
entropy

Article

Bounding Extremal Degrees of Edge-Independent
Random Graphs Using Relative Entropy

Yilun Shang

Department of Mathematics, Tongji University, Shanghai 200092, China; shyl@tongji.edu.cn;
Tel.: +86-21-6598-3240 (ext. 2305)

Academic Editor: J. A. Tenreiro Machado
Received: 2 December 2015; Accepted: 1 February 2016; Published: 5 February 2016

Abstract: Edge-independent random graphs are a model of random graphs in which each potential
edge appears independently with an individual probability. Based on the relative entropy method,
we determine the upper and lower bounds for the extremal vertex degrees using the edge
probability matrix and its largest eigenvalue. Moreover, an application to random graphs with given
expected degree sequences is presented.
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1. Introduction

Edge-independent random graphs are random graph models with independent but (possibly)
heterogeneous edge probabilities, generalizing the model with constant edge probability introduced
by Erdős and Rényi [1,2]. Given a real symmetric matrix A = (pij) ∈ Rn×n with pij ∈ [0, 1], the
edge-independent random graph model Gn(pij) [3] is defined as a random graph on the vertex set
[n] = {1, 2, · · · , n}, which includes each edge (i, j) with probability pij independently. Clearly, the
classical Erdős-Rényi random graphs and the Chung–Lu models [4] with given expected degrees are
two special examples of Gn(pij).

Edge-independent random graphs are applicable in a range of areas such as modeling of social
networks, and detection of community structures [5,6], etc. The number of interacting nodes is
typically large in practical applications, and it is appropriate to investigate the statistical properties
of parameters of interest. The Estrada index and the normalized Laplacian Estrada index of Gn(pij)

for large n are examined in [7]. The problem of bounding the difference between eigenvalues of
A and those of the adjacency matrix of Gn(pij), together with its Laplacian spectra version, has been
studied intensively recently; see, e.g., [3,8,9]. It is revealed in [9] that large deviation from the expected
spectrum is caused by vertices with extremal degrees, where abnormally high-degree and low-degree
vertices are obstructions to concentration of the adjacency and the Laplacian matrices, respectively. A
regularization technique is employed to address this issue.

Relative entropy [10] is a key notion in quantum information theory, ergodic theory,
and statistical mechanics. It measures the difference between two probability distributions;
see e.g., [11–17] for various applications of relative entropy on physical, chemical and
engineering sciences.

Inspired by the above consideration, we in this paper study the extremal degrees of the
edge-independent random graph Gn(pij) in the thermodynamic limit, namely, as n tends to infinity.
Our approach is based on concentration inequalities, where the notation of relative entropy plays a
critical role. We first build the theory for maximum and minimum degrees for Gn(pij) in Section 2,
and then present an application for the random graph model G(w) with given expected degree
sequence w and a discussion regarding possible future direction in Section 3. Various combinatorial
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and geometric properties of G(w) including the hyperbolicity and warmth have been reported;
see, e.g., [18–20].

2. Bounds for Maximum and Minimum Degrees

Recall that A = (pij) ∈ Rn×n is a real symmetric matrix. Its eigenvalues can be ordered as
λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). Given a graph G ∈ Gn(pij), let ∆(G) and δ(G) be its maximum
and minimum degrees, respectively. The maximum expected degree of G is denoted by ∆(A), which
is equivalent to the maximum row sum of A. Let p = max{pij} and p = min{pij} represent the
maximum and minimum elements, respectively, in A. We say that a graph property P holds in
Gn(pij) asymptotically almost surely (a.a.s.) if the probability that a random graph G ∈ Gn(pij) has
P converges to 1 as n goes to infinity.

Theorem 1. For an edge-independent random graph G, suppose that ∆(A)� ln4 n. Then

λ1(A)− (2 + o(1))
√

∆(A) ≤ ∆(G) ≤ (1 + o(1))np, a.a.s. (1)

Proof. The lower bound is straightforward since

∆(G) ≥ λ1(G) ≥ λ1(A)− (2 + o(1))
√

∆(A) a.a.s. (2)

by employing Theorem 1 in [3].
For the upper bound, we set di = di(G) as the degree of vertex i in G. By construction,

di ∼ ∑n
j=1 Ber(pij) follows the sum of n independent Bernoulli distributions. If p = 1, the upper

bound in Equation (1) holds true trivially. Therefore, we assume p < 1 in the sequel.
For any non-decreasing function f (x) on the interval [0, n], the Markov inequality [2] implies

that for p < a < 1,

P(di ≥ an) = P( f (di) ≥ f (an)) ≤ E( f (di))

f (an)
=

∑n
k=0 f (k)pk(1− p)n−k

f (an)
. (3)

By choosing f (x) = (a/p)x ((1− a)/(1− p))n−x, we obtain from (3) that

P(∆(G) ≥ an) ≤
n

∑
i=1

P(di ≥ an) ≤ ne−n Ent(a,p), (4)

where Ent(a, p) = a ln(a/p) + (1− a) ln ((1− a)/(1− p)) is the so-called relative entropy [10].
Recall the Taylor expansion of ln(1+ x) = x− x2/2+ x3/3− x4/4+ · · · . For any ε > 0, we have

ln((1− p)/(1− (1 + ε)p)) ≤ (1− p)/(1− (1 + ε)p)− 1 and

(1 + ε) ln(1 + ε)− ε ≥ (1 + ε)

(
ε− ε2

2

)
− ε =

1
2

ε2(1− ε). (5)

Now, we choose ε > 0 satisfying a = (1 + ε)p < 1. Therefore, if ε = o(1) as n → ∞, the above
comments and the inequality (4) yield

P(∆(G) ≥ (1 + ε)np) ≤ ne−
1
2 npε2(1+o(1)). (6)

By assumption, we have np� ln4 n. We choose ε = (ln2 n)/
√

np = o(1). Hence, the estimate (6)
implies that ∆(G) ≤ (1 + o(1))np asymptotically almost surely, which concludes the proof of the
upper bound.
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Remark 1. The lower bound in (1) is best possible according to [3]. The upper bound in (1)
is also essentially best possible. Indeed, suppose that there exists 0 < q < p satisfying
∆(G) ≤ (1 + o(1))nq a.a.s.. Given an i0 ∈ [n], we define pi0 j = p for all j. Hence, E(di0) > qn.
Using the Chernoff bound, we deduce that P(di0 > (1 + o(1))nq) = 1− o(1), which contradicts the
assumption.

Remark 2. The use of Markov’s inequality in (3) is of course reminiscent of the Chernoff bound,
which is a common tool in bounding tail probabilities [2]. However, we mention that the relative
entropy Ent(a, p) here plays an essential role that cannot be simply replaced by the Chernoff-type
bounds. The Chernoff’s inequality (see, e.g., Lem. 1 in [4]) gives

P
(

di ≥ (1 + ε)
n

∑
j=1

pij

)
≤ e−(∑

n
j=1 pij)ε

2/3 ≤ e−npε2/3, (7)

which may produce a fit upper bound only if p = p. The similar comments can be applied to
Theorem 2 below for the minimum degree of Gn(pij).

Remark 3. Notice that ∆(A) ≤ np. It is easy to see that the upper bound ∆(G) ≤ (1 + o(1))np holds
a.a.s. provided p� (ln n)/n. In fact, it suffices to take ε = 2

√
(ln n)/np in the above proof.

Remark 4. If pij = p for all i and j, the edge-independent model Gn(pij) reduces to the Erdős-Rényi
random graph Gn(p) (with possible self-loops; however, this is not essential throughout this paper).
Since ∆(A) = λ1(A) = np, Theorem 1 implies that for G ∈ Gn(p), if np � ln4 n, we have
∆(G) = (1 + o(1))np a.a.s.. However, this result is already known to be true under an even weaker
condition, namely, np � ln n (see, e.g., p.72, Cor. 3.14 in [1], [21]). It is viable to expect that our
Theorem 1 holds as long as ∆(A)� ln n. Unfortunately, we do not have a proof presently.

This also lends support to the conjecture made in [3] that Theorem 1 therein (regarding the
behavior of adjacency eigenvalues of edge-independent random graphs) holds when ∆(A)� ln n. A
partial solution in this direction can be found in [8].

Theorem 2. Let G be an edge-independent random graph.

(A) If p� (ln n)/n, then (1 + o(1))np ≤ δ(G) ≤ (1 + o(1))np a.a.s.;
(B) If ∆(A)� ln4 n, then δ(G) ≤ n− λ1(A) + (2 + o(1))

√
∆(A) a.a.s..

Proof. The statement (B) holds directly from Theorem 1 by noting that δ(G) = n − ∆(Gc), where
Gc is the complement of G. Since p ≥ p � (ln n)/n and δ(G) ≤ ∆(G), the upper bound in
the statement (A) follows immediately from Remark 3. It remains to prove the lower bound of the
statement (A).

To show the lower bound, we address three cases separately.
Case 1. p = 1. It it clear that δ(G) ≥ (1 + o(1))np a.a.s. in this case.

Case 2. 1− p = O
(
(ln n)1/3/n1/3

)
.

For any non-decreasing function g(x) on the interval [0, n], the Markov inequality indicates that
for 0 < a < p < 1,

P(di ≤ an) = P(g(n− di) ≥ g(n− an)) ≤ E(g(n− di))

g(n− an)

=
∑n

k=0 g(n− k)pk(1− p)n−k

g(n− an)
. (8)
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By choosing g(x) =
(

a/p
)n−x (

(1− a)/(1− p)
)x

, we obtain from (8) that

P(di ≤ an) ≤ e−n Ent(a,p), (9)

where Ent(a, p) is the relative entropy defined in the proof of Theorem 1.
In the following, we choose a→ 1 and 1− p� 1− a as n→ ∞. Hence, from (9) we obtain

P(δ(G) ≤ an) ≤ n exp
(
− n

(
a ln(a/p) + (1− a) ln((1− a)/(1− p))

) )
≤ n exp

(
− n

(
(1− a) ln((1− a)/(1− p))− 2(1− a)

)
+ ln n

)
, (10)

where in the second inequality we have used the following estimation

e−
2(1−a)

a ≤ 1− 2(1− a)
a

+
2(1− a)2

a2 =
1/(1− a)− 3
1/(1− a)− 1

+ Θ((1− a)2)

≤ 1/(1− a)− 1
1/(1− a)− (1− p)/(1− a)

=
a
p

. (11)

By assumption we set 1 − p ≤ c(ln n)1/3/n1/3 for some c > 0. By choosing
1− a = (ln n)2/3/n1/3, we obtain

(1− a)

(
ln

(
1− a
1− p

)
− 2

)
≥ (1− a)

(
ln

(
(1− a)

c

( n
ln n

) 1
3

)
− 2

)
≥ 2 ln n

n
. (12)

Combining (10) and (12) we arrive at P(δ(G) ≤ an) ≤ e− ln n → 0 as n→ ∞.
Finally, by our choice of parameters, a/p = (1/(1− a)− 1)/(1/(1− a)− (1− p)/(1− a)) → 1

as n→ ∞. Hence, an = (1 + o(1))np, which completes the proof in this case.
Case 3. 1− p� (ln n)1/3/n1/3.

Notice that Gc can be viewed as a random graph in Gn(1− pij). Hence, the same arguments
towards (4) imply that

P(∆(Gc) ≥ (1 + ε)(1− p)n) ≤ ne−n Ent((1+ε)(1−p),1−p) (13)

for any ε > 0 satisfying (1 + ε)(1− p) < 1.
In the following, we take o(1) = ε � p. Thus, the relative entropy in (13) can be bounded

below as

Ent
(
(1 + ε)(1− p), 1− p

)
=(1 + ε)(1− p) ln(1 + ε) + (p− ε + pε) ln

(
1−

ε(1− p)
p

)

≥(1 + ε)(1− p)
(

ε− ε2

2

)
+ (p− ε + pε)

(
−

ε(1− p)
p

−
ε2(1− p)2

2p2 −
ε3(1− p)3

p3

)

=
ε2

2p

(
(1− p)− c1

(
ε +

ε

p

)
+ O

(
pε2
))

, (14)
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where c1 > 0 is a constant. Combining (13) and (14) we obtain

P(∆(Gc) ≥ (1 + ε)(1− p)n) ≤ exp

(
−nε2

2p

(
(1− p)− c1

(
ε +

ε

p

)
+ O

(
pε2
))

+ ln n

)

≤ exp

(
− c2nε2

2p
(1− p) + ln n

)
, (15)

where c2 > 0 is a constant. Here, in the second inequality of (15), we have employed the assumptions
1− p� (ln n)1/3/n1/3 and p� (ln n)/n.

Take ε =
√

3p(ln n)/(c2(1− p)n) in the inequality (15). It is direct to check that ε → 0 and

ε/p→ 0 as n→ ∞ under our assumptions. Hence, we have P(∆(Gc) ≥ (1 + ε)(1− p)n) = o(1), and

δ(G) = n− ∆(Gc) ≥ n− (1 + ε)(1− p)n = (1 + o(1))np a.a.s.. (16)

The last equality holds since o(1) = ε� p. The proof is then complete.

Remark 5. Similarly as in Remark 1, the upper and lower bounds of Theorem 2 are essentially best
possible.

Remark 6. When pij = p for all i and j, Theorem 2 reduces to the fact for Erdős-Rényi model that
δ(G) = (1+ o(1))np a.a.s. provided p� (ln n)/n. This result is already known (see, e.g., p.152 in [2])
and is proved by a more sophisticated method called Stein’s method. A more or less similar approach
appears in [21].

3. An Application to Random Graphs with Given Expected Degrees

The random graph model G(w) with given expected degree sequence w = (w1, w2, · · · , wn)

is defined by including each edge between vertex i and j independently with probability
pij = wiwj/ Vol(G), where the volume Vol(G) = ∑n

i = 1 wi [4,18]. By definition we
have ∆(A) = wmax : = max1 ≤ i≤ n wi, p = w2

max/ Vol(G) and p = w2
min/ Vol(G), where

wmin : = min1 ≤ i ≤ n wi. Moreover, let the second-order volume and the expected second-order
average degree be Vol2(G) = ∑n

i = 1 w2
i and w̃ = Vol2(G)/ Vol(G), respectively.

An application of Theorem 1 to G(w) yields the following corollary on the maximum
degree of G(w).

Corollary 1. For a random graph G ∈ G(w), suppose that wmax � ln4 n. Then

w̃− (2 + o(1))
√

wmax + o(1) ≤ ∆(G) ≤ (1 + o(1))
nw2

max
Vol(G)

, a.a.s. (17)

Proof. The results follow immediately from Theorem 1 by noting that λ1(A) ≥ w̃ + o(1)
(see, e.g., p.163, Lem. 8.7 in [18]).

Analogously, the following result is for the minimum degree of G(w).

Corollary 2. Let G be a random graph in G(w).

(A) If w2
min � Vol(G)(ln n)/n, then

(1 + o(1))
nw2

min
Vol(G)

≤ δ(G) ≤ (1 + o(1))
nw2

max
Vol(G)

a.a.s.; (18)
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(B) If wmax � ln4 n, then

δ(G) ≤ n− w̃ + (2 + o(1))
√

wmax + o(1) a.a.s.. (19)

To illustrate the availability of the above results, we study two numerical examples.

Example 1. Consider the random graph model G(w) with w1 = · · · = wn/2 = ln4 n and
wn/2 = · · · = wn = ln5 n. This model is more or less similar to homogeneous Erdős-Rényi random
graphs. It is straightforward to check that all conditions in Corollary 1 and Corollary 2 hold.
In Table 1, we compare the theoretical bounds of maximum degrees obtained in Corollary 1 with
numerical values using Matlab software. The analogous results for minimum degrees are reported in
Table 2. We observe that the simulations are in line with the theory. It turns out that the upper bound
for the maximum degree and the lower bound for the minimum degree are more accurate.

Table 1. Maximum degree ∆(G) of G ∈ G(w) with w = (ln4 n, · · · , ln4 n, ln5 n, · · · , ln5 n) (with half
of the numbers being ln4 n). The theoretical upper and lower bounds are calculated from Corollary 1.
Numerical results are based on average over 20 independent runs.

n Theoretical Lower Bound ∆(G) Theoretical Upper Bound
9.8× 105 4.683× 105 − (2 + o(1))706.85 + o(1) 7.260× 105 (1 + o(1))9.317× 105

9.9× 105 4.701× 105 − (2 + o(1))708.15 + o(1) 7.283× 105 (1 + o(1))9.352× 105

10.0× 105 4.718× 105 − (2 + o(1))709.44 + o(1) 7.305× 105 (1 + o(1))9.387× 105

10.1× 105 4.735× 105 − (2 + o(1))710.72 + o(1) 7.327× 105 (1 + o(1))9.421× 105

10.2× 105 4.752× 105 − (2 + o(1))711.99 + o(1) 7.351× 105 (1 + o(1))9.455× 105

Table 2. Minimum degree δ(G) of G ∈ G(w) with w = (ln4 n, · · · , ln4 n, ln5 n, · · · , ln5 n) (with half
of the numbers being ln4 n). The theoretical upper and lower bounds are calculated from Corollary 2.
Numerical results are based on average over 20 independent runs.

n Theoretical Lower Bound δ(G) Theoretical Upper Bound
9.8× 105 (1 + o(1))4.896× 103 1.826× 104 5.117× 105 + (2 + o(1))706.85 + o(1)
9.9× 105 (1 + o(1))4.907× 103 1.829× 104 5.200× 105 + (2 + o(1))708.15 + o(1)

10.0× 105 (1 + o(1))4.918× 103 1.832× 104 5.282× 105 + (2 + o(1))709.44 + o(1)
10.1× 105 (1 + o(1))4.929× 103 1.834× 104 5.365× 105 + (2 + o(1))710.72 + o(1)
10.2× 105 (1 + o(1))4.940× 103 1.837× 104 5.448× 105 + (2 + o(1))711.99 + o(1)

Example 2. Power-law graphs, which are prevalent in real-life networks, can also be constructed
based on the Chung–Lu model G(w) [18]. Given a scaling exponent β, an average degree
d := Vol(G)/n, and wmax, a power-law random graph G(w) is defined by taking wi = ci−1/(β−1)

for i0 ≤ i < i0 + n, where

c =
β− 2
β− 1

dn
1

β−1 and i0 = n
(

d(β− 2)
wmax(β− 1)

)β−1

. (20)

We choose β = 2.5, wmax =
√

n, and d = (ln n)2. It is direct to check that the conditions in
Corollary 1 and Corollary 2 hold.
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In Figure 1 we show the maximum and minimum degrees as well as the theoretical bounds for
G(w) with different number of vertices. Note that the upper bound in (19) is worse than that in (18)
for this example. We thus invoke the same upper bounds for both ∆(G) and δ(G) in Figure 1.
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Figure 1. Extremal degree versus the number of vertices n. The theoretical upper and lower bounds
are from (17) and (18). Each data point is obtained by means of a mixed ensemble averaging of 30
independent runs of 10 graphs yielding a statistically ample sampling.

We observe interestingly, as in Example 1, that the upper bound for the maximum degree and
the lower bound for the minimum degree seem to be more accurate. As is known that large deviation
phenomena are normally associated with a global hard constraint which fights against a local soft
constraint. We contend that the deviations from the expected degree sequence are due here to a fight
of the constrained degree sequence with the imposed edge-independency.

Figure 2. A depiction of the small-world graph S(n, p, C2k) with n = 16, p = 0, and k = 3.

As a follow up work, inspired by the above examples, it would be of interest to identify all
the graphs that are close to the theoretical upper or lower bounds. As an illustrating example, we
consider the small-world graph G = S(n, p, C2k) (k ≥ 1) studied in [22,23], which can be viewed as
the join of a random graph Gn(p) and a ring on n vertices, each of which has edges to precisely k
subsequent and k previous neighbors (see, e.g., Figure 2). In the special case of p ≡ 0, G becomes
a regular graph, and we know that λ1(A) = ∆(G) = 2k, where A is the adjacency matrix of G.
If k� ln4 n holds, it follows from Theorem 1 that

2k− (2 + o(1))
√

2k ≤ 2k ≤ (1 + o(1))n, a.a.s. (21)
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Clearly, the upper bound is close if k is large, while the lower bound tends to be more accurate if
k is small. In general, when p� (ln4 n/)n holds, for any k ≥ 1 it follows from Theorem 1 that

λ1(A)− (2 + o(1))
√

2k + (n− 2k− 1)p ≤ ∆(G) ≤ (1 + o(1))n, a.a.s. (22)

Note that the second largest eigenvalue of the adjacency matrix of S(n, 0, C2k), which is a
circulant matrix, is

λ2(A(S(n, 0, C2k))) =
sin(π(2k + 1)/n)

sin(π/n)
− 1 = (2 + o(1))k, (23)

as n → ∞. Utilizing the edge version of Cauchy’s interlacing theorem, (22) and (23), we derive the
following estimation

(2 + o(1))
(
k−

√
2k + (n− 2k− 1)p

)
≤ ∆(G) ≤ (1 + o(1))n, a.a.s. (24)

The gap between upper and lower bounds can be quite close provided k attains it maximum,
namely, b(n− 1)/2c.

Acknowledgments: The author would like to thank the anonymous reviewers and Academic Editor for the
insightful and constructive suggestions. This work is funded by the National Natural Science Foundation of
China (11505127), the Shanghai Pujiang Program (15PJ1408300), and the Program for Young Excellent Talents in
Tongji University (2014KJ036).

Conflicts of Interest: The author declares no conflict of interest.

References

1. Bollobás, B. Random Graphs, 2nd ed.; Cambridge University Press: Cambridge, UK, 2001.
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