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Abstract: In this work; we present a method for solving the second-order linear ordinary differential
equation of hypergeometric type. The solutions of this equation are given by the confluent
hypergeometric functions (CHFs). Unlike previous studies, we obtain some different new solutions
of the equation without using the CHFs. Therefore, we obtain new discrete fractional solutions of the
homogeneous and non-homogeneous confluent hypergeometric differential equation (CHE) by using
a discrete fractional Nabla calculus operator. Thus, we obtain four different new discrete complex
fractional solutions for these equations.
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1. Introduction

Due to their potential applications fractional and discrete fractional differential equations have
attracted much attention in recent years [1–5]. Recently, many papers on discrete fractional calculus
(DFC) have been published. For example, Atici and Eloe introduced in [6] the discrete Laplace
transform method for a family of finite fractional difference equations. In [7] they defined the initial
value problems in DFC. Atici and Eloe [8] studied the properties of DFC with the Nabla operator.
They developed exponential laws and the product rule for the forward fractional calculus. Atici and
Sengul [9] developed the Leibniz rule in DFC. Bastos and Torres [10] presented the more general discrete
fractional operator and this operator was defined by the Delta and Nabla fractional sums. Holm [11]
introduced fractional sums and difference operators. Jarad and Tas [12] defined the generalized
discrete Sumudu transform and its essential properties. Mohan [13] discussed the differentiability
properties of solutions of Nabla fractional difference equations of non-integral order. Mohan [14]
established sufficient conditions for the global existence and uniqueness of the nonlinear fractional
Nabla difference system.

We recall that a given confluent hypergeometric function means a solution for the confluent
hypergeometric equation, which represents a degenerate form of a hypergeometric differential equation
such that two of the three regular singularities merge into an irregular one. In this manuscript we
studied the confluent hypergeometric differential equation (CHE) [15], namely:

w2 r` pη ´ rq w1 ´ δw “ 0, (1)
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where δ and η are real constants and r is an independent variable. We recall that this equation was
found by Kummer [15] and the confluent hypergeometric equation originates in physical problems.
For example, it rises in connection with cylindrical waves and their extensions. Singularities of the
differential equations are regular, except for sound in a flow [16]. Bearing this in mind we conclude
that this type of equation involves complex calculations. Solutions of Equation (1) are defined by the
confluent hypergeometric functions [16]. Akimoto and Suziki [17] acquired new generalized entropies
by using the confluent hypergeometric function of the first type.

Fractional calculus plays an important part in entropy and many other works. Entropy is utilized
in the analysis of anomalous diffusion process and fractional diffusion equations. Many numerical
methods were presented to investigate the problem: the homotopy perturbation method and homotopy
analysis method, the collocation methods, the finite element method. Entropy was presented in
thermodynamics by Clausius and Boltzmann. These advances activated the formulation of novel
entropy indices and fractional operators allowing their implementation in complex dynamical
systems [18,19]. Machado investigated the entropy analysis of fractional derivatives and their
approximation [20].

Magin et al. [21] characterized anomalous diffusion in porous biological tissues using fractional
order derivatives and entropy. Ingo et al. [22] applied entropy for the case of anomalous diffusion
governed by the time and space fractional order diffusion equation. Thus, they acquired a new
perspective for fractional order models.

The aim of this paper to get new discrete fractional solutions of the homogeneous and
nonhomogeneous CHEs by means of the Nabla discrete fractional operator. This paper is organized as
follows: in Section 2, the basic definitions of the discrete fractional calculus are presented. Our results
are then given in Section 3. Some conclusions and future perspectives are given in the last Section.

2. Preliminaries

In this section, we present some essential information about discrete fractional calculus theory.
We use some notations Nk “ tk, k` 1, k` 2, ¨ ¨ ¨u for k P Z. Let µpnq and v pnq be a real-valued functions
defined on N`0 . These and other related results can be found in [6–14].

Definition 2.1. [6] The rising factorial power is given by:

χn “ χ pχ` 1q pχ` 2q . . . pχ` n´ 1q , n P N, χ0 “ 1. (2)

Let α a real number. Then χα is defined as:

χα “
Γ pχ` αq

Γ pχq
, (3)

where χ P Rz t. . . ,´2,´1, 0u and 0α “ 0. Let us note that:

∇
´

χα
¯

“ αχα´1, (4)

where ∇u pτq “ u pτq ´ u pτ´ 1q . For σ “ 2, 3, . . ., define ∇σ in deductively by ∇σ “ ∇∇σ´1.

Definition 2.2. [6] The α´ χ h order fractional sum of v is given by:

∇´α
k v pχq “

χ
ÿ

s“k

pχ´ δ pχqqα´1

Γ pαq
v psq , (5)

where χ P Nk, δ pχq “ χ´ 1 is backward jump operator of the time scale calculus.
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Theorem 2.1. [13] Let µpnq and v pnq : N`0 Ñ R, γ, ϕ ą 0 and h, v are scalars. The following
equality holds:

1. ∇´γ∇´ϕµ pnq “ ∇´pγ`ϕqµ pnq “ ∇´ϕ∇´γµ pnq , (6)

2. ∇γ rhµ pnq ` vv pnqs “ h∇γµ pnq ` v∇γv pnq , (7)

3. ∇∇´γµ pnq “ ∇´pγ´1qµ pnq , (8)

4. ∇´γ∇µ pnq “ ∇p1´γqµ pnq ´

˜

n` γ´ 2
n´ 1

¸

µ p0q . (9)

Lemma 2.1. [14] (Leibniz Rule). For any α ą 0, α´ τh order fractional difference of the product µv

is given by:

∇α
0 pµvq pχq “

χ
ÿ

n“0

˜

α

n

¸

“

∇α´n
0 µ pχ´ nq

‰

r∇nv pχqs . (10)

Lemma 2.2. [23] If the function µ pnq is single-valued and analytic then we have:

`

µγ pnq
˘

ρ
“ µγ`ρ pnq “

`

µρ pnq
˘

γ

`

µγ pnq ‰ 0; µρ pnq ‰ 0; γ, ρ P R; n P N
˘

. (11)

3. Main Results

In this section, we give two theorems for the discrete fractional solutions of the nonhomogeneous
and homogeneous CHEs by using the Nabla DFC operator.

Theorem 3.1. Let w P tw : 0 ‰ |wα| ă 8; α P Ru and ψ P tψ : 0 ‰ |ψα| ă 8; α P Ru . Then the
non-homogeneous CHE:

w2r`w1 pη ´ rq ´ δw “ ψ pr ‰ 0q , (12)

has particular solutions of the form:

w “
ˆ

”

ψ´E´1δe´rrη´δ´1
ı

´1
errδ´η

˙

E´1δ´1
” wı, (13)

w “ r1´η

"„

´

ψ rη´1
¯

E´1pη´δ´1q
e´r r´δ



´1
errδ´1

*

´1`E´1 pδ´η`1q
” wıı, (14)

where wn “ dnw{drn pn “ 0, 1, 2q , w0 “ w “ w prq , r P R.

Proof. (i) Operating ∇α to the both sides of Equation (12) gives:

∇α pw2rq `∇α rw1 pη ´ rqs ´∇α pwq δ “ ∇αψ. (15)

Using Equations (4) to (13), we get:

∇α pw2rq “ w2`αr` α Ew1`α, (16)

where E is a shift operator [24]. We have:

∇α rw1 pη ´ rqs “ w1`α pη ´ rq ´ α Ewα. (17)

We may write Equation (15) in the following form:

w2`αr`w1`α pα E` η ´ rq ´wα pα E` δq “ ψα, (18)
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by using relations (16) and (17). Choose α such that:

α “ ´E´1δ. (19)

We have:
w2´E´1δr`w1´E´1δ p´δ` η ´ rq “ ψ´E´1δ , (20)

from Equation (18).
Therefore, setting:

w1´E´1δ “ y “ y prq
`

w “ yE´1δ´1
˘

, (21)

we obtain:

y1 ` y
ˆ

η ´ δ

r
´ 1

˙

“ ψ´E´1δr´1, (22)

from Equation (20). This is an ordinary differential equation of the first order which has a particular
solution:

y “
”

ψ´E´1δe´rrη´δ´1
ı

´1
errδ´η . (23)

Therefore, we obtain the solution (13) from Equations (21) and (23).
(ii) Set:

w “ rκφ, φ “ φ prq . (24)

Therefore:
w1 “ κ rκ´1φ` rκ φ1, (25)

w2 “ κ pκ´ 1q rκ´2φ` 2κrκ´1φ1 ` rκφ2. (26)

Substitute Equations (24)–(26) into (12) we have:

φ2r` φ1 p2κ` η ´ rq ` φ

„

κ pκ` η ´ 1q
r

´ κ´ δ



“ ψr´κ . (27)

Here, we choose κ such that:
κ pκ` η ´ 1q “ 0, (28)

that is κ1 “ 0, κ2 “ 1´ η.

In the case κ “ 0, we have the same results as proof (i).
Let κ “ 1´ η. From Equations (24) and (26) we have:

w “ r1´ηφ, (29)

and:
φ2r` φ1 p2´ η ´ rq ` φ pη ´ δ´ 1q “ ψrη´1, (30)

respectively.
Applying the operate ∇α to both members of Equation (32) gives:

φ2`α r` φ1`α pα E´ η ´ r` 2q ` φα p´αE` η ´ δ´ 1q “
´

ψ rη´1
¯

α
. (31)

Choose α such that:
α “ E´1 pη ´ δ´ 1q , (32)

we have:
φ2`E´1Ξr` φ1`E´1Ξ p´δ` 1´ rq “

´

ψ rη´1
¯

E´1Ξ
, (33)

from Equation (31) where Ξ “ pη ´ δ´ 1q .
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Therefore, setting:
φ1`E´1Ξ “ v “ v prq

`

φ “ v´1`E´1Ξ
˘

, (34)

it gives:

v1 `v

ˆ

1´ δ

r
´ 1

˙

“

´

ψrη´1
¯

E´1Ξ
r´1, (35)

From Equation (33). A particular solution of the ordinary differential Equation (35) is given by:

v “

”´

ψ rη´1
¯

E´1Ξ
e´rr´δ

ı

´1
errδ´1. (36)

Thus, we obtain the solution (13) from Equations (31) and (36).

Theorem 3.2. Let w P tw : 0 ‰ |wα| ă 8, α P Ru . Then, the homogeneous CHE:

w2r`w1 pη ´ rq ´wδ “ 0 pr ‰ 0q , (37)

has solutions of the form:
w “ h

´

errδ´η
¯

E´1δ´1
” wpIq, (38)

w “ hr1´η
´

errδ´1
¯

´1`E´1pδ´η`1q
” wpııq, (39)

where h is an arbitrary constant.

Proof. When ψ “ 0 in Theorem 1, we conclude that:

y1 ` y
ˆ

η ´ δ

r
´ 1

˙

“ 0, (40)

v1 `v

ˆ

1´ δ

r
´ 1

˙

“ 0, (41)

instead of Equations (22) and (35), respectively.

As a result, we obtain Equation (38) for (40) and Equation (39) for (41).

4. Conclusions

We have obtained some new discrete fractional solutions of the homogeneous and
nonhomogeneous CHEs in this work. The Nabla fractional calculus operator was used to apply
the integration of this equation as it was pointed out in the classical methods. Therefore, we obtain
many different discrete fractional solutions for these equations. We believe that this type of solutions
for such an equation will be useful in future investigations. These new discrete fractional solutions can
be used to define new entropies.

As it is known solving a general case of non-homogeneous DFC requires a huge computational
effort, therefore we believe that the reported solutions will be very useful in the future applications to
some real world problems. We will obtain discrete fractional solutions of the same type equations by
using the combined Delta-Nabla sum operator in DFC in our future works.
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