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Abstract: Predicting the outcome of National Basketball Association (NBA) matches poses a
challenging problem of interest to the research community as well as the general public. In this
article, we formalize the problem of predicting NBA game results as a classification problem and
apply the principle of Maximum Entropy to construct an NBA Maximum Entropy (NBAME) model
that fits to discrete statistics for NBA games, and then predict the outcomes of NBA playoffs using
the model. Our results reveal that the model is able to predict the winning team with 74.4% accuracy,
outperforming other classical machine learning algorithms that could only afford a maximum
prediction accuracy of 70.6% in the experiments that we performed.

Keywords: maximum entropy model; k-means clustering; accuracy; classification; sports forecasting

1. Introduction

The National Basketball Association (NBA), the highest level basketball league in the world, was
founded in 1946, and has had a 70 year history. NBA games are now among the most professional,
marketed, attended, in addition to being one of the most popular leagues in the world. The NBA
enjoys a big following around the world, with many participants anticipating results, in addition to
a multitude of betting companies offering vast amounts of money to gamblers on odds of one team
winning against another [1,2]. Most participants often place their odds subjectively based on their
personal preference of teams without any scientific basis, thus accuracy of the prediction is often very
poor. With the rapid advance in science and technology, specifically using sophisticated data mining
and machine learning algorithms, forecasting the outcome of a game with high precision is highly
feasible and of great economic significance to various players in the betting industry.

By 1950, the popularity of the NBA had increased globally, necessitating the need to forecast
results of NBA games; thus, experts began to focus on the historical records of game statistics in a
bid to turn the data into useful information. In the early days, most researchers just applied simple
principles of statistics that simply combined technical features of past games to create a ranked list of
teams used to forecast likelihood of a home team winning an upcoming game [3,4]. However, their
accuracy is low compared to probabilistic based machine learning methods. As data for past games
became more ubiquitous, researchers began to look for more methods to apply to the large amounts
of data; thus, a vast amount of articles related to the analysis and forecasting of results of sports
encounters were published. With advances in statistics and processing power of personal computers,
researchers leveraged this power to improve accuracy in prediction. Bhandari et al. [5] developed
the Advanced Scout based on a Windows personal computer machine in 1996, which pushed NBA
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games’ data into data mining and the knowledge discovery technology field, and enabled coaches to
find some interesting patterns of the competition of basketball games based on data.

By the end of the 20th century, scientists started using a variety of machine learning algorithms
to forecast NBA games. Existing research that has used neural nets and decision trees has a major
limitation of limited datasets, which lead to overfitting of both models. Consequently, the models
will perform very well based on the training data but very low based on the test dataset [6–8].
The Maximum Entropy model overcomes this limitation by making use of little known facts and
making no assumptions about the unknown. Similarly, the support vector machine is limited by
its failure to output a probability value, but only a win or loss, which makes the results difficult
to explain [9]. Lack of independence between some features used in sports forecasting is a major
limitation to research, such as [10], that uses the Naive Bayes method.

Recently, many scholars have used a variety of probability graph models to simulate
games [11–13], and their results are promising. However, their major focus is the difference between
the simulation and the real game, but not to predict the final outcome of the game. They also do not
compute their prediction accuracy. Stekler et al. [14] examined some different evaluation procedures
and compared prediction accuracy of some forecasting methods. Haghighat et al. [15] reviewed the
use of data mining technologies (neural nets, support vector machines, Bayesian method, decision
trees and fuzzy system) to forecast the results of sports events and evaluated the advantages and
disadvantages of each method. However, they did not evaluate the Maximum Entropy method, and,
to the best of our knowledge, this is the first piece of research to apply the Maximum Entropy model
to sports forecasting.

The Maximum Entropy model is more concerned about the construction of feature functions and
the preprocessing of feature values of the data. In this paper, using the Maximum Entropy principle,
we attempt to overcome the feature independence assumption that limits the Naive Bayesian model.
We apply the Maximum Entropy principle to a set of features and establish the NBA Maximum Entropy
(NBAME) model. Then, we use the model to calculate the probability of the home team’s win of an
upcoming game and make predictions based on this probability. Our results show that the prediction
accuracy is pretty high when compared with other machine learning algorithms.

The rest of this paper is arranged as follows: in the following sections, we describe the Maximum
Entropy model and k-means clustering. Section 3 gives an overview of the NBAME model. Section 4
presents the experiment results and compares them with results from other algorithms. Finally,
concluding remarks and suggestions for future work are given in Section 5.

2. Background

Before exploring the use of the entropy-based scheme in NBA predication, we discuss the
Maximum Entropy model, and the k-means clustering algorithm, which we used to discretize
continuous valued attributes.

2.1. Maximum Entropy Model

The concept of “information entropy” dates way to 1948 when Shannon [16] first put forward the
concept of information entropy. Information entropy is the expected value of information contained
in a message. As a measure of random events’ uncertainty, information entropy can explicitly be
written as

H(p) = −
n

∑
i=1

pilog(pi), (1)

where H(p) is the information entropy, and pi is the probability of the ith random event.
Jayne [17] proposed a criterion that was subject to precisely stated prior data, and the probability

distribution which best represents the current state of knowledge is the one with the largest entropy.
This criterion is known as the “Maximum Entropy principle”. The Maximum Entropy principle points
out the best approximation to unknown probability distribution, which satisfies any constraints on
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the unknown distribution that we are aware of and makes no subjective assumptions about unknown
conditions. In this case, the probability distribution is most uniform, and the risk of making a wrong
prediction is at the lowest level.

The Maximum Entropy model, also known as a log-linear model, is based on the Principle of
Maximum Entropy. Unlike the Naive Bayes classifier, the Maximum Entropy model does not assume
that the features are conditionally independent of each other. The Maximum Entropy approach is
superior to similar approaches in many circumstances [18,19], especially when the number of samples
is small [20]; this is partly because it is not only a regression approach but also its optimization routine
is guaranteed to converge on the Maximum Entropy solution.

In recent years, Maximum Entropy based models have been widely used for Natural Language
Processing (NLP) tasks, especially for tagging sequential data [21–23]. These models have a great
advantage over traditional Hidden Markov Models (HMMs) and Naive Bayes models. For example,
the Maximum Entropy models can incorporate richer features in a well-founded fashion that HMMs
do not. Maximum Entropy based models have also been widely applied to many areas lately: (1) Tseng
and Tuszynski [24] gave several examples of applications of Maximum Entropy in different stages of
drug discovery; (2) Xu et al. [25] proposed a continuous Maximum Entropy method to investigate
the robust optimal portfolio selection problem for the market with transaction costs and dividends;
and (3) Phillips et al. [26] studied the problem of modeling the geographic distribution of a given
animal or plant species by maximum-entropy techniques. Since the Maximum Entropy model is
designed to solve the problems for cases that have insufficient information, we argue that it may
provide a very appropriate approach to NBA playoffs prediction.

2.2. K-Means Clustering

Like many supervised machine learning algorithms, the Maximum Entropy model requires a
discrete feature space. In order to train the Maximum Entropy model with a very limited training
dataset, we need to convert attributes that have continuous numeric values into discrete ones. There has
been a lot of research done on continuous feature discretization field [27–32]. Methods for discretization
are broadly classified into Supervised vs. Unsupervised, Global vs. Local, and Static vs. Dynamic.
Recursive minimal entropy partitioning, the error based discretization and Self Organized Map (SOM)
based discretization are several supervised discretization processes [33]. However, unsupervised
methods do not make use of class labels for discretization. Equal width binning is one of the simplest
approaches to the unsupervised discretization process, together with equal frequency binning [34].
Other methods based on the clustering principles include k-means clustering discretization [35].

Jain [36] provided an overview of clustering algorithm development and application. k-means
clustering is a method of vector quantization and is originally from signal processing. The standard
algorithm was first proposed by Lloyd in 1982 [37], and its main concept is to partition n observations
{x1, x2, · · ·, xn} into k clusters, in which each observation belongs to the cluster with the nearest mean.

Algorithmic steps for k-means clustering:

1. Let {x1, x2, · · ·, xn} be the set of data points and V = {v1, v2, · · ·, vc} be the set of centers;
2. Randomly select “c” cluster centers and calculate the distance between each data point and

cluster centers;
3. Assign the data point to the cluster center whose distance from the cluster center is the minimum

of all the cluster centers;
4. Recalculate the new cluster center using: vi = (1/ci)∑ci

j=1 xi, where ci represents the number of
data points in ith cluster;

5. Recalculate the distance between each data point and new obtained cluster centers;
6. If no data point was reassigned, then stop; otherwise, repeat from step 3.

Nowadays, k-means clustering is very popular, and one of the most effective unsupervised
discretization algorithms [38] in the data mining field [39–41], and this motivated our decision to use it
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to discretize our feature values. Kanungo et al. [42] presented a simple and efficient implementation of
the k-means clustering algorithm.

3. Materials and Methods

In this section, we describe basic technical features of each game and apply the Maximum Entropy
principle to build the NBAME model.

3.1. Basic Technical Features

We formalized the “outcome predicting” problem as a two class classification problem. Each game
is described by a vector consisting of 29 features of participating teams and the outcome of the game
(the label). Table 1 shows the complete features set with corresponding abbreviations used in this article.

Table 1. Basic technical features used by the model.

Feature Abbreviation Feature Abbreviation

Field Goal Made FGM Field Goal Attempt FGA
Three Point Made 3PM Three Point Attempt 3PA
Free Throw Made FTM Free Throw Attempt FTA

Offensive Rebounds Oreb Defensive Rebounds Dreb
Assists Ast Steals Stl
Blocks Blk Turnover TO

Personal Fouls PF Points PTS

The statistics shown in Table 1 were used since they are common to basketball and any typical fan
should be able to understand what each statistic represents.

3.2. NBAME Model Overview

Before building the NBAME model, we construct a feature function. Choice of the feature function
is vital for performance of the Maximum Entropy model, which affects the structure of the optimal
probability model directly, and it also makes the Maximum Entropy model superior to other models.
There is flexibility in choosing the feature function, which enables the designer to make full use of the
known facts from data to improve the performance of the model. In general, a feature function is a
binary function of the form f (x, y) ∈ (0, 1), where x is the set of features and y is the label.

We use the training dataset {(x1, y1), (x2, y2), · · ·, (xN, yN)}, where xi = (x(1)i , x(2)i , · · ·, x(28)
i ) ∈ R28

and yi = 0 or 1 to define the feature function in Equation (2):

fk(x, y) =

{
1, (x = (x(1)i , x(2)i , · · ·, x(28)

i ))∧ (y = yi),
0, otherwise,

(2)

where the k ∈ K, K = |x(1)| · |x(2)|...|x(28)|.
After constructing the feature functions, we build the NBAME model using the Maximum Entropy

principle. We count the games with the same features xi and the same outcome yi in the training
dataset, and then divide them by the training dataset size N. We get the empirical distribution of joint
probability distribution p̃(x, y) :

p̃(x, y) =
1
N
× number of times that (x, y) occurs in the training dataset, (3)

for each feature function fk, and the expectation with the empirical probability distribution of joint
probability distribution p̃(x, y) is:

Ep̃ fk = ∑
(x,y)

p̃(x, y) fk(x, y). (4)
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We calculate the number of games with similar feature vector x and then divide this number by
the training dataset size N to get the empirical distribution of marginal probability distribution p̃(x):

p̃(x) =
1
N
× number of times that (x) occurs in the training dataset, (5)

and the expectations of feature function fk relative to the model p(y|x) and empirical distribution of
marginal probability distribution p̃(x) is:

Ep fk = ∑
(x,y)

p̃(x)p(y|x) fk(x, y). (6)

By constraining the expected value to be equal to the empirical value and from Equations (4)
and (6), we have that:

∑
(x,y)

p̃(x, y) fk(x, y) = ∑
(x,y)

p̃(x)p(y|x) fk(x, y). (7)

Equation (7) is called the constraint, and we have as many constraints as the number of
feature functions.

The above constraints can be satisfied by an infinite number of models. Thus, in order to build
our model, we need to select the best candidate based on a specific criterion. According to the principle
of Maximum Entropy, we should select the model that is as close as possible to uniform. That is,
we should select the model p∗ with Maximum Entropy:

p∗ = arg max
p∈P

(−∑
x,y

p̃(x)p(y|x)logp(y|x)), (8)

given that:

1. p(y|x) ≥ 0 for all x, y;
2. ∑y p(y|x) = 1 for all x;
3. ∑(x,y) p̃(x, y) fk(x, y) = ∑(x,y) p̃(x)p(y|x) fk(x, y) for k ∈ {1, 2, . . . , K}.

To solve the above optimization problem, we introduce the Lagrangian multipliers, focus on
the unconstrained dual problem, and estimate free variables {λ1, λ2, . . . , λK} with the Maximum
Likelihood Estimation method. It can be proved that if we find the {λ1, λ2, . . . , λK} parameters that
maximize the dual problem, the probability given a game statistics x to be classified as y is equal to:

p∗(y|x) = 1
π(x)

exp(
K

∑
k=1

λk fk(x, y)), (9)

where the π(x) is a normalization factor:

π(x) = Σy exp(
K

∑
k=1

λk fk(x, y)). (10)

Parameter λk can be perceived as the weight of feature function fk(x, y) and the Maximum
Entropy algorithm learns by adjusting λk. When solving for parameter λk, we cannot obtain it
analytically but numerically, the most popular method being the Generalized Iterative Scaling (GIS) [43].
In this paper, we use the GIS method to calculate parameter λk. Thus, given that we have found the λk
parameters of our model, all we need to do in order to classify the outcome of a new game as a win or
a loss for the home team is to use the “maximum a posteriori” decision rule and select the category
with the highest probability.
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4. Results

In order to test the performance of the NBAME model, after collecting and preprocessing the
games’ statistics, we turn to the problem of predicting the outcomes of NBA playoff games for each
season individually from the 2007–08 season to the 2014–15 season. We made experiments with the
dataset using the NBAME model and some other machine learning algorithms.

4.1. Data Collection and Preprocessing

We created a crawler program to extract the 14 basic technical features of both teams and the
home team’s win or loss from http://www.stat-nba.com/, collected a total of 10,271 records for all
games for seasons ranging from the 2007–08 season to the 2014–15 season, and stored them into a
MySQL database.

After the original data set was obtained, we cleaned it using Java 1.7. First, we combined the two
teams’ 14 basic technical features of the same game into a single record for the game. The features
of a game therefore contained 28 basic technical features and a label indicating a win or loss for the
home team. Secondly, we calculated the mean of each basic technical feature from the most recent six
games prior to the candidate game being predicted. If teams didn’t have at least six games before the
game started, we took the mean of the basic technical feature for any games prior to the candidate
game. We cannot predict the outcome of the first game of each season because of the absence of prior
data. Table 2 shows the home team’s most recent six games’ basic technical features obtained from the
website and their mean values that we used for predicting the upcoming game.

Table 2. Sample features’ raw values obtained from http://www.stat-nba.com/ website.

Features FGM FGA 3PM 3PA FM FTA Oreb Dreb Ast Stl Blk TO PF PTS

Features’ 32 79 6 24 18 24 8 28 17 10 2 18 15 88
values of 45 87 9 24 8 11 5 32 32 8 3 14 23 107

last 33 85 7 23 22 29 9 36 22 10 4 12 21 95
six games 33 83 6 23 12 15 14 28 22 6 4 15 18 84

for 48 85 8 23 10 14 12 31 29 9 6 13 20 114
home team 44 80 7 19 14 18 7 35 25 9 8 14 16 109

Average 39.17 83.17 7.17 22.67 14.00 18.50 9.17 31.67 24.50 8.67 4.50 14.33 18.83 99.50

Table 3 shows sample records of the mean values of features computed as demonstrated in Table 2
for games on 31 December 2014. Subscripts h and a in Table 3 indicate the home team and away
team respectively, for example FGMh means Field Goal Made by the home team; the abbreviations
are derived from Table 1. As shown in Table 3, each training example is of the form (xi, yi), which
corresponds to the statistics and outcome of a game. xi is a 28-dimensional vector that contains the
input variables, and yi indicates whether the home team won (yi = 1) or lost (yi = 0) in that game.
The first 28 columns indicate the basic technical features for each team as obtained by computing an
average of the previous six games played by the corresponding team. The 29-th column is the actual
outcome of the game, corresponding to the predicted game labeled as “Home team win”, takes on only
two values: 1 or 0; Here, the number 1 indicates that the home team won and 0 indicates otherwise.
We used this basic technical features dataset to train the NBAME model by the principle of Maximum
Entropy and predict the result of the coming game during the NBA playoffs for each season.

http://www.stat-nba.com/
http://www.stat-nba.com/
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Table 3. Sample records of the experimental dataset obtained by getting averages of the previous
six games.

Home teams’ features

FGMh FGAh 3PMh 3PAh FT Mh FTAh Orebh Drebh Asth Stlh Blkh TOh PFh PTSh

39.17 83.17 7.17 22.67 14.00 18.50 9.17 31.67 24.50 8.67 4.50 14.33 18.83 99.50
38.33 83.67 6.83 18.00 12.83 18.33 7.83 35.00 23.67 7.00 6.17 12.83 22.00 96.33
37.50 84.67 10.67 26.50 18.83 25.33 10.83 32.83 24.33 8.50 6.17 12.17 19.67 104.50
37.17 79.67 8.50 25.67 17.17 23.00 9.33 29.50 23.50 7.50 4.50 15.00 18.33 100.00
37.83 85.50 11.50 33.33 16.67 23.83 11.83 31.83 22.00 9.67 3.33 16.50 22.00 103.83
39.00 78.50 7.50 20.83 16.33 20.67 7.67 31.17 24.00 7.17 3.83 16.33 21.33 101.83
40.67 88.17 6.83 19.33 17.33 24.67 13.83 36.00 20.33 7.17 6.00 12.83 21.17 105.50

Away Teams’ Features Home Team

FGMa FGAa 3PMa 3PAa FT Ma FTAa Oreba Dreba Asta Stla Blka TOa PFa PTSa Win

41.00 82.33 7.50 18.33 21.00 27.83 10.33 31.17 22.17 6.67 4.00 16.33 22.17 110.50 1
36.67 75.33 7.17 20.17 17.33 23.50 8.33 28.83 19.33 8.83 3.67 13.50 21.17 97.83 1
38.00 87.00 5.83 19.00 17.17 21.17 12.67 28.33 21.50 7.50 5.00 12.33 20.67 99.00 1
38.33 80.33 9.17 23.00 15.33 20.00 7.50 32.83 24.67 8.00 5.83 17.83 23.17 101.17 0
35.83 85.33 7.50 22.50 18.33 24.33 10.83 35.33 19.17 7.17 5.50 11.83 19.17 97.50 1
37.33 85.17 5.33 17.33 16.67 21.00 11.50 32.33 21.00 7.17 5.33 12.17 16.33 96.67 1
41.67 86.67 10.17 25.17 17.17 22.50 12.17 31.33 20.67 8.33 6.00 12.50 19.17 110.67 1

According to the Maximum Entropy principle, the NBAME model needs to be trained on a
sufficient amount of training data. However, training data in each season is limited, and thus there is a
possible threat of over-fitting; if there are too many feature functions such that the number of training
samples is lower than the number of feature functions, the probability distribution model will over-fit,
resulting in high variance. Consequently, we get a better performance with the training data but low
accuracy with testing data.

We used k-means clustering for data discretization with the R version 3.2.2. We applied the
clustering software package [44] using the Partitioning Around Medoids (PAM) function to cluster the
data of each feature. The number of clusters are the input parameters, and their values often involve
clustering effects. A crucial choice to make was the number of clusters to be used; the Silhouette
Coefficient (SC) [45] can be used to solve this problem, which combines condensation degree and
degree of separation. It indicated the effectiveness of clustering with an SC value between −1 and
+1—the greater the value, the better result of clustering. According to this principle, we could try to
use some parameters of numbers of clustering, calculating the SC repeatedly under the condition of
different cluster numbers, and then we can choose the one with the highest SC, which corresponds to
the number of best clusters.

We calculate the SC of the away teams’ score when k ranges from 3 to 10 (two clusters are not
enough to obviously distinguish a lot of data). Figure 1 shows the relationship between the k value
and SC by k-means clustering to discretize the away teams’ score, where there is haphazard change in
the SC value of the away teams’ score as the number of clusters increases from 3 to 10 in the 2014–15
season. We note that when k is 3, SC is at a maximum with a value of 0.545. Thus, the cluster number
of the away teams’ score is assumed to be 3.

Figure 2 shows discrete values of the away teams’ score after k-means clustering when the SC
is 0.545 and the distribution in each cluster is also indicated by different colors. The top blue cluster
contains games whose away team scores range between 104 and 125. Ranges for the green (middle)
and red (bottom) clusters are 97 to 103 and 80 to 96 respectively. We use k-means clustering to discretize
home teams’ score values and other basic technical features for each game in the same way. Some
samples of the experimental data set can be seen in the Table 4.
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Figure 1. Silhouette Coefficient (SC) with the change of clusters.

Figure 2. Three clusters for away teams’ scores.

Subscripts h and a in Table 4 indicate the home team and away team respectively, for example
FGMh means Field Goal Made by the home team; the abbreviations are derived from Table 1. In Table 4,
the first 14 columns represent the home teams’ basic technical feature values after k-means clustering
discretization. The last column is the home teams’ actual wins or losses of the game. Others represent
the away home teams’ basic technical feature values after k-means clustering discretization. It is also
the final dataset that is applied to train the NBAME model and make predictions for the NBA playoffs.
We sort them by the date, separate them by season, save the data for each season to a file, and then use
data in each file to train and test the NBAME model repeatedly.
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Table 4. Discretized sample records of the experimental dataset.

Home Teams’ Features

FGMh FGAh 3PMh 3PAh FT Mh FTAh Orebh Drebh Asth Stlh Blkh TOh PFh PTSh

37.63 83.31 7.85 22.66 14.35 19.02 9.50 31.68 24.26 8.82 4.18 14.49 18.65 98.6
37.63 83.31 7.85 18.94 14.35 19.02 7.17 35.01 24.26 6.94 6.50 12.42 22.07 94.48
37.63 84.75 10.74 26.11 17.80 25.44 11.27 32.59 24.26 8.82 6.50 12.42 19.87 106.59
37.63 80.20 7.85 26.11 17.80 22.35 9.50 29.60 22.97 7.90 4.18 15.14 18.65 98.60
37.63 86.12 10.74 34.05 17.80 23.80 12.30 31.68 21.97 9.64 3.36 16.09 22.07 102.39
37.63 77.95 7.85 20.87 17.80 20.76 7.17 30.77 24.26 6.94 4.18 16.09 20.98 102.39
40.85 87.78 7.85 18.94 17.80 25.44 13.39 36.94 19.96 6.94 5.66 12.42 20.98 106.59

Away Teams’ Features Home Team

FGMa FGAa 3PMa 3PAa FT Ma FTAa Oreba Dreba Asta Stla Blka TOa PFa PTSa Win

40.36 82.6 7.77 18.40 20.61 26.54 10.34 32.16 22.40 6.59 4.08 16.19 21.65 108.43 1
36.76 73.84 7.77 21.63 16.85 24.42 8.26 28.68 19.34 9.00 3.76 13.17 21.65 100.06 1
37.73 86.81 5.39 18.40 16.85 20.34 12.48 28.68 21.66 7.76 5.15 12.42 20.45 100.06 1
38.88 79.5 10.49 21.63 15.58 20.34 7.59 32.16 24.13 7.76 5.71 17.36 22.79 100.06 0
35.66 85.13 7.77 21.63 17.90 24.42 10.83 35.50 19.34 7.18 5.71 11.74 19.09 100.06 1
37.73 85.13 5.39 18.40 16.85 20.34 11.48 32.16 20.70 7.18 5.15 12.42 16.32 100.06 1
42.48 86.81 10.49 24.73 16.85 22.41 12.48 32.16 20.70 8.40 5.71 12.42 19.09 108.43 1

4.2. The Results of the NBAME Model for Predicting the NBA Playoffs

We used the feature vectors to construct the NBAME model with the Maximum Entropy principle
and trained the parameter λk with the GIS algorithm. Then, we applied 28 basic technical features of
the coming game to the NBAME model and calculated the probability of the home team’s victory in
the game, p(y|x). Since p(y|x) is a continuous value, the model makes a prediction based on a defined
threshold: with a threshold of 0.5, it makes a prediction based on the conditions set in Equation (11)
(meaning that if our model outputs a probability greater than or equal to 0.5, we decide that the home
team wins, else we decide that the home team loses)

fk(x, y) =

{
1(win), p(y|x) ≥ 0.5,
0(lose), p(y|x) < 0.5.

(11)

Finally, we compared the decision of our model to the true outcome of the game. If it was the
same, then we said the prediction of the NBAME model was right, and we added 1 to the count of the
correct prediction. Eventually, we would get the total number of predictions correctly, and we divided
it by the number instances from the data set that we used to test it, which is our model’s forecast
accuracy. Accuracy was used as performance measure, and it was calculated by the following formula:

Accuracy =
number of correct predictions

number of predictions
. (12)

The NBAME model outputs the probability of the home team’s win in the upcoming game given
the coming game’s features. The home team would be more likely to win if the model output a
probability greater than the threshold value. At this point, it is important to note that setting a high
confidence improves the accuracy of our model predictions with a drawback of predicting fewer
games. For example, if we set a threshold of 0.6, it makes predictions based on conditions defined in
Equation (13), implying that the model will not take a prediction decision for all games with output
probabilities between 0.4 and 0.6:

fk(x, y) =

{
1(win), p(y|x) ≥ 0.6,
0(lose), p(y|x) ≤ 0.4.

(13)

Tables 5 and 6 show the prediction results and the number of predicted games for each season
using the defined thresholds of 0.5, 0.6, and 0.7.
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Table 5. Prediction accuracy (in percentages) of the NBAME model with different thresholds.

Threshold 2007–08 2008–09 2009–10 2010–11 2011–12 2012–13 2013–14 2014–15

0.5 74.4 68.2 68.3 66.7 69.0 67.1 65.2 62.5
0.6 77.1 74.5 75.0 69.8 73.0 71.4 66.7 70.4
0.7 100.0 80.0 100.0 100.0 100.0 75.0 100.0 100.0

Table 6. The number of prediction games of the NBAME model with different thresholds.

Threshold 2007–08 2008–09 2009–10 2010–11 2011–12 2012–13 2013–14 2014–15

0.5 86 85 82 81 84 85 89 80
0.6 48 55 44 53 26 42 36 27
0.7 3 5 2 0 1 4 1 6

From Table 5, the first row shows the prediction results for eight seasons of NBA playoff games by
the NBAME model using a threshold of 0.5 (with a 0.5 threshold, the model makes predictions for all
the playoffs). We notice that at 0.5 threshold, prediction accuracy of the model reaches as high as 74.4%
in the 2007–08 season. If we increase the threshold, the number of games for which we could make a
decision for all of the seasons reduces. For example, the number of predicted games decreased from
86 to 48 when we increased the threshold from 0.5 to 0.6 in the 2007–08 season; however, prediction
accuracy improved from 74.4% to 77.1%. Similarly, when we increased the threshold from 0.6 to 0.7
in the 2007–08 season, the number of predicted games reduced from 48 to six with a 22.9% increase
in prediction accuracy. This shows that we can trade the number of games for which we can make a
prediction for an improved prediction accuracy, which can be of great commercial value. The results
show that the proposed model is suitable to forecast the outcome of NBA playoffs while achieving
high prediction accuracy.

Figure 3 shows the effect of varying thresholds on the number of predicted games and prediction
accuracy for playoffs during the 2007–08 season and the 2014–15 season.

We also used Receiver Operating Characteristics (ROCs) [46,47] and the Area Under Curve
(AUC) [48,49] to evaluate the quality of our NBAME model. We imported the probability of the
home team’s winning and the true outcome of the game into R, and used prediction and performance
function within the RROC package 1.0-7 [50] to plot the ROC curve and calculated AUC values for the
eight seasons, and the results are presented in Figure 4.

Figure 3. The number and accuracy of predictions with different confidence by the NBAME model
from the 2007–08 season to the 2014–15 season playoffs.
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2009−10 Season’s ROC plot
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2010−11 Season’s ROC plot
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2011−12 Season’s ROC plot
 AUC=0.529

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2012−13 Season’s ROC plot
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2013−14 Season’s ROC plot
 AUC=0.579
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2014−15 Season’s ROC plot
 AUC=0.604
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Figure 4. ROC curves and AUC values of prediction using the NBAME model from the 2007–08 season
to the 2014–15 season playoffs.

4.3. Comparison of NBAME Model with Some Selected Existing Machine Learning Algorithms

To evaluate the NBAME model, we compared its performance with selected other machine
learning algorithms (Naive Bayes, Logistic Regression, Back Propagation (BP) Neural Networks,
Random Forest) in the Waikato Environment for Knowledge Analysis (WEKA 3.6) [51]. Table 7 shows
the results obtained when the features in Table 1 were used together with these algorithms to predict
the outcome of NBA playoffs between 2007 and 2015 in Table 7, and Figure 5 presents a graphical
representation of the results.

Table 7. Prediction accuracy (in percentages) of selected algorithms for NBA playoffs for seasons
between 2007 and 2015.

Algorithm 2007–08 2008–09 2009–10 2010–11 2011–12 2012–13 2013–14 2014–15

Naive Bayes 54.7 61.5 56.1 59.3 53.6 58.8 59.3 55.0
Logistic Regression 61.6 57.1 61.0 61.7 60.7 64.7 62.6 60.0

BP Neural Networks 59.3 60.4 52.4 67.9 56.0 63.5 57.1 57.5
Random Forest 64.0 60.4 64.6 64.2 58.3 70.6 62.6 56.3
NBAME model 74.4 68.2 68.3 66.7 69.0 67.1 65.2 62.5
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Figure 5. Comparison of the accuracy of the NBAME model against some machine learning algorithms.

From Table 7 and Figure 5, we realize that our model outperformed all of the other classifiers
for all seasons under consideration except for the 2010–11 season and the 2012–13 season, where our
model was outperformed by Neural Networks and Random Forest, respectively. The Random Forest
algorithm follows closely in the second position. The Naive Bayes had the lowest prediction accuracy
with an average of about 60%, and this may have been caused by its assumption that all the features
were independent, which was not the case. Accuracy results from the Neural Networks suffer adverse
variations between seasons. For example, in the 2010–11 season, the Neural Networks registered
impressive prediction accuracy at 67.9% but drastically reduced to 52.4% in the 2009–10 season. These
variations could be explained by insufficiently small size of the training dataset that may have caused
the model to overfit the data. Standard Logistic Regression, also a log-linear algorithm, had a relatively
stable prediction accuracy for all seasons, similar to the NBAME. The NBAME outperformed the
standard logistic regression because the former avoids overfitting by using regularisation techniques.

We give the AUC values in Table 8, which make us view our NBAME model performance from
another perspective, and Figure 5 shows a graphical representation of the same values.

Table 8. AUC (in percentages) values of selected algorithms for NBA playoffs for seasons between
2007 and 2015.

Algorithm 2007–08 2008–09 2009–10 2010–11 2011–12 2012–13 2013–14 2014–15

Naive Bayes 50.0 61.6 51.9 55.6 51.6 61.2 59.4 54.7
Logistic Regression 51.8 61.7 53.2 56.4 51.9 63.1 58.7 59.6

BP Neural Networks 50.6 56.0 52.8 61.1 51.2 66.0 58.5 54.6
Random Forest 51.8 58.3 50.5 50.8 52.4 66.7 59.0 58.3
NBAME model 57.2 62.3 54.1 61.7 52.9 61.7 57.9 60.4

Figure 6 shows that each algorithm’s AUC value is not very high due to a high number of features,
yet working with only a small size of the training dataset [52]. The NBAME model is almost the top
performing model in all seasons except 2012–13 and 2013–14. All algorithms show similar trends
for all seasons. For example, they all performed very well in the 2012–13 season while experiencing
the worst performance in the 2011–12 season. This indicates that some seasons are more difficult to
predict than others. The difficulty in accurately forecasting results of a particular season is certainly
triggered by unanticipated natural factors in the season; for example, the low performance in the
2011–12 season can be explained by the lockout that reduced the number of games from 82 to 66,
thus reducing the training dataset size; in the same season, Derrick Rose, Joakim Noah, and David
West were injured, leading to their failure to participate in the playoffs. Similarly, the controversy
regarding Clippers’ owner Donald Sterling’s racist comments that arose in the 2013–14 season playoffs,
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and attracted protests from the Clippers and all NBA teams’ players, could have reduced the players’
morale, resulting in a very unpredictable season.

Figure 6. Comparison of AUC of the NBAME model against some machine learning algorithms.

5. Conclusions

We applied the Maximum Entropy principle to construct the NBAME model and used the
model to predict the outcome of the NBA playoffs from the 2007–08 season to the 2014–15 season.
As seen in Section 4, the NBAME model is a good probability model for the prediction of NBA
games. The prediction of NBA playoffs outcomes is a very difficult problem because there are
many un-foreseeable factors such as the relative strengths of either team, the presence of injured
players, players’ attitudes, and team managers’ operations that determine the winner or loser. Overall,
the NBAME model is able to match or perform better than other machine learning algorithms.

The predictive model in this research was able to use the mean of each basic technical feature,
respectively, from the most recent six games for both sides before the game started to accurately predict
the outcome of the upcoming game. Possible extensions to this research would include exploring
better methods to calculate the value of the features for the coming game, such as using more effective
algorithms to preprocess the features of NBA dataset or looking for some comprehensive strengths
as features.
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