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Abstract:



In this paper, we introduce the Kullback–Leibler information function [image: there is no content] and prove the local large deviation principle for σ-finite measures μ and finitely additive probability measures ν. In particular, the entropy of a continuous probability distribution ν on the real axis is interpreted as the exponential rate of asymptotics for the Lebesgue measure of the set of those samples that generate empirical measures close to ν in a suitable fine topology.
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1. Introduction


Let P be a continuous probability distribution on the real axis with density [image: there is no content]. Its entropy is defined as


H(P)=−∫Rφ(x)lnφ(x)dx.



(1)




What is the substantive sense of [image: there is no content]? More precisely, does there exist a mathematical object whose natural quantitative magnitude (e.g., volume) is a certain function of the entropy?



Traditionally, entropy is treated as a measure of disorder. However, this explanation does not answer the question stated above because it does not establish a relationship between entropy and any other quantitative characteristic of disorder that can be defined and measured regardless of the entropy.



To illustrate the problem, consider the entropy of a discrete distribution [image: there is no content],


[image: there is no content]



(2)




Its substantive meaning is well known. Namely, let [image: there is no content] be a finite alphabet. Then, the set of those words [image: there is no content] of length [image: there is no content] in which every letter [image: there is no content] occurs with mean frequency close to [image: there is no content] has cardinality of order [image: there is no content] (this follows from the Shannon–McMillan–Breiman theorem (see [1,2])). Thus, the entropy of a discrete distribution determines the exponential rate for the number of those words of length n in which letters occur with prescribed frequencies.



Can we say anything of that sort about the entropy of a continuous distribution? It turns out—yes. Indeed, from Theorem 3 stated below, it follows that entropy (1) determines the exponential rate for the Lebesgue measure of the set of sequences [image: there is no content] of length [image: there is no content] that generate empirical measures on [image: there is no content] close to P. The proximity of distributions should be understood here in the sense of a fine topology, which is defined in the same way as the weak topology, but with the use of integrable functions instead of bounded ones.



For example, if P is the exponential distribution with density [image: there is no content], [image: there is no content], then


H(P)=−∫0+∞λe−λx(lnλ−λx)dx=1−lnλ,








and so the set of sequences [image: there is no content] of length [image: there is no content] that generate empirical measures close to P (in the fine topology) has Lebesgue measure of order [image: there is no content].



Another example: for the Gaussian distribution P with density


φ(x)=12πσ2e−(x−a)2/2σ2,








we get


H(P)=−∫−∞+∞12πσ2e−(x−a)2/2σ2−12ln(2πσ2)−(x−a)22σ2dx=12ln(2πσ2)+12,








and the set of sequences [image: there is no content] of length [image: there is no content] that generate empirical measures close to P (in the fine topology) has Lebesgue measure of order [image: there is no content].



These examples are based on the presentation of entropy (1) in the form [image: there is no content], where Q is the Lebesgue measure on the real axis and [image: there is no content] is the Kullback–Leibler information function:


ρ(P,Q)=∫Rφ(x)lnφ(x)dQ(x),φ(x)=dP(x)dQ(x),



(3)




as well as on a certain generalization of the so-called local large deviation principle.



Let P and Q be two probability distributions on a space X. Roughly speaking, the local large deviation principle asserts that the measure [image: there is no content] of the set of sequences [image: there is no content] that generate empirical measures close to P has exponential order [image: there is no content], provided [image: there is no content].



As far as we know this principle was first proven by Sanov for a pair of continuous probability distributions on the real axis in [3]. Later, it was extended to the general metric spaces (see, for example, [4,5,6,7]), abstract measurable spaces (see [8,9,10]), and spaces of trajectories of various stochastic processes (see [11,12,13,14,15,16,17,18,19]).



It should be mentioned that different authors called the function [image: there is no content] in different ways: the Kullback–Leibler information function [4], the relative entropy [6], the rate function [5,7,15], the Kullback–Leibler divergence, the action functional [16], and the Kullback–Leibler distance [20] (though, of course, it is nonsymmetric and hence not a metric at all). For brevity, in the sequel, we will prefer the term “Kullback action” rather than any of the listed above.



Until recently, the Kullback action and the local large deviation principle were studied only in the case when both arguments P, Q were probability distributions. Only recently, in papers [9,10], was the measure Q allowed to be no more than finite and positive, and the measure P was allowed to be finitely additive, and, moreover, real-valued. Unfortunately, this is still insufficient for the interpretation of entropy (1) because the Lebesgue measure on the real axis is infinite. Therefore, it is highly desirable to define properly the Kullback action and to obtain a generalization of the local large deviation principle for infinite measures Q. Our main result is the solution of this problem.



It turns out that at least two different ways of generalization are possible. The first approach is based on the use of the fine topology in the space of probability distributions. This is presented in Theorem 3. In the second approach, the whole space X is replaced by its certain part Y of finite measure Q, and the distribution P is replaced by its conditional distribution [image: there is no content] on Y. Thereby, the problem reduces to the case of finite measures. This approach is implemented in Theorems 4 and 5.



In fact, it makes sense to consider finitely additive probability distributions P as well since some sequences of empirical measures may converge to finitely additive distributions. In such a case, the Kullback action can take values [image: there is no content] or [image: there is no content] only (Theorem 6). The corresponding versions of the large deviation principle for finitely additive measures P are presented in Theorems 7 and 8.



First results on the large deviation principle for infinite measures were obtained in [21,22], where a countable set X and the “counting” measure Q (such that [image: there is no content] for all [image: there is no content]) were considered. In such a case, the Kullback action [image: there is no content] coincides (up to the sign) with entropy (2). It was revealed in [21,22] that, for the “counting” measure Q on the countable space X, the ordinary form of the large deviation principle, formulated in terms of the weak topology, fails and so one should use the fine topology instead.



The paper is organized as follows. In the next section we recall the local large deviation principle for finite measures (Theorem 1). In Section 3, we define the Kullback action [image: there is no content] as the Legendre dual functional to the so-called spectral potential [image: there is no content] and formulate two variants of the large deviation principle for the case of σ-finite measure μ (Theorems 3–5). These theorems are proven in Section 4, Section 5, Section 6 and Section 7. In Section 8, we formulate two variants of the large deviation principle for σ-finite measures μ and finitely additive probability distributions ν (Theorems 7 and 8). Theorem 6 states that, in fact, [image: there is no content] turns into [image: there is no content] or [image: there is no content] if the measure ν has no density with respect to μ. It is proven in Section 9. The final Section 10 contains proofs of Theorems 7 and 8.




2. The Kullback Action for Finite Measures


Let us consider an arbitrary set X supplied with a σ-field [image: there is no content] of its subsets. In what follows by “measures” we mean only nonnegative measures on the measurable space [image: there is no content].



We will use the following notation:



[image: there is no content] — all bounded measurable functions f:(X,A)→R;



[image: there is no content] — all finite measures on [image: there is no content];



[image: there is no content] — all probability measures (distributions) on [image: there is no content];



[image: there is no content] — all σ-finite measures on [image: there is no content].



Evidently,


[image: there is no content]











Suppose that [image: there is no content] and the measure ν is absolutely continuous with respect to μ. Then, by the Radon–Nikodym theorem, ν can be presented in the form [image: there is no content], where φ is a nonnegative measurable function, which is called the density of ν with respect to μ and denoted as [image: there is no content]. This function is uniquely defined up to a set of zero measure μ.



The Kullback action [image: there is no content] is a function of a probability measure [image: there is no content] and a finite measure [image: there is no content] defined in the following way: if ν is absolutely continuous with respect to μ, then


ρ(ν,μ)=∫Xφlnφdμ,φ=dνdμ,



(4)




and [image: there is no content], otherwise. In (4), we set [image: there is no content] for [image: there is no content]. Therefore, [image: there is no content] belongs to the interval [image: there is no content].



With each finite sequence [image: there is no content], we associate an empirical measure [image: there is no content] that is supported on the set [image: there is no content] and assigns to each [image: there is no content] the measure [image: there is no content]. The expectation of any function f:X→R with respect to this empirical measure looks like


[image: there is no content]











Let us fix any probability measure [image: there is no content]. If the points [image: there is no content] are treated as independent random variables with common distribution μ, then the empirical measure [image: there is no content] becomes a random variable itself, taking values in [image: there is no content]. We will be interested in the asymptotics of its distribution. It turns out that, at a first approximation, this asymptotics is exponential with the exponent [image: there is no content].



To describe the asymptotics of the empirical measures distribution, we need two topologies on the space [image: there is no content]. The first one is the weak topology generated by neighborhoods of the form


O(μ)=ν∈M1(X):∫Xfidν−∫Xfidμ<ε,i=1,⋯,k,μ∈M1(X),



(5)




where [image: there is no content] and [image: there is no content]. The second topology is generated by neighborhoods of the same form (5) but with functions [image: there is no content] therein. In addition, it is supposed in this case that [image: there is no content] contains only those measures ν for which all integrals ∫Xfidν do exist. This topology will be referred to as the fine topology. It is useful because it enables us to formulate the usual law of large numbers in the next form: for any probability distribution [image: there is no content], the sequence of empirical measures [image: there is no content] converges to μ in the probability in the fine topology. On the other hand, a shortcoming of the fine topology is the fact that, with respect to it, the affine map [image: there is no content], where [image: there is no content], may be discontinuous at the ends of the segment [image: there is no content].



It is easy to see that the fine topology on [image: there is no content] contains the weak one, but the converse, in general, does not take place.



For any nonnegative measure μ on X, denote by [image: there is no content] its Cartesian power supported on [image: there is no content]. The next theorem describes asymptotics of the empirical measures distribution.



Theorem 1 (the local large deviation principle for finite measures).

For any measures [image: there is no content], [image: there is no content], and number [image: there is no content], there exists a weak neighborhood [image: there is no content] such that


μnx=(x1,⋯,xn)∈Xn|δx,n∈O(ν)≤e−n(ρ(ν,μ)−ε),n=1,2,3,⋯



(6)




On the other hand, for any measures [image: there is no content], [image: there is no content], number [image: there is no content], and any fine neighborhood [image: there is no content], the following estimate holds for all large enough n:


[image: there is no content]



(7)




In the case of a metric space X supplied with a Borel σ-field, the neighborhood [image: there is no content] in (6) can be chosen from the weak topology generated by bounded continuous functions.





Remark 1.

When [image: there is no content], the difference [image: there is no content] in (6) should be replaced by [image: there is no content].





Remark 2.

So long as each weak neighborhood in [image: there is no content] belongs to the fine topology, estimates (6) and (7) complement each other: the coefficient [image: there is no content] cannot be increased in (6) and cannot be decreased in (7).





Remark 3.

Theorem 1 is also true for finitely additive probability distributions ν on the space X if we set [image: there is no content] in such a case (see [9]).





It is worth mentioning that, until recently, the absolute majority of papers on the large deviation principle dealt with random variables in Polish space (i.e., complete separable metric space), and only a few of them treated random variables in a topological space (see, for example, [4]), or in a measurable space in which the σ-field is generated by open balls and does not necessarily contain Borel sets (see [7], Section 7). In addition, only countably additive probability distributions ν and μ were considered as arguments of the Kullback action. Theorem 1 for an arbitrary measurable space X, finitely additive measures ν and nonnormalized measures μ was first proven in [9], and its generalization for finitely additive measures μ was proven in [10].




3. The Kullback Action for σ-Finite Measures


The shortcoming of Theorem 1 is that it does not involve the case of infinite measure μ. In particular, it does not explain any sense of entropy (1) of an absolutely continuous probability distribution on the real axis. Unfortunately, the direct extension of Theorem 1 on infinite measures μ is wrong. The next example demonstrates this.



Example 

([22]). Let X be a countable set supplied with the discrete σ-field and μ be the counting measure on X (such that [image: there is no content] for every [image: there is no content]). Consider a topology on the space of probability distributions [image: there is no content] generated by the neighborhoods


Oε(ν)=δ∈M1(X):∑x∈X|δ(x)−ν(x)|<ε,ν∈M1(X),ε>0



(8)




(in other words, the topology of [image: there is no content]). Then, for any neighborhood (8) and any number [image: there is no content], there exists a finite subset [image: there is no content] such that, for all n large enough,


[image: there is no content]



(9)







The topology on [image: there is no content] under consideration contains the weak topology generated by functions from [image: there is no content]. It follows that, for [image: there is no content], estimate (9) contradicts (6), and hence the latter cannot take place.





It turns out that, to extend Theorem 1 on σ-finite measures μ, it is enough to replace the weak neighborhood in (6) with a fine one. This is the main result of the paper. Its exact formulation is given in Theorem 3 below.



We also propose one more approach to extend Theorem 1, using only weak topology. Its idea is to replace the space X in estimates (6) and (7) by a large enough subset [image: there is no content] of finite measure [image: there is no content], and to replace the probability measure [image: there is no content] by its conditional distribution on Y. The corresponding results are stated in Theorems 4 and 5 below.



In order to describe asymptotics of the empirical measures distribution correctly in the case of σ-finite measure μ, the definition of the Kullback action should be modified. To this end, we have to introduce the notion of a spectral potential.



Denote by [image: there is no content] the set of all bounded above measurable functions on a measurable space [image: there is no content]. The spectral potential is the nonlinear functional


λ(φ,μ)=ln∫Xeφdμ,φ∈B¯(X),μ∈Mσ(X).








If the integral in this formula diverges, then we set [image: there is no content]. Thus, [image: there is no content] can take values in the interval [image: there is no content].



For brevity, let us introduce the notation


ν[f]=∫Xfdν,








where [image: there is no content] and [image: there is no content]. If the integral diverges, then we put [image: there is no content].



Now, we define the Kullback action [image: there is no content] as a function of the pair of arguments [image: there is no content] and [image: there is no content] as follows:


ρ(ν,μ)=+∞,if∃A∈A:μ(A)=0,ν(A)>0,supψ∈B¯(X)ν[ψ]−λ(ψ,μ),if∄A∈A:μ(A)=0,ν(A)>0.



(10)







The next theorem shows, in particular, that in the case of a finite measure μ this definition coincides with the previous one (4).



Theorem 2.

If a probability distribution [image: there is no content] is absolutely continuous with respect to [image: there is no content] and [image: there is no content], then


ρ(ν,μ)=∫Xφlnφdμ,if∫φ<1φlnφdμ>−∞,



(11)






ρ(ν,μ)=−∞,if∫φ<1φlnφdμ=−∞.



(12)




In particular, for the finite measure μ, the alternative (11) takes place.





The following theorem is our main result for the case of countably additive distributions.



Theorem 3 (the local large deviation principle for infinite measures).

For any measures [image: there is no content], [image: there is no content], and number [image: there is no content], there exists a fine neighborhood [image: there is no content] such that


μnx=(x1,⋯,xn)∈Xn|δx,n∈O(ν)≤e−n(ρ(ν,μ)−ε),n=1,2,3,⋯



(13)




On the other hand, for any measures [image: there is no content], [image: there is no content], number [image: there is no content], and any fine neighborhood [image: there is no content], the following estimate holds for all large enough n:


[image: there is no content]



(14)




If [image: there is no content], then the difference [image: there is no content] in (13) should be replaced by [image: there is no content], and if [image: there is no content] then the sum [image: there is no content] in (14) should be replaced by [image: there is no content].





Let us also formulate the local large deviation principle in terms of weak neighborhoods.



For any probability measure [image: there is no content] and any measurable subset [image: there is no content] with [image: there is no content], define a conditional measure [image: there is no content] according to the formula


νY(A)=ν(A∩Y)ν(Y),A∈A.











It is easily seen that the measure ν can be approximated by the conditional measures [image: there is no content], where [image: there is no content], in the fine topology (and all the more in the weak one). Therefore, it can make sense to replace fine neighborhoods of ν in Theorem 3 by weak neighborhoods of close conditional measures [image: there is no content].



We will say that the Kullback action [image: there is no content] is well-defined if ν has a density [image: there is no content], and, in addition, at least one of the two integrals


∫φ<1φlnφdμ,∫φ≥1φlnφdμ



(15)




is finite. In all other cases (i.e., when both integrals (15) are infinite or the measure ν has no density with respect to μ), we will say that the Kullback action is ill-defined.



Theorem 4.

Suppose that, for some measures [image: there is no content] and [image: there is no content], the Kullback action [image: there is no content] is well-defined. Then, for any number [image: there is no content], there exists a set [image: there is no content] with [image: there is no content] such that for any [image: there is no content] containing [image: there is no content] and having a finite measure [image: there is no content]:

	(a)

	
there exists a weak neighborhood [image: there is no content] satisfying the estimate


μnx=(x1,⋯,xn)∈Yn|δx,n∈O(νY)≤e−n(ρ(ν,μ)−ε),n=1,2,3,⋯;



(16)








	(b)

	
for any fine neighborhood [image: there is no content] and all large enough n,


[image: there is no content]



(17)













In addition, for any [image: there is no content] and any fine neighborhood [image: there is no content], there exists a set [image: there is no content] with [image: there is no content] such that for all large enough n,


[image: there is no content]



(18)









Theorem 5.

Suppose that for some measures [image: there is no content] and [image: there is no content], the Kullback action [image: there is no content] is ill-defined. Then, there exists a set [image: there is no content] with [image: there is no content], such that, for any [image: there is no content] containing [image: there is no content] and having a finite measure [image: there is no content], and any [image: there is no content], there exists a weak neighborhood [image: there is no content] satisfying the estimate


μnx=(x1,⋯,xn)∈Yn|δx,n∈O(νY)≤e−n/ε,n=1,2,3,⋯



(19)









It is worth mentioning that, under conditions of Theorem 5, the equality [image: there is no content] may take place. In such a case, estimates (19) and (14) have opposite senses. Nevertheless, there is no contradiction here because the sets in these estimates are different.




4. Proof of Theorem 2


Recall that, under conditions of Theorem 2, the measure [image: there is no content] is absolutely continuous with respect to [image: there is no content] and has a density [image: there is no content]. First of all, we will prove that for any function [image: there is no content],


ν[ψ]−λ(ψ,μ)≤∫Xφlnφdμ,if∫φ<1φlnφdμ>−∞,−∞,if∫φ<1φlnφdμ=−∞.



(20)







If at least one of the expressions [image: there is no content] or [image: there is no content] takes the infinite value allowed to it, then the left-hand side of (20) turns into [image: there is no content], and so the inequality is true. Thus, it is enough to consider the case of finite [image: there is no content] and [image: there is no content].



Suppose first that


∫φ<1φlnφdμ>−∞.








For any [image: there is no content], define the set


Aε={x∈X:ε<φ(x)<1/ε,ψ(x)>−1/ε}








and the conditional distribution [image: there is no content] on it:


νε(B)=ν(B∩Aε)ν(Aε),B∈A.



(21)




Evidently, [image: there is no content] has the density


[image: there is no content]



(22)




where [image: there is no content] is the characteristic function of [image: there is no content].



From elementary properties of integrals, it follows that


λ(ψ,μ)=ln∫Xeψdμ≥ln∫Aεeψdμ=ln∫Aεeψ−lnφεdνε



(23)






≥∫Aε(ψ−lnφε)dνε=∫Aε(ψ−lnφ+lnν(Aε))dνν(Aε)



(24)






=1ν(Aε)∫Aεψdν−1ν(Aε)∫Aεφlnφdμ+lnν(Aε)



(25)




(in the passage from (23) to (24), Jensen’s inequality is used). If [image: there is no content], the expression in (25) converges to


ν[ψ]−∫Xφlnφdμ.








Therefore, (23)–(25) imply the first case of (20) in the limit.



Now, suppose that [image: there is no content] and [image: there is no content] are finite and


∫φ<1φlnφdμ=−∞.



(26)




Consider the sets


Aε={x∈X:ε<φ(x)<1},ε≥0.








As before, define the conditional distributions [image: there is no content] and densities [image: there is no content] by means of (21) and (22). Then, calculations (23)–(25) still hold, but the expression in (25) converges now to the limit


1ν(A0)∫A0ψdν−1ν(A0)∫A0φlnφdμ+lnν(A0).



(27)




In the situation under consideration, the first and the third summands in (27) are finite, while the second one turns into [image: there is no content]. Therefore, from (23)–(25), it follows that [image: there is no content], which contradicts the assumption about finiteness of [image: there is no content]. Thus, in the situation when both [image: there is no content] and [image: there is no content] are finite, equality (26) cannot take place. Thereby, inequality (20) is completely proven.



To finish the proof of Theorem 2, it is enough to verify the equality


supψ∈B¯(X)ν[ψ]−λ(ψ,μ)=∫Xφlnφdμ,if∫φ<1φlnφdμ>−∞,−∞,if∫φ<1φlnφdμ=−∞.



(28)







By virtue of (20) the left-hand side of (28) does not exceed the right-hand one. If the right-hand side of (28) equals [image: there is no content], then the equality is trivial. Consider the case when the right-hand side of (28) is greater than [image: there is no content]. By σ-finiteness of μ, there exists a function [image: there is no content] such that the integral ∫Xeηdμ is also finite. Consider the family of functions


ψt(x)=η(x)−t,ifφ(x)=0,lnφ(x),if0<φ(x)≤et,t,ifφ(x)>et,t∈R,








Obviously, [image: there is no content], and if t goes to [image: there is no content], then


∫Xeψtdμ=∫φ=0eη−tdμ+∫0<φ≤etφdμ+∫φ>etetdμ⟶∫Xφdμ=1,ν[ψt]=∫0<φ≤etφlnφdμ+∫φ>ettφdμ⟶∫Xφlnφdμ,ν[ψt]−λ(ψt,μ)=ν[ψt]−ln∫Xeψtdμ⟶∫Xφlnφdμ.








It follows that the supremum in the left-hand side of (28) coincides with the right-hand side. ☐




5. Proof of the First Part of Theorem 3


At first, suppose that there exists a measurable set A with [image: there is no content] and [image: there is no content]. Then, by definition [image: there is no content]. Denote by [image: there is no content] the characteristic function of A. Define a fine neighborhood (in fact a weak one) of the measure ν as follows:


O(ν)=δ∈M1(X):δ[χA]>ν[χA]/2,whereν[χA]=ν(A)>0.








If a sequence [image: there is no content] satisfies the condition [image: there is no content], then [image: there is no content]. This implies that at least one of the points [image: there is no content] belongs to A. Therefore,


[image: there is no content]








which implies (13), where [image: there is no content] is replaced by [image: there is no content] by convention.



Now suppose that the second case of formula (10) holds true:


[image: there is no content]



(29)




If [image: there is no content], then estimate (13) is trivial. Thus, let [image: there is no content]. In this case, (29) implies that, for any [image: there is no content], there exists a function [image: there is no content] that satisfies


[image: there is no content]



(30)




From this inequality, it follows automatically that [image: there is no content] and [image: there is no content].



Consider the probability distribution [image: there is no content]. For any sequence [image: there is no content], we have


[image: there is no content]



(31)







Define a fine neighborhood of the measure [image: there is no content] as follows:


O(ν)=δ∈M1(X):δ[ψ]>ν[ψ]−ε/2.








Then, under the condition [image: there is no content], it follows from (30) and (31) that


[image: there is no content]








Next, since the measure [image: there is no content] is probabilistic,


μn{x∈Xn∣δx,n∈O(ν)}=∫δx,n∈O(ν)dμn(x)≤∫δx,n∈O(ν)en(−ρ(ν,μ)+ε)dμψn(x)≤en(−ρ(ν,μ)+ε).








Thus, inequality (13) is proven in all cases. ☐




6. Proof of the Second Part of Theorem 3


Now let us proceed to estimate (14). It is trivial if [image: there is no content]. Thus, in the sequel, we may suppose that [image: there is no content]. Then, (10) implies that ν is absolutely continuous with respect to μ and has a density [image: there is no content].



First, consider the case of finite [image: there is no content]. Then, Theorem 2 implies


ρ(ν,μ)=∫Xφlnφdμ=∫Xlnφdν=ν[lnφ].








Fix any [image: there is no content] and any fine neighborhood [image: there is no content]. Consider the sets


Yn=x∈Xn|δx,n∈O(ν),|δx,n[lnφ]−ν[lnφ]|<ε/2








(in the latter inequality, it is supposed that each element of the sequence [image: there is no content] satisfies the condition [image: there is no content]). Note that, for [image: there is no content],


[image: there is no content]











Hence,


μn(Yn)=∫Yndμn(x)≥∫Yne−n(ν[lnφ]+ε/2)dνn(x)=e−n(ρ(ν,μ)+ε/2)νn(Yn).



(32)




By the law of large numbers, [image: there is no content]. Thus, (32) implies (14).



Now, suppose that [image: there is no content]. Then, by Theorem 2,


∫φ<1φlnφdμ=−∞.



(33)




Divide the whole space X into two parts: [image: there is no content], where


X−={x∈X∣φ(x)<1},X+={x∈X∣φ(x)≥1}.








Set [image: there is no content]. Evidently, [image: there is no content] and


[image: there is no content]



(34)




Then, construct a sequence of embedded sets [image: there is no content] with [image: there is no content], such that [image: there is no content], and, at the same time,


∫Ykφlnφdμ→−∞,whereYk=Xk−∪Xk+.



(35)




Such construction is possible due to (33) and (34). Evidently, [image: there is no content], and each [image: there is no content] is of finite measure μ, and their union gives the whole X.



Denote by [image: there is no content] the conditional distribution of ν on [image: there is no content]:


νk(A)=ν(A∩Yk)ν(Yk),A∈A.








It has the density


[image: there is no content]








where [image: there is no content] is the characteristic function of [image: there is no content]. Evidently, the sequence [image: there is no content] converges to ν in the fine topology, and (35) implies that [image: there is no content]. In addition, the condition [image: there is no content] implies that [image: there is no content].



Fix an arbitrary [image: there is no content] and an arbitrary fine neighborhood [image: there is no content]. Choose k so large that [image: there is no content] and simultaneously [image: there is no content]. In the case of finite Kullback action, estimate (14) is already proven. Apply it to the pair of measures [image: there is no content] and μ, the neighborhood [image: there is no content] of the measure [image: there is no content], and the number [image: there is no content]:


[image: there is no content]








provided n is large enough. This is exactly estimate (14) for the case [image: there is no content]. ☐




7. Proof of Theorems 4 and 5


Proof of Theorem 4.

Under conditions of Theorem 4, the Kullback action is well-defined. Using the definition of well-definiteness and Theorem 2, we can choose a subset [image: there is no content] with [image: there is no content], such that, for any set [image: there is no content] that contains [image: there is no content] and has a finite measure [image: there is no content], one of the following holds:

	(a)

	
[image: there is no content] in the case of finite [image: there is no content],




	(b)

	
[image: there is no content] in the case [image: there is no content],




	(c)

	
[image: there is no content] in the case [image: there is no content].









Now, estimates (16) and (17) follow from the corresponding estimates of Theorem 1.



In addition, estimate (18) comes from estimate (7) of Theorem 1. To see this, it is enough to choose a set [image: there is no content] with [image: there is no content] such that, along with one of the conditions (a)–(c), it satisfies the condition [image: there is no content]. ☐





Proof of Theorem 5.

Suppose that the measure ν is absolutely continuous with respect to μ and has a density [image: there is no content], but the Kullback action [image: there is no content] is ill-defined. Consider the set


[image: there is no content]








Obviously, [image: there is no content]. In addition, since the Kullback action is ill-defined,


∫X0φlnφdμ=+∞.








For any measurable set [image: there is no content] with [image: there is no content], the corresponding conditional distribution [image: there is no content] has the density [image: there is no content]/(Y). Therefore,


ρ(νY,μ)=∫Yφν(Y)lnφν(Y)dμ=+∞,








and hence estimate (19) follows from estimate (6) of Theorem 1.



Now consider the case when the measure ν is not absolutely continuous with respect to μ. Then, there exists [image: there is no content] with [image: there is no content] and [image: there is no content]. Suppose that a set [image: there is no content] with [image: there is no content] contains [image: there is no content]. Obviously, the conditional distribution [image: there is no content] is not absolutely continuous with respect to μ and hence [image: there is no content]. Thus, we can apply Theorem 1 to the measures [image: there is no content], μ on the space Y and obtain (19). ☐






8. The Case of Finitely Additive Probability Distributions ν


The necessity of consideration of finitely additive probability distributions ν is caused by the fact that they may happen to be accumulation points for some sequences of empirical measures. Thus, to make the description of the empirical measures distribution complete, we should obtain the estimates similar to (13) and (14) for finitely additive probability distributions ν as well.



In fact, this can be done, and the principal result is that Theorems 3 and 5 still hold true for finitely additive probability distributions ν, provided the Kullback action [image: there is no content] is defined by (10). In addition, in that case, [image: there is no content] may take values [image: there is no content] or [image: there is no content] only, and the both are possible.



The transition from countably additive distributions to only finitely additive ones is not trivial. First of all, we should adapt some previous definitions to the new setting.



Denote by [image: there is no content] the set of all finitely additive probability measures on [image: there is no content]. Each [image: there is no content] is naturally identified with a positive normalized linear functional on the space of bounded measurable functions [image: there is no content] (i.e., a functional that takes nonnegative values on nonnegative functions and the unit value on the unit function). Using this identification, we denote the integral of [image: there is no content] with respect to [image: there is no content] as [image: there is no content]. In addition, for bounded above functions [image: there is no content], let us define [image: there is no content] as


ν[f]=limc→−∞ν[f∨c],f∨c=max{f,c}.








Thus, for [image: there is no content], the value [image: there is no content] belongs to the interval [image: there is no content]. Similarly, for a measurable function f that is bounded from below, put


ν[f]=limc→+∞ν[f∧c],f∧c=min{f,c}.











Now, we define the Kullback action [image: there is no content] for the case when [image: there is no content] and [image: there is no content]:


ρ(ν,μ)=+∞,if∃A∈A:μ(A)=0,ν(A)>0,supψ∈B¯(X)ν[ψ]−λ(ψ,μ),if∄A∈A:μ(A)=0,ν(A)>0.



(36)







Obviously, this definition just duplicates (10).



Theorem 6.

If [image: there is no content] has no density with respect to [image: there is no content], then [image: there is no content] turns into [image: there is no content] or [image: there is no content]. In particular, if μ is finite or ν is countably additive, then [image: there is no content].





Let us introduce a fine topology on [image: there is no content] by means of neighborhoods of the form


O(ν)=δ∈N1(X):|δ[fi]−ν[fi]|<ε,i=1,⋯,k,ν∈N1(X),



(37)




where [image: there is no content] and the functions [image: there is no content] are such that all [image: there is no content] are finite. Clearly, this definition is analogous to (5). Note that the bounded above functions in (37) may be replaced by bounded below or even nonnegative ones. This will not change the collection of neighborhoods (37).



Now, we reformulate Theorems 3 and 5 for the case of finitely additive distributions ν (note that Theorem 4 cannot be reformulated since [image: there is no content] is well-defined, and hence ν is countably additive in it).



Theorem 7.

For any measures [image: there is no content], [image: there is no content], and number [image: there is no content], there exists a fine neighborhood [image: there is no content] such that


μnx=(x1,⋯,xn)∈Xn|δx,n∈O(ν)≤e−n(ρ(ν,μ)−ε),n=1,2,3,⋯



(38)




On the other hand, for any measures [image: there is no content], [image: there is no content], number [image: there is no content], and any fine neighborhood [image: there is no content], the following estimate holds for all large enough n:


[image: there is no content]



(39)




If [image: there is no content], then the difference [image: there is no content] in (38) should be replaced by [image: there is no content], and if [image: there is no content], then the sum [image: there is no content] in (39) should be replaced by [image: there is no content].





A measure [image: there is no content] will be called proper with respect to a measure [image: there is no content] if, for any [image: there is no content], there exists a set [image: there is no content] such that [image: there is no content] and [image: there is no content]. If, on the contrary, there exists an [image: there is no content] such that the inequality [image: there is no content] implies [image: there is no content], then the measure ν will be called improper with respect to μ. Obviously, in the case of finite μ, all measures [image: there is no content] are proper, and, in the case of σ-finite μ, all countably additive measures [image: there is no content] are proper.



Theorem 8.

Suppose that for some measures [image: there is no content] and [image: there is no content], the Kullback action [image: there is no content] is ill-defined, and the measure ν is proper with respect to μ. Then, there exists a set [image: there is no content] with [image: there is no content], such that, for any [image: there is no content] containing [image: there is no content] and having a finite measure [image: there is no content], and any [image: there is no content], there exists a weak neighborhood [image: there is no content] satisfying the estimate


μnx=(x1,⋯,xn)∈Yn|δx,n∈O(νY)≤e−n/ε,n∈N.



(40)










9. Proof of Theorem 6


Lemma 9.

Suppose that a measure [image: there is no content] is proper with respect to [image: there is no content], and, for any [image: there is no content], there exists [image: there is no content], such that [image: there is no content] implies [image: there is no content]. Then, ν is countably additive and absolutely continuous with respect to μ.





Proof. 

Construct a sequence of embedded measurable sets [image: there is no content] such that all of them have finite measures [image: there is no content], satisfy the condition [image: there is no content], and their union is the whole X.



The restriction of μ to each [image: there is no content] is finite and continuous: if a sequence of embedded measurable sets [image: there is no content] has an empty intersection, then [image: there is no content]. The assumption of Lemma 9 implies that the restriction of ν to [image: there is no content] is continuous as well. It is known that the continuity of a finite measure is equivalent to its countable additivity. Then, the restriction of ν to each [image: there is no content] is countably additive. Since ν is proper, we have [image: there is no content] for any measurable B. It follows that ν is countably additive on the whole X (this may be proven in the same way as the countable additivity of a σ-finite measure). ☐





Proof of Theorem 6.

It follows from (36) that either [image: there is no content] or


[image: there is no content]



(41)




In the first case, the assertion of Theorem 6 is valid. Therefore, it is enough to consider the case when the Kullback action is defined by formula (41).



By the assumption of Theorem 6, the measure [image: there is no content] has no density with respect to μ. Then, Lemma 9 guarantees validity of at least one of the following two conditions:

	(a)

	
there exists a positive ε, such that, for any [image: there is no content], one can choose a measurable set [image: there is no content] such that [image: there is no content] and [image: there is no content];




	(b)

	
the measure ν is improper with respect to μ.









Suppose that (a) is valid. If [image: there is no content], then (41) implies existence of a function [image: there is no content] such that [image: there is no content]. Fix a number [image: there is no content] and consider the family of functions [image: there is no content], where [image: there is no content] is the characteristic function of the set [image: there is no content]. When [image: there is no content], we have


ν[ψδ]−λ(ψδ,μ)≥ν[ψ]+tε−ln∫Xeψdμ+∫Aδeψ+tdμ⟶ν[ψ]+tε−λ(ψ,μ).



(42)




From the arbitrariness of t, (41) and (42), it follows that [image: there is no content].



Now assume that (b) is valid. Consider any function [image: there is no content] such that [image: there is no content]. Define the sets [image: there is no content]. The condition [image: there is no content] implies [image: there is no content]. Since the measure ν is improper, it follows that [image: there is no content] for all large enough n. Then,


λ(ψ,μ)=ln∫Xeψdμ≥ln∫Ane−ndμ=−n+lnμ(An)=+∞,








and hence


[image: there is no content]











Recall that if μ is finite, then ν is proper, and hence alternative (b) cannot take place. In addition, for finite μ one has [image: there is no content]. Thus, (a) implies [image: there is no content]. If ν is countably additive and has no density with respect to μ, then the first case of (36) takes place, according to which [image: there is no content] as well. ☐






10. Proof of Theorems 7 and 8


The proof for the first part of Theorem 7 is exactly the same as for the first part of Theorem 3, so we omit it. If [image: there is no content], then the second part of Theorem 7 follows from the second part of Theorem 3. Thus, it remains to consider the case [image: there is no content].



Let [image: there is no content] be some σ-field of subsets of X. We will call it discrete if it is generated by a countable or finite partition of X.



Lemma 10.

For any measure [image: there is no content] and any its fine neighborhood [image: there is no content], there exists a discrete σ-subfield [image: there is no content] such that

	(a)

	
the restriction of ν to [image: there is no content] is countably additive;




	(b)

	
there exists a fine neighborhood [image: there is no content] generated by [image: there is no content]-measurable functions;




	(c)

	
if the measure ν is proper with respect to [image: there is no content], then the σ-field [image: there is no content] mentioned above can be chosen in such a way that each of its atoms has a finite measure μ.











Proof. 

A base for the fine topology on [image: there is no content] is formed by the neighborhoods


O(ν)=δ∈N1(X):|δ[fi]−ν[fi]|<3ε,i=1,⋯,m,ε>0,








where [image: there is no content] are measurable nonnegative functions on [image: there is no content] with [image: there is no content]. Let us prove the Lemma for a neighborhood of this sort.



Define the step-functions [image: there is no content], where [·] denotes the integer part of a number, and the neighborhood


O′(ν)=δ∈N1(X):|δ[gi]−ν[gi]|<ε,i=1,⋯,m.








Evidently, [image: there is no content], and, for each [image: there is no content], we have


[image: there is no content]








It follows that [image: there is no content].



To each integer vector [image: there is no content], assign the set


Xk=x∈X|gi(x)=kiε,i=1,⋯,m.








These sets form a countable measurable partition of X and generate the desired discrete σ-subfield [image: there is no content]. The functions [image: there is no content] are [image: there is no content]-measurable.



Note that, for any [image: there is no content], we have


[image: there is no content]








Thus, when C goes to [image: there is no content],


∑ki≤C,i≤mν(Xk)≥1−∑i=1mν{x∈X∣gi(x)≥Cε}≥1−∑i=1mν[gi]Cε→1.








It follows that the restriction of ν to the σ-field [image: there is no content] is countably additive.



Assume that the measure ν is proper with respect to μ. In this case, we can construct a countable partition of X into subsets [image: there is no content] such that [image: there is no content] and [image: there is no content] as [image: there is no content]. The latter condition implies the equality [image: there is no content]. Therefore, the restriction of ν to the σ-field generated by the atoms [image: there is no content] is countably additive. This σ-field may be treated as [image: there is no content]. By construction, its atoms have finite measure μ. ☐





Let us finish the proof of Theorem 7. It remains to obtain estimate (39) for [image: there is no content]. In this situation, the measure ν has no density with respect to μ, and, according to Theorem 6, we have the alternative: either [image: there is no content] or [image: there is no content]. In the first case, estimate (39) is trivial. Thus, it is enough to consider the second case [image: there is no content].



Suppose the measure ν is proper with respect to μ and [image: there is no content]. We can apply Lemma 10 to ν and construct the corresponding discrete σ-subfield [image: there is no content] and fine neighborhood [image: there is no content]. Denote by [image: there is no content] and [image: there is no content] the restrictions of ν and μ to [image: there is no content]. By Lemma 10, they are countably additive. From definition (36), it follows that if [image: there is no content] for some [image: there is no content], then [image: there is no content] as well (since otherwise [image: there is no content]). Thus, the distribution [image: there is no content] on [image: there is no content] is absolutely continuous with respect to [image: there is no content].



Recall that by definition,


[image: there is no content]








where [image: there is no content] is the set of all bounded above [image: there is no content]-measurable functions. The same is true for all bounded above [image: there is no content]-measurable functions, and hence [image: there is no content] as well. Since [image: there is no content] is absolutely continuous with respect to [image: there is no content], the second part of Theorem 7 for [image: there is no content] and [image: there is no content] is proven. It implies the estimate


[image: there is no content]








for all large enough n. Due to the inclusion [image: there is no content], we obtain (39).



Consider the case of improper ν. We can apply Lemma 10 and construct the corresponding discrete σ-subfield [image: there is no content] and a fine neighborhood [image: there is no content] generated by [image: there is no content]-measurable functions. The field [image: there is no content] is generated by a certain denumerable partition [image: there is no content]. Change numeration of the sets [image: there is no content] so that [image: there is no content]. Put [image: there is no content] and denote by [image: there is no content] the conditional distribution of ν on [image: there is no content]. Due to the countable additivity, [image: there is no content] and [image: there is no content] for all large enough k. In addition, the improperness of ν implies that [image: there is no content] for all large enough k.



Fix such a large k that [image: there is no content], and, at the same time, [image: there is no content]. The latter implies [image: there is no content] for at least one [image: there is no content]. Without loss of generality, we may assume that [image: there is no content] for all [image: there is no content]. Obviously, for any large enough n, there exists a sequence [image: there is no content] such that the empirical measure [image: there is no content] is so close to [image: there is no content] that [image: there is no content] and each of the sets X1,⋯,Xk contains at least one of the points y1,⋯,yn. Define positive integers [image: there is no content] in such a way that [image: there is no content] for [image: there is no content]. Then, [image: there is no content] for all [image: there is no content] (since otherwise [image: there is no content]) and [image: there is no content] for at least one j. Therefore,


μnx∈Ykn|δx,n∈O′(ν)≥μnx∈Ykn|xj∈Xij,j=1,⋯,n=∏j=1nμ(Xij)=+∞,








and thereby estimate (39) is completely proven. ☐



Proof of Theorem 8.

If [image: there is no content], then the assertion of Theorem 8 follows from Theorem 5.



Let [image: there is no content]. Then, ν is not absolutely continuous with respect to μ.



Since ν is proper, by Lemma 9, there exists an [image: there is no content] such that, for any positive integer n, there exists [image: there is no content] satisfying [image: there is no content] and [image: there is no content]. Set [image: there is no content].



Suppose a set [image: there is no content] with [image: there is no content] contains [image: there is no content]. Then, the conditional distribution [image: there is no content] is not absolutely continuous with respect to μ. On the other hand, (36) and the conditions [image: there is no content] and [image: there is no content] imply the inequality [image: there is no content]. Hence, [image: there is no content] by Theorem 6. In this case, estimate (40) follows from estimate (6) of Theorem 1. ☐
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