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Abstract: We consider the compression of a continuous real-valued source X using scalar quantizers
and average squared error distortion D. Using lossless compression of the quantizer’s output,
Gish and Pierce showed that uniform quantizing yields the smallest output entropy in the limit
D → 0, resulting in a rate penalty of 0.255 bits/sample above the Shannon Lower Bound (SLB).
We present a scalar quantization scheme named lossy-bit entropy-constrained scalar quantization
(Lb-ECSQ) that is able to reduce the D → 0 gap to SLB to 0.251 bits/sample by combining both
lossless and binary lossy compression of the quantizer’s output. We also study the low-resolution
regime and show that Lb-ECSQ significantly outperforms ECSQ in the case of 1-bit quantization.

Keywords: source coding; scalar quantization

1. Introduction

Entropy-constrained scalar quantization (ECSQ) is a well-known compression scheme where a
scalar quantizer q(·) is followed by a block lossless entropy-constrained encoder [1,2]. The two main
quantities characterizing ECSQ are its distortion D and rate R. For a real-valued input source X,
the most common distortion measure is the mean squared error between the source X and its
reconstruction X̂. As the quantizer q(·) is followed by entropy coding, the rate R is usually defined as
the entropy of the random variable at the output of the quantizer, denoted by q(X).

A natural design problem is how to design q(·) to achieve the lowest possible rate with
distortion not greater than D. While this problem can be solved numerically with various quantizer
optimization algorithms [3–5], the expressions are only known when X follows an exponential [4]
or uniform [6] distribution. The asymptotic limit D → 0 constitutes an exception, as it is well known
that an infinite-level uniform quantizer is optimal for a broad class of source distributions [1,7,8].
Further, as D → 0, ECSQ with uniform quantizing is only 0.255 bits above Shannon’s lower bound
(SLB) to the rate distortion function R(D). SLB tends to R(D) as D → 0, and is equal to R(D) for a
Gaussian distributed source. Beyond scalar quantization, vector quantization (VQ) is the most common
option to improve ECSQ; i.e., to achieve rates closer to R(D) at the same distortion level [9].

In this communication, we introduce a scalar quantization scheme that, in the limit D → 0,
reduces the gap to Shannon’s lower bound to the rate distortion function R(D) to 0.251 bits.
Furthermore, we show that in the low-resolution regime (1-bit quantization), the proposed scheme can
remarkably improve ECSQ. The main idea of the proposed scheme is to encode the quantizer output
by combining both lossless compression and binary lossy compression at a given Hamming distortion
DH , which offers an additional degree of freedom.
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The compression scheme is straightforward, as we only need to expand ECSQ with an additional
bit that encodes if the source symbol was in the left half or the right half of the quantization region that
contained the source symbol. In other words, this scheme codes the least significant quantization bit
lossily, allowing a certain Hamming distortion DH .

We refer to the proposed method as lossy-bit ECSQ (Lb-ECSQ). Note that Lb-ECSQ contains
ECSQ as a particular solution, as ECSQ is recovered when the allowed distortion at the least significant
quantization bit is set to zero.

The Lb-ECSQ method resembles works in the field of source-channel coding—namely,
channel-optimized quantization [10]. Interestingly, when the output of a scalar quantizer is coded and
transmitted via a very noisy channel, quantizers with a small number of levels (higher distortion) may
yield better performance than those with a larger number of levels (lower distortion) [11]. Several works
have addressed the design of scalar quantizers for noisy channels (e.g., [10–12]). All these works
present conditions and algorithms to optimize the scalar quantizer given that it is followed by a noisy
channel. This is similar to the Lb-ECSQ setup, where the lossy binary encoder behaves like a “noisy
channel”, with an important and critical difference: in our problem, the distortion introduced by the
lossy encoder (the“error probability” of the channel) is a parameter to be optimized, and acts as an
additional degree of freedom. Note also that we solely consider the problem of source coding of a
continuous source; encoded symbols are transmitted errorless to the receiver that aims at reconstructing
the source.

We also study the low-resolution regime, in which we only encode the source with the
lossy-bit—namely, 1-bit quantizer followed by a lossy entropy encoder. Results are distribution-dependent
for the low-resolution regime, and we focus on the uniform and Gaussian distributions, which
are interesting cases that show different behaviors. For example, in this low-resolution regime,
the distortion can be reduced by 10% for a uniform distribution when we use 0.2 bits/sample.

In Section 2 of the paper, we review the analysis of ECSQ for an infinite-level uniform quantizer
in the limit D → 0. The asymptotic analysis of Lb-ECSQ for the same quantizer and same limit is
presented in Section 3. In Section 4, we move to the opposite limit and compare both scalar quantization
schemes with 1-bit quantizers.

2. ECSQ and the Uniform Quantizer

Suppose that a source produces the sequence of independent and identically distributed
(i.i.d.) real-valued random variables {Xk, k ∈ Z} according to the distribution pX(x). A scalar
quantizer is defined as a deterministic mapping q(·) from the source alphabet X ⊆ R to the
reconstruction alphabet X̂ , which is assumed to be countable. By Shannon’s source coding theorem,
q(X) can be losslessly described by a variable-length code whose expected length is roughly
equal to its entropy H(q(X)). In ECSQ, this quantity constitutes the rate of the quantizer q(·).
Additionally, the mean squared-error distortion incurred by the scalar quantizer q(·) is given by

EX [(X− X̂)2], (1)

where EX denotes that the expectation is computed w.r.t. the source distribution pX(x). Consider the
set of quantizers q(·) for which the squared distortion in Equation (1) is smaller or equal to D ∈ R+,
and let Rs(D) be the smallest rate achievable among this set; more precisely

Rs(D) , inf
q(·)

H(q(X)) s.t. EX [(X− q(X))2] ≤ D. (2)

Under some constraints on the continuity and decay of pX(x), Gish and Pierce showed
that in the limit D → 0, Rs(D) can asymptotically be achieved by the infinite-level uniform



Entropy 2016, 18, 449 3 of 11

quantizer, whose quantization regions partition the real line into intervals of equal lengths [1].
Further, they showed that

lim
D→0
{Rs(D)− R(D)} = 1

2
log2

πe
6

, (3)

where R(D) is the rate-distortion function of the source [13]. In the rest of this section, we briefly review
the asymptotic analysis of ECSQ with uniform quantization following the approach described in [7,8].
We later rely on intermediate results to analyze the Lb-ECSQ scheme for the uniform quantizer.
The following conditions are assumed for the source [7,8]:

C1 pX(x) log pX(x) is integrable, ensuring that the differential entropy h(X) is well-defined and
finite; and

C2 the integer part of the source X has finite entropy; i.e.,

H(bXc) < ∞ (4)

otherwise, R(D) is infinite [14].

Denote the infinite-level uniform quantizer by qu(·), and let δ be the interval length. For x ∈ R,
we have

qu(x) = ∑
n

(
n +

1
2

)
δ 1 [nδ < x ≤ (n + 1)δ] , (5)

where (n + 1
2 )δ is the reconstruction value for interval n, and 1[·] denotes the indicator function.

We define the piecewise-constant probability density function p(δ)X (x) as follows:

p(δ)X (x) = ∑
n

pn

δ
1 [nδ < x ≤ (n + 1)δ] , (6)

where pn ,
∫ (n+1)δ

nδ pX(u)du is the probability that x belongs to that interval, and ∑n pn = 1.
To evaluate the squared error distortion, we first decompose E[(X− qu(X))2] as follows:

EX [(X− qu(X))2] = ∑n
∫ (n+1)δ

nδ

(
x− (n + 1

2 )δ
)2

pX(x)dx

= ∑n
pn
δ

∫ (n+1)δ
nδ

(
x− (n + 1

2 )δ
)2

dx−∑n
∫ (n+1)δ

nδ

[ pn
δ − pX(x)

] (
x− (n + 1

2 )δ
)2

dx.

As shown in [7,8], the absolute value of the second term in the above equation can be
upper-bounded by

∫ ∣∣∣p(δ)X (x)− pX(x)
∣∣∣dx, and this term vanishes as δ→ 0 according to Lebesgue’s

differentiation theorem and Scheffe’s lemma (Th. 16.12) [15]. Thus,

lim
δ→0

EX [(X− qu(X))2]

δ2 = δ−2 ∑
n

pn

δ

∫ (n+1)δ

nδ

(
x− (n +

1
2
)δ

)2
dx =

1
12

. (7)

On the other hand, following [1], we express the entropy of the quantizer’s output H(qu(X))

as follows:

H(qu(X)) =
∫

p(δ)X (x) log2(p(δ)X (x))dx− log2(δ). (8)

As shown in [16], the integral in the above expression converges to h(X) as δ→ 0, hence

H(qu(X)) = h(X)− log2(δ) + o(1), (9)
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where o(1) refers to error terms that vanish as δ tends to zero. We conclude that the uniform quantizer
qu(·) with quadratic distortion D = E[(X− qu(X))2] and rate Ru(D) , H(qu(X)) achieves

Ru(D) = h(X) +
1
2

log2
1
D
− 1

2
log2(12) + o(1) (10)

bits per sample, where o(1) comprises error terms that vanish as D tends to zero. Further, for sources
X satisfying conditions C1 and C2, the rate-distortion function R(D) can be approximated as [17]

R(D) = h(X) +
1
2

log2(
1
D
)− 1

2
log2(2πe) + o(1). (11)

Without the o(1) term, the right-hand side (RHS) of Equation (11) is referred to the Shannon lower
bound (SLB). By combining Equations (10) and (11), we obtain

lim
D→0
{Ru(D)− R(D)} = 1

2
log2(2πe)− 1

2
log2(12) ≈ 0.255 bits/sample (12)

3. Uniform Quantization with a Lossy-Compressed Bit

The above results show that—according to Equation (2)—uniform quantizers are asymptotically
optimal as the allowed distortion D vanishes. In the following, we present a simple scheme that—while
maintaining the scalar uniform quantizer—reduces the gap to the rate distortion function of the source
below Equation (12). To this end, the quantizer’s output is compressed using both lossless and lossy
compression, and thus the compression rate is no longer measured by the entropy of the quantizer’s
output. Unlike in [1], we do not claim that uniform quantization is optimal according to the proposed
definition of compression rate. Consider again the uniform quantizer qu(·) with interval length δ.
Given X and qu(X), let b(X) be a binary random variable such that

b(x) =

{
1, x ≤ qu(x)
0, x > qu(x)

. (13)

3.1. Compression with a Lossy-Compressed Bit

Given the random variable (qu(X), b(X)), we maintain the lossless variable-length encoder
to compress qu(X). Moreover, the binary random variable b(X) is lossy compressed with a certain
Hamming distortion DH , which is a free parameter to be tuned to minimize the squared error distortion.
We refer to this compression scheme as ECSQ with a lossy-compressed bit (Lb-ECSQ).

We assume that lossy-compression of b(X) at a Hamming distortion DH is optimally done,
achieving the rate distortion function for a Bernoulli source with probability Pb , P(b(X) = 1).
While this assumption is somewhat unrealistic, our main goal in this paper is to analyze the
fundamental limits of the proposed scheme, as one would do in ECSQ when assuming that the
scalar quantizer’s output is compressed at a rate equal to its entropy. For the actual implementation of
Lb-ESCQ, practical schemes based on low-density generator-matrix (LDGM) [18] or lattice codes [19]
could be investigated.

Under the assumption of optimal lossy binary compression, we define the Lb-ECSQ rate of the
uniform quantizer qu(·) as

RLb-u(D, DH) , H(qu(X)) + R(DH , Pb) = H(qu(X)) + h2(Pb)− h2(DH), (14)

where with a slight abuse of notation we use R(DH , Pb) to denote the rate distortion function of a
Bernoulli source with probability Pb, and h2(·) is the binary entropy function. We are interested in
evaluating Equation (14) in the limit δ → 0. In this regime, it is straightforward to show that for
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any source distribution pX(x) satisfying C1, then limδ→0 Pb = 1
2 . Using this result and Equation (9),

we have

RLb-u(D, DH) = h(X)− log2(δ) + 1− h2(DH) + o(1), (15)

where o(1) comprises error terms that vanish as δ tends to zero. Observe that if we take DH = 0
(i.e., lossless compression is used for both qu(X) and b(X)), in the limit δ→ 0 the rate RLb-u coincides
with the entropy of the uniform quantizer in Equation (9) with half the interval length—i.e., δ′ = δ/2.

3.2. Reconstruction Values and Squared Distortion with a Lossy-Compressed Bit

Since qu(X) is losslessly compressed, upon decompression, it is recovered with no error.
Let b̂(X) be a binary random variable representing the reconstructed value for b(X). Due to the
lossy compression at a certain Hamming distortion, there exists a non-zero reconstruction error;
namely, P(b̂(x) 6= b(x)|X = x) > 0 for DH > 0. Given the pair (qu(X), b̂(X)), we compute the source
reconstruction value X̂ as follows

x̂ = qu(x) + (1− 2b̂(x))c =

{
(n + 1

2 )δ− c b̂(x) = 1
(n + 1

2 )δ + c b̂(x) = 0
, (16)

where c ∈ [0, δ
2 ] is a parameter that—along with DH—will be optimized to minimize the squared

error distortion D = EX,X̂ [(X − X̂)2]. We note that the reconstruction rule in Equation (16) is
possibly suboptimal.

Before evaluating D as a function of δ, DH , and c, we first need to compute the error probabilities
for the b(X) bit. Following [20] (Chapter 10), if (b(X), b̂(X)) are jointly distributed according to the
binary symmetric channel shown in Figure 1, then the mutual information I(b(X); b̂(X)) actually
coincides with the Bernoulli rate distortion function R(DH , Pb) = h2(Pb) − h2(DH). Moreover,
by using random coding in [20] (Chapter 10), it is shown that there exist encoding/decoding
schemes that asymptotically (in the block-length) meet the input–output distribution in Figure 1.
Consequently, under the assumption of optimal lossy compression of b(X) with prior probability Pb,
we can compute the error reconstruction probabilities by applying Bayes’ rule in Figure 1,

P
[
b̂(X) = 1|b(X) = 0

]
=

DH
1− Pb

Pb − DH
1− 2DH

, (17)

P
[
b̂(X) = 0|b(X) = 1

]
=

DH
Pb

1− Pb − DH
1− 2DH

. (18)

𝑏̂(𝑋)

0

1
𝑃𝑏 −𝐷𝐻

1− 2𝐷𝐻

1− 𝑃𝑏 −𝐷𝐻

1− 2𝐷𝐻

𝑏(𝑋)

𝑃𝑏

1− 𝑃𝑏

1−𝐷𝐻

1−𝐷𝐻

𝐷𝐻

𝐷𝐻

0

1

Figure 1. Binary Source Channel model of the joint probability distribution between a Bernoulli
source b(X) with prior probability Pb and its reconstruction b̂(X) after lossy compression at Hamming
distortion DH , assuming that the Bernoulli rate distortion function is achieved.

Note that in the limit δ→ 0, we have Pb = 0.5, and thus Equations (17) and (18) are equal to DH .
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Lemma 1. For any source X with a distribution pX(x) that satisfies conditions C1 and C2,

lim
δ→0

EX,X̂ [(X− X̂)2]

δ2 =
1

48

(
1 + 12DH − 12D2

H

)
(19)

under the assumption that the binary random variable b(X) defined in Equation (13) is optimally lossy
compressed at a Hamming distortion DH .

Proof. Assuming optimal lossy compression, in the limit δ → 0, b̂(X) is in error with probability
DH . Further, for any δ > 0, it is straightforward to check that both Equations (17) and (18) are upper
bounded by DH . Therefore, the squared error distortion can be computed as follows:

EX,X̂ [(X− X̂)2] ≤
∫

∑̂
x
(x− x̂)2 pX̂|X=x(x̂) pX(x)dx, (20)

where pX̂|X=x(x̂) is the conditional distribution of the reconstruction value for X = x, assuming that
the reconstruction error probabilities are equal to DH . Equality is achieved at δ = 0. According to
Equation (16), pX̂|X=x(x̂) can be expressed as follows: for nδ < x ≤ (n+ 1

2 )δ, then b(X) = 1, and hence

pX̂|X=x(x̂) =


(1− DH) x̂ = (n + 1

2 )δ− c
DH x̂ = (n + 1

2 )δ + c
0 otherwise

(21)

and similarly, if (n + 1
2 )δ < x ≤ (n + 1)δ, then b(x) = 0, and

pX̂|X=x(x̂) =


(1− DH) x̂ = (n + 1

2 )δ + c
DH x̂ = (n + 1

2 )δ− c
0 otherwise

. (22)

As in Equation (7), we expand the integral in Equation (20) using the piecewise-constant
distribution p(δ)X (x)

EX,X̂ [(X− X̂)2] ≤∑
n

pn

δ

∫ (n+1)δ

nδ
∑̂
x
(x− x̂)2 pX̂|X=x(x̂) dx

−∑
n

∫ (n+1)δ

nδ
∑̂
x

[ pn

δ
− pX(x)

]
(x− x̂)2 pX̂|X=x(x̂) dx, (23)

where it can be check that the absolute value of the second term is upper bounded by
δ2
∫ ∣∣∣p(δ)X (x)− pX(x)

∣∣∣dx, which vanishes as δ→ 0.
Using Equations (21) and (22), the first term in Equation (23) reads:

∑
n

pn

δ

∫ (n+1)δ

nδ
∑̂
x
(x− x̂)2 pX̂|X=x(x̂) dx =

δ2 − 6δr + 12r2 − DH(12δr− 6δ2)

12
, (24)

where r = δ
2 − c. The equality is obtained after straight-forward manipulation. The latter expression is

minimized if we choose r = δ
4 (1 + 2DH), Equation (19) being the corresponding distortion. Note that

for DH = 0, the reconstruction value is at the center of the interval, c = δ/4. Conversely, if DH > 0,
the reconstruction point moves closer to the center of the next largest interval, such that the distortion
caused by an erroneous transmission is reduced.
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3.3. Asymptotic Gap to the Shannon Lower Bound

The following lemma jointly characterizes the rate RLb-u and squared distortion D of the Lb-ECSQ
scheme for the uniform quantizer qu(·) in the limit D → 0:

Lemma 2. For any source X with a distribution pX(x) that satisfies conditions C1 and C2, the uniform quantizer
qu(·) with interval length δ and Lb-ECSQ compression with quadratic distortion D = EX,X̂[(X − X̂)2] and
Hamming distortion DH of the bit b(X) achieves

RLb-u(D, DH) = h(X) +
1
2

log2
1
D
− 1

2
log2(12) + ∆(DH) + o(1), (25)

where o(1) comprises error terms that vanish as D tends to zero, and

∆(DH) =
1
2

log2(1+ 12DH − 12D2
H)− h2(DH). (26)

Proof. The proof is straightforward by combining Equations (15) and (19). More precisely,
from Equation (19), we get that as δ→ 0, the following equality holds

δ =

(
48

EX,X̂[(X− X̂)2]

(1+ 12DH − 12D2
H)

)1/2

. (27)

By plugging this equality into Equation (15), we get Equation (28), where D = EX,X̂[(X− X̂)2].

In Figure 2, we plot ∆(DH) for DH ∈ [0, 1/2]. Observe that ∆(DH) is equal to zero at DH = 0
and DH = 1/2. However, for small values of DH, ∆(DH) is actually smaller than zero, achieving its
minimum at D∗H ≈ 3.2 × 10−3.

0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

×10−2

𝐷𝐻

Δ
(𝐷

𝐻
)

0 0.5 1 1.5

×10−2

−6
−4
−2
0
2
4
×10−3

Figure 2. ∆(DH) function from Equation (26).

Corollary 1. The uniform quantizer qu(·) with interval length δ and Lb-ECSQ compression with quadratic
distortion D = E[(X− X̂)2] achieves

RLb-u(D, D∗H) = h(X) +
1
2

log2
1
D
− 1

2
log2(12)− ∆(D∗H) + o(1), (28)

bits/sample, where ∆(D∗H) ≈ 0.004.
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Finally, by combining Equations (11) and (28),

lim
D→0
{RLb-u(D, D∗H)− R(D)} = 1

2
log2(2πe)− 1

2
log2(12)− ∆(D∗H) ≈ 0.251 (29)

bits/sample, which proves that Lb-ECSQ is able to outperform ECSQ in the limit D → 0 using the
uniform quantizer qu(·).

4. Lb-ECSQ in the High Distortion Regime

The above results demonstrate that the use of lossy compression can reduce the gap to SLB in
the limit D → 0 with respect to ECSQ. Improvements can also be observed for low-to-moderate
compression rates. The case of a quantizer q(·) with only two quantization levels plays a special role
that we analyze in this section. While the extension to an arbitrary number N of quantization levels is
interesting, preliminary results show that the biggest gain is achieved for a 2-level quantizer, and that
the Lb-ECSQ performance tend with N very quickly to the asymptotic gain (N → ∞) described in the
previous section. We consider a two-level quantizer q(·) with quantization regions A1 = {x : x ≤ α}
and A2 = {x : x > α} for some α ∈ R and two possible source distributions, X ∼ U ∈ [−δ/2, δ/2]
and X ∼ N (0, σ2).

4.1. Two-Level Quantization of a Uniform Source

For the uniform source X ∼ U ∈ [−δ/2, δ/2], the ECSQ rate is

Rq , H(q(X)) = h2(
α′

δ
), (30)

where α′ = α + δ/2 and α ∈ [−δ/2, δ/2]. The squared distortion is minimized if reconstruction
points are placed at the center of each quantization region [6]; i.e., q(x) = α/2− δ/4 if x ∈ A1 and
q(x) = α/2 + δ/4 if x ∈ A2, and the distortion incurred is

EX [(X− q(X))2] =
1
δ

(
α′3

12
+

(δ− α′3)
12

)
. (31)

In Figure 3, we plot E[(X − q(X))2] vs. Rq as we vary α′ ∈ [0, δ] for δ =
√

12 (red curve
with ◦ marker). As presented in Section 3, Lb-ECSQ combines lossless compression of q(X) with
lossy compression of a random variable b(X) that gathers additional information of the source X
within the quantization region. As now q(·) only partitions the real line in two quantization regions,
we implement Lb-ECSQ by directly lossy compressing the quantizer’s output q(X). To this end,
we define the binary R.V. b(X) = 1 if x ∈ A1 and zero-otherwise. The Lb-ECSQ rate is given by the
compression rate of b(X) at a certain Hamming distortion DH :

RLb-q , h2(
α′

δ
)− h2(DH). (32)

Further, we fix the quantizer threshold to α = 0, which implies that q(X) takes value
either − δ

4 or δ
4 with uniform probability, and thus RLb-q = 1 − h2(DH). Under optimal lossy

compression, the reconstructed bit b̂(X) is in error with the same probability model described in
Equations (17) and (18); namely, b̂(X) is in error with probability DH . We set the source reconstruction
X̂ = −c if b̂(X) = 1 and X̂ = c if b̂(X) = 0, where c is a positive quantity optimized to minimize
E[(X− X̂)2].
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0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Squared error distortion 𝐷

R
at

e
(b

its
/s

am
pl

e)

ECSQ
Lb-ECSQ (𝛼 = 0)

Figure 3. Entropy-constrained scalar quantization (ECSQ) and lossy-bit ECSQ (Lb-ECSQ) rate distortion
function for a 1-bit quantizer and uniform source, X ∼ U ∈ [−δ/2, δ/2] for δ =

√
12.

Lemma 3. Given the source X ∼ U ∈ [−δ/2, δ/2], the 1-bit quantizer q(·) with threshold α = 0
and Lb-ECSQ compression achieves a squared distortion

EX,X̂ [(X− q(X))2] =
δ2

48
(1 + 12DH − 12D2

H) (33)

under the assumption that q(X) is optimally lossy compressed at a Hamming distortion DH .

Proof. The proof is similar to that of Lemma 1, expanding E[(X− X̂)2] as done for every quantization
region done in and minimizing w.r.t. the reconstruction point c. �

In Figure 3, we plot EX,X̂ [(X − X̂))2] in Equation (37) vs. RLb-q in Equation (32) for δ =
√

12
as we vary DH ∈ [0, 1/2] (blue curve with �marker). Observe that Lb-ECSQ improves ECSQ at all
points, except for DH = 0 and DH = 1/2, as we know they must be equivalent at these two points.
The Lb-ECSQ analysis proposed for α = 0 can be generalized to an arbitrary threshold α ∈ [−δ/2, δ/2],
but simulations for α 6= 0 using numerical optimization show that the obtained rate-distortion function
coincides with the one computed for α = 0. This result is dependent on the source distribution, as
shown for the Gaussian source case.

4.2. Two-Level Quantization of a Gaussian Source

Now consider the same quantizer q(·) and X ∼ N (0, σ2). Low-resolution ECSQ for a Gaussian
input source was studied in [21], where the authors showed that the minimum rate is achieved by a
quantizer whose unique threshold α goes either to −∞ or to ∞ as D → σ2, and the two reconstruction
points are the centroids of the quantization regions. The ECSQ rate distortion function for this source
is given by the following parametric curve

Rq = h2(Φ(α)), (34)

EX [(X− q(X))2] =
∫ α

−∞
pX(x)(x− c1(α))

2dx +
∫ ∞

α
pX(x)(x− c2(α))

2dx, (35)

where Φ(α) is the cumulative density function of the Gaussian distribution, and

c1(α) =
1

Φ(α)

∫ α

−∞
x pX(x)dx, c2(α) =

1
1−Φ(α)

∫ ∞

α
x pX(x)dx. (36)



Entropy 2016, 18, 449 10 of 11

We now study the same Lb-ECSQ scheme analyzed before for the uniform source. First, we fix the
quantizer threshold to α = 0 and define b(X) = 1 if X ≤ α, and zero otherwise. Note that Lb-ECSQ
rate is given in Equation (32).

Lemma 4. Given the source X ∼ N (0, σ2), the quantizer q(·) with α = 0 and Lb-ECSQ compression achieves
a squared distortion

EX,X̂ [(X− X̂)2] =
1
σ
− 2

σπ
(1 + 4D2

H − 4DH) (37)

for DH ∈ [0, 1/2].

Proof. The proof is based on expanding E[(X − X̂)2] as done for every quantization region in
Equation (24) and minimizing w.r.t. the reconstruction point c. �

In Figure 4, we plot the gap between the ECSQ and Lb-ECSQ rate distortion function for a 1-bit
quantizer and the rate distortion function for the source; i.e., R(D) = 0.5 log2(σ

2/D). Observe that,
unlike the case of a uniform source, for D/σ2 → 1, Lb-ECSQ is slightly worse than ECSQ. As discussed
before, in the ECSQ solution for a Gaussian input source, the threshold α goes to infinity in the
limit D/σ2 → 1 [21]. By fixing the threshold α to 0 in Lb-ECSQ, we are restraining to an equivalent
solution. This can be tackled by generalizing the above equations to an arbitrary threshold α. While the
methodology is equivalent, we have to rely on numerical optimization to find the optimal choice
of α, c1(α), and c2(α) for each value of DH . In this case, the bit error reconstruction probabilities
take the form given in Equations (17) and (18). Additionally, for an arbitrary threshold α, b(X) is a
Bernoulli source with probability p = Φ(α), and hence the compression rate is RLb-q = h2(p)− h2(DH).
A numerical optimization (gradient descend) procedure has been used to find the minimum distortion
for each RLb-q. The results are shown in Figure 4, where we can see that now Lb-ECSQ is able to
perform equally to or better than ECSQ in the whole range.
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Figure 4. For X ∼ N (0, σ2), we plot the gap between the ECSQ and Lb-ECSQ rate distortion function
for a 1-bit quantizer and the rate distortion function for the source; i.e., R(D) = 0.5 log2(σ

2/D).
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