points E and [image: there is no content]: All points located at the general upper bound, like Point E, will correspond to the settings from the non-Bayesian errors. If a point located at the lower bound, say [image: there is no content], it can represent settings from either the Bayesian or non-Bayesian errors depending on the given information in classifications. Points E and [image: there is no content] form the mirrored points. Their settings can be connected by a relation in Equation (23) but are not necessary. For example, one specific setting for Point [image: there is no content] with [image: there is no content]=0.3 and [image: there is no content]=0.7 is:


p11=0.0,p12=0.3,p21=0.0,p22=0.7,



(37)




the other for Point E with [image: there is no content]=0.8 and [image: there is no content]=0.2 is:


p11=2030,p12=430,p21=530,p22=130.



(38)







They are mirrored to each other but have no label-switching relation.



Points [image: there is no content] and [image: there is no content]: When [image: there is no content]=0.5 and [image: there is no content]=0.1, Points [image: there is no content] and [image: there is no content] form a pair as the ending points for the given conditions. Supposing [image: there is no content]=0.9 and [image: there is no content]=0.1, one can get the specific setting for Point [image: there is no content] from Equation (21c):


p11=0.4,p12=0.5,p21=0.0,p22=0.4,



(39)




and one for Point [image: there is no content] from Equation (25):


p11=0.45,p12=0.45,p21=0.05,p22=0.05.



(40)







Points Q and R: The two points are specific due to their positions in the diagrams. For either type of errors, both points are non-admissible in the diagrams, because no joint distribution exists in binary classifications which can represent the points.




7. Summary


This work investigates into lower and upper bounds between entropy and error probability. An optimization approach is proposed to the derivations of the bound functions from a joint distribution. As a preliminary work, we consider binary classifications for a case study. Through the approach, Fano’s lower bound receives novel interpretations. A new upper bound is derived and shows tighter in general than Kovalevskij’s upper bound. The closed-form relations between bounds and error components are presented. The analytical results lead to a better understanding about the sharp conditions of bounds in terms of error components. Because classifications involve either Bayesian errors or non-Bayesian ones, we demonstrate the bounds comparatively for both types of errors.



We recognize that analytical tractability is an issue for the proposed approach. Fortunately, a symbolic software tool is helpful for solving complex problems successfully with different semi-analytical means (such as in [37,38]). The semi-analytical solution used in this work refers to the analytical derivation of all possible solutions, but the numerical verification of the final solution(s).




8. Discussions


To emphasize the importance of the study, we present discussions below from the perspective of machine learning in the context of big-data classifications. We consider that binary classifications will be one of key techniques to implement a divide-and-conquer strategy [39] for efficiently processing large quantities of data. Class-imbalance problems with extremely-skewed ratios are mostly formed from a one-against-other division scheme [31] in binary classifications. Researchers and users, of course, concern error components in types for performance evaluations [32]. The knowledge of bounds in relation to error components is desirable for theoretical and application purposes.



From a viewpoint of machine learning, the bounds derived in this work provide a basic solution to link learning targets between error and entropy in the related studies. Error-based learning is more conventional because of its compatibility with our intuitions in daily life, such as “trial and error”. Significant studies have been reported under this category. In comparison, information-based learning [40] is relatively new and uncommon in some applications, such as classifications. Entropy is not a well-accepted concept related to our intuition in decision making. This is one of the reasons why the learning target is chosen mainly based on error, rather than on entropy. However, error is an empirical concept, whereas entropy is theoretical and general [41]. In [35], we demonstrated that entropy can deal with both notions of error and reject in abstaining classifications. Information-based learning [40] presents a promising and wider perspective for exploring and interpreting learning mechanisms.



When considering all sides of the issues stemming from machine learning studies, we believe that “what to learn” is a primary problem. However, it seems that more investigations focused on the issue of “how to learn”, which should be put as the second-level problem. Moreover, in comparison with the long-standing yet hot theme of feature selection, little study has been done from the perspective of learning target selection. We propose that this theme should be emphasized in the study of machine learning. Hence, the relations studied in this work are fundamental and crucial to the extent that researchers, using either error-based or entropy-based approaches, are able to reach a better understanding about its counterpart.
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HTY dif el :=
1n(2)
> solve ({HTY_dif p1=0,HTY dif _el=0}, {el, pl}); not a complete set of
# possible solutions
/ 2
| Pe +e1—Pe—2e1PeI
<el=el, pl = -
|
\ /
> El:=solve (HTY_dif_el, el); # a complete set of possible solutions when pl is known
Pe (-1 + pl + Pe) pl (-1 + pl + Pe)
2 pe -1 2 pl -
> Pl_a: (11 + {p1});P1_bec: [21 ’ (pl)), # a complete set of pcsnble
olutions when el is kno
/ 2
| Pe + el - Pe - 2 el Pe|
Pla :=<pl=- >
|
\
/ (1/2)\
| 11 1/ 2 2\ |
Pl bc :=<pl=el+--=-Pe+-\del -4elPe+1=-2Pe+Pe/
| 2 2 2 |
\ /
/ (1/2)\
| 11 1/ 2 2\ |
<pl=el+---Pe--\4el -4el Pe+1-2Pe+Pe/
| 2 2 2 |
\ /
> simplify(combine (simplify(eval (HTY, el=E1[1])),1n,symbolic)); # failed to show it expl1c1t1y
> simplify(eval (HTY, el=E1[2])); # Di sp ay of the lo wer bound function in terms
pl 1n(pl) + 1n(1 - pl) n(l - pl) pl

n(2)
> » verification of concavity of HT‘{ by a numerical way (changing Pe and pl arbitrarily
> .5:pl: plot (HTY_graph,el=0..Pe) ; # with the constraints)
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restart, # Clean the memory

*1 *log[2] (p2); hannon entropy
pll —(pl e ) p12 —el p22 =p2-e2;p2l:=e2; # Terms of joint dlstrlbutlon
# To examine on two ending points for e2, i.e., e2 e2=

# For derlvatlon of the upper bound function when e2=0
e; =0; pl

# termediate varlables
g[2] (pll/ql/p1)+p12*log[2] (p12/q2/p1), # Mutual inform
#

MI:
MI: —MI+p22*log[2] (p22/q2/( pl)) ect one term when O*log(O)—
HTY ,ln symboli
# Dlsplay of the upper bound function when e2=e
/e 2\ /e + p2\
p2 ln|-=----- | + e ln|--———- |
/
HTY 1 :=
n(2)
> # For derlvat:\.on of the upper bound function when e2=e
> 0;e2:=e;
> # Intermediate variable
> M pll*log[Z] (pll/ql/pl), # Neglect one ter: when 0*log (0)=0
> MI:=MI log[2] (p22/q2/(1-pl))+p21*log| (p21/q1/(l pl));
> HTY —eval(HT MI, p2 1- P )i # Using Pl fo
> i 'In ymbolic)));
> # Dlsplay of the upper bound function in terms of e and p2
Pl \ /e N\
-P1 ln|------ | e ln|------ |
\P1 + e/ \Pl + e/
HTY 2 :=
1n(2)
> # To calculate the difference between HTY_1 and HTY_2
> delta HTY: i i i -HTY_2),1n,symbolic) ;
/e + p2\ /e + p2\ 10\
p2 ln|------ | e ln|------ | 1 1n|------ |
\ p2 / \P1 + e/ \P1 + e/

delta HTY :=
1n(2)

# numerical verification of the solution to HTY below:

# changing p2 arbitrarily with the constraint

# when p2<0.5, delta HTY<0, HTY 1 is the flnal solutlon,

2:=0.4;P1: 71 P2;p I min: 7m1n(P1 p2) plot(delta HTY e=0..p_min);
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