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Abstract: Multiscale entropy (MSE) was introduced in the 2000s to quantify systems’ complexity.
MSE relies on (i) a coarse-graining procedure to derive a set of time series representing the system
dynamics on different time scales; (ii) the computation of the sample entropy for each coarse-grained
time series. A refined composite MSE (rcMSE)—based on the same steps as MSE—also exists.
Compared to MSE, rcMSE increases the accuracy of entropy estimation and reduces the probability
of inducing undefined entropy for short time series. The multivariate versions of MSE (MMSE)
and rcMSE (MrcMSE) have also been introduced. In the coarse-graining step used in MSE, rcMSE,
MMSE, and MrcMSE, the mean value is used to derive representations of the original data at different
resolutions. A generalization of MSE was recently published, using the computation of different
moments in the coarse-graining procedure. However, so far, this generalization only exists for
univariate signals. We therefore herein propose an extension of this generalized MSE to multivariate
data. The multivariate generalized algorithms of MMSE and MrcMSE presented herein (MGMSE and
MGrcMSE, respectively) are first analyzed through the processing of synthetic signals. We reveal that
MGrcMSE shows better performance than MGMSE for short multivariate data. We then study the
performance of MGrcMSE on two sets of short multivariate electroencephalograms (EEG) available
in the public domain. We report that MGrcMSE may show better performance than MrcMSE in
distinguishing different types of multivariate EEG data. MGrcMSE could therefore supplement
MMSE or MrcMSE in the processing of multivariate datasets.

Keywords: complexity; nonlinear dynamics; entropy; multivariate embedding; multiscale entropy

1. Introduction

Multiscale entropy (MSE) was proposed in the 2000s to quantify the degree of unpredictability
of systems across multiple scales [1,2]. Its computation relies on two steps [1,2]: (i) a coarse-graining
procedure to derive a set of time series representing the system dynamics on different time scales.
The coarse-graining procedure for scale τ is obtained by averaging the samples of the time series
inside consecutive but non-overlapping windows of length τ. The length of a coarse-grained time
series at a scale factor τ is equal to N/τ, where N is the number of samples in the original signal.
(ii) Computation of the sample entropy for each coarse-grained time series. Sample entropy is equal to
the negative of the natural logarithm of the conditional probability that sequences close to each other
for m consecutive data points will also be close to each other when one more point is added to each
sequence [3].

Since its introduction, MSE has been used in a variety of applications [4]. However, to increase the
accuracy of entropy estimation, and to reduce the probability of inducing undefined entropy for short
time series, a refined composite multiscale entropy (rcMSE) has recently been proposed [5]. rcMSE is
based on the same steps as MSE (see below).

Recently, Costa et al. reported a generalization of the MSE algorithm [6]: they proposed MSEn,
where n corresponds to the moment used to coarse-grain a time series. MSEµ uses the mean value
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(first moment) and corresponds to the standard MSE. In the generalized MSE algorithm, the second,
third, or higher moment can be used in the non-overlapping segments of length τ [6]. Using MSEσ2 ,
it has been shown that human heartbeat volatility time series exhibit complex bursting behaviors over
a wide range of time scales, and that multiscale complexity of the volatility degrades with aging and
pathology [6].

MSE and its generalization are able to process univariate datasets only. For multivariate time series,
individual time series are processed separately. This may be satisfactory only if the individual signals
are statistically independent or at least uncorrelated. This is often not the case when real world signals
from a given system are registered simultaneously. To overcome this shortcoming, the multivariate
MSE (MMSE) and multivariate rcMSE (MrcMSE) have been proposed [7–9]. MMSE and MrcMSE are
able to operate on any number of data channels, and provide a robust relative complexity measure for
multivariate data [7–9]. However, MMSE and MrcMSE only consider coarse-grained time series from
the first-order moment of the samples contained inside windows.

In this work, we extend the MMSE and MrcMSE algorithms to a more general case.
To this end, we introduce the multivariate generalized MSE (MGMSE) and the multivariate
generalized rcMSE (MGrcMSE), and evaluate their performance on both synthetic and real-world
multivariate processes.

2. Materials and Methods

2.1. Multiscale Entropy

As mentioned above, the MSE algorithm is composed of two steps [1,2]

1. A coarse-graining procedure. For a monovariate discrete signal of length N {x1, . . . , xi, . . . , xN},
the coarse-grained time series {y(τ)} is computed as

y(τ)j =
1
τ

jτ

∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ bN/τc. (1)

For scale one, the coarse-grained time series {y(1)} corresponds to the original signal. The length
of the coarse-grained time series {y(τ)} is bN/τc. Coarse-graining can be seen as an averaging
of the data inside a window of length τ (to reduce the high frequency components), followed
by a downsampling of the averaged data by a factor τ [10]. Moreover, it has been reported that
Equation (1) is similar to the use of a finite-impulse response (FIR) filter on the original time
series x and to the downsampling of the filtered signal with a factor τ [11]. This FIR filter is a
low-pass filter.

2. Computation of the sample entropy for each coarse-grained time series. The sample entropy
quantifies the regularity of finite length time series [3]. A low value for the sample entropy reflects
a high degree of regularity, while a random signal has a relatively higher value of sample entropy.
Sample entropy is a conditional probability measure that quantifies the likelihood that a sequence
of m consecutive data points—that matches another sequence of the same length (match within a
tolerance of r)—will still match the other sequence when their length is increased by one sample
(sequences of length m + 1); m therefore defines the length of the patterns that are compared to
each other [3]. For a time series {x1, . . . , xi, . . . , xN}, the sample entropy is computed as

SampEn(x, m, r) = − ln
nm+1

nm , (2)
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where nm represents the total number of m-dimensional matched vector pairs, and nm+1

represents the total number of (m + 1)-dimensional matched vector pairs. More precisely,

nm =
1

N −m

N−m

∑
i=1

Bm
i (r), (3)

with

Bm
i (r) =

nm
i (r)

N −m− 1
, (4)

and nm
i (r) is the number of vectors xm(j) such that d[xm(i), xm(j)] ≤ r. In the definition of sample

entropy, the distance d between two vectors is defined as the maximum absolute difference of
their corresponding scalar components [3].

From Equation (2), MSE can be written as

MSE(x, τ, m, r) = − ln
nm+1

τ

nm
τ

, (5)

where nm
τ represents the total number of m-dimensional matched vector pairs, and is constructed

from the coarse-grained time series at the scale factor τ. In the MSE algorithm, two patterns are
considered similar if they are closer than a parameter r. The value of r is usually chosen as a percentage
of the standard deviation of the signal under study. In the original algorithm of MSE proposed by
Costa et al. (algorithm described above; [1,2]), the value of r is constant for all scale factors.

2.2. Refined Composite Multiscale Entropy

MSE has been used widely. However, because the coarse-graining procedure reduces the length
of the time series, MSE may yield an inaccurate estimation of entropy or induce undefined entropy
at large scales or for short time series. rcMSE has been proposed to overcome this drawback [5].
Compared to MSE, rcMSE increases the accuracy of entropy estimation and reduces the probability
of inducing undefined entropy for short time series. For a monovariate discrete signal of length N
{x1, . . . , xi, . . . , xN}, the rcMSE algorithm is based on the following steps [5]:

1. For a scale factor τ, τ coarse-grained time series are generated. The k-th coarse-grained time
series for a scale factor τ is defined as y(τ)k = {yk,j}N/τ

j=1 , where [12]

y(τ)k,j =
1
τ

jτ+k−1

∑
i=(j−1)τ+k

xi, 1 ≤ j ≤ N
τ

, 1 ≤ k ≤ τ. (6)

2. For each scale factor τ, and for all τ coarse-grained time series, the number of matched vector
pairs nm+1

k,τ and nm
k,τ is computed, where nm

k,τ represents the total number of m-dimensional
matched vector pairs and is computed from the k-th coarse-grained time series at a scale factor τ

3. rcMSE is then defined as [5]

rcMSE(x, τ, m, r) = − ln

(
∑τ

k=1 nm+1
k,τ

∑τ
k=1 nm

k,τ

)
. (7)

2.3. Multivariate (Refined Composite) Multiscale Entropy

MMSE, the extension of MSE to multivariate datasets—denoted as MGMSEµ in what
follows—relies on the same steps as MSE [7,8]: a coarse-graining procedure and a sample entropy
computation for each coarse-grained time series. Each of these two steps is adapted to multivariate
data. Thus, for the coarse-graining procedure, temporal scales are defined by averaging a p-variate time
series {xl,i}N

i=1 (l = 1, . . . , p is the channel index and N is the number of samples in every channel)
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over time segments of increasing length. Thus, for a scale factor τ, a multi-channel coarse-grained time
series is computed as (here the channel index l goes from 1 to p)

y(τ)l,j =
1
τ

jτ

∑
i=(j−1)τ+1

xl,i, 1 ≤ j ≤ bN/τc. (8)

In the sample entropy computation step, the multivariate sample entropy (MSampEn) is used.
The MSampEn algorithm is an extension of the univariate sample entropy [3]. In this case, the embedding
dimension for the channel k of the multivariate data is noted as mk. The detailed MSampEn algorithm
can be found in [7,8]. Briefly, for a tolerance level r, MSampEn is calculated as the negative of the
natural logarithm of the conditional probability that two composite delay vectors close to each other in
a m dimensional space will also be close to each other when the dimensionality is increased by one.

A multivariate version of rcMSE (MGrcMSEµ) has also recently been proposed [9]. It is based on
the same steps as rcMSE, but each of the steps is adapted to multivariate signals. It has been reported
that MGrcMSEµ outperforms MGMSEµ because it leads to lower standard deviation values than
MGMSEµ [9].

2.4. Multivariate Generalized (Refined Composite) Multiscale Entropy

In the multivariate extension of the generalized MSE (MGMSE) and generalized rcMSE (MGrcMSE)
that we propose, the same steps as the ones of MMSE (resp. MrcMSE) are found, except in the
coarse-graining procedure, where the averaging is replaced by the computation of the second
moment (MGMSEσ2 and MGrcMSEσ2 ) or by the computation of the third moment (MGMSEskewness
and MGrcMSEskewness), and so on. MGMSEσ2 and MGrcMSEσ2 quantify the dynamics of the volatility
over multiple time scales [6]. Thus, for MGMSEσ2 , the coarse-grained multivariate time series at scale
factor τ is computed as

y(τ)l,j =
1

τ − 1

jτ

∑
i=(j−1)τ+1

(xl,i − µτ
l,j)

2, (9)

where µτ
l,j corresponds to the mean of {xl,i}

jτ
i=(j−1)τ+1. MGMSEskewness is determined as in Equation (9)

where the computation of the variance is replaced by the computation of the skewness (similar steps
are used to compute MGrcMSEσ2 and MGrcMSEskewness, see Figure 1). From Equation (9), we
observe that MGMSEσ2 and MGrcMSEσ2 are 0 for scale factor τ = 1. In what follows, we will therefore
concentrate on scale factors larger than 1 for MGMSEσ2 and MGrcMSEσ2 . For the same reason, we
will concentrate on scale factors larger than 2 for MGMSEskewness and MGrcMSEskewness. Hereafter
we will study MGMSEσ2 , MGrcMSEσ2 , MGMSEskewness, and MGrcMSEskewness on synthetic and
real datasets.

2.5. Datasets Acquisition

The new algorithms that we propose were tested on synthetic signals, but also on two publicly
available experimental biomedical datasets [13,14]. The first set consisted of five two-channel
electroencephalogram (EEG) data (bivariate data) recorded at the left and right frontal cortex of
male adult WAG/Rij rats. Each signal lasted 5 s and was digitized at 200 Hz. Each one was filtered
between 1 and 100 Hz. More details on the acquisition procedure can be found in [15,16]. For this
first set, data A correspond to a normal EEG, and data B, C, D, and E contain spike-wave discharges
which are the landmark of epileptic activity. These spike-wave discharges are due to abnormal
synchronization in an epileptic brain, even when there are no seizures [16]. The synchronization level
differs between the data, as has been previously reported [16]. The length of each data segment was
only 5 s (1000 samples), because this length was considered to be the largest one in which the signals
containing spikes could be visually judged as stationary [15].
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Figure 1. Flow chart describing the computation of multivariate extension of generalized refined
composite multiscale entropy (MGrcMSEσ2 ) for a p-variate time series {xl,i}N

i=1 (l = 1, . . . , p is the
channel index, and N is the number of samples in every channel).

The second set of experimental biomedical data consisted of five (data A to E) two-channel EEG
data (bivariate data) recorded in humans [17]. The segments processed thereafter were selected and
cut out from continuous multichannel EEG recordings after visual inspection for artifacts (e.g., due to
muscle activity or eye movements). In addition, the segments had to fulfill a stationarity criterion [17].
Data A and B are segments taken from surface EEG data recorded in healthy volunteers. Volunteers
were relaxed in an awake state with eyes open (data A) and eyes closed (data B). Data C, D, and
E are EEG from patients who had achieved complete seizure control after resection of one of the
hippocampal formations, which was therefore correctly diagnosed to be the epileptogenic zone. Data C
were recorded from the hippocampal formation of the opposite hemisphere of the brain, and data D
were recorded from within the epileptogenic zone. Data C and D contain only activity measured
during seizure-free intervals. Data E contain only seizure activity. The data were selected from all
recording sites exhibiting ictal activity. All these data were recorded during 23.6 s with a sampling
frequency of 173.61 Hz. They therefore contain 4097 samples. Further details on the acquisition can be
found in [17].

3. Experimental Results and Discussion

3.1. Results for Synthetic Signals

We recall that 1/ f noise time series are more complex than uncorrelated (white) noise time
series due to long-range correlations of 1/ f noise data [1]. Furthermore, a multivariate time series is
considered more structurally complex than another if (for most of the scale factors) its multivariate
entropy values are higher than those of the other time series. When the multivariate entropy values
decrease with the scale factor, the data that are processed contain information only at the smallest
scales. They are thus not structurally complex.

Moreover, multivariate data showing a constant entropy measure or a monotonic increase of
entropy value with increasing scale factors are data presenting long-range correlations.

We first computed MGMSEσ2 , MGrcMSEσ2 , MGMSEskewness, and MGrcMSEskewness of a
trivariate time series, where all the data channels were originally realizations of mutually independent
white noise [7]. We then gradually decreased the number of variates representing white noise
(from 3 to 0), and simultaneously increased the number of data channels representing independent
1/ f noise (from 0 to 3), as already proposed in [7–9]. The total number of variates was always
three. The embedding dimension mk was chosen to be equal to 2, and the threshold r was fixed to
0.15×(standard deviation of the normalized time series) for each data channel [9]. For each kind of
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trivariate data, 10 independent realizations were simulated. For each realization, 15,000 samples were
generated in each variate. Scales were lower than 40. Therefore, all the coarse-grained time series were
longer than 300 samples, as recommended by others [8,18].

MGMSEµ and MGrcMSEµ for similar kinds of data have been previously reported [7,9]:
the multivariate sample entropy decreases with increasing scale factors, whatever the composition
of the multivariate data (see Figures 2a,b). Moreover, for scale factors larger than 2, the higher the
number of variates representing 1/ f noise, the higher the multivariate entropy value. We observe
that the results obtained with MGMSEµ and MGrcMSEµ are similar. However, for the largest scales,
we observe some wandering on MGMSEµ that is not visible on MGrcMSEµ.
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Figure 2. (a) multivariate extension of the generalized MSE (MGMSEµ); (b) MGrcMSEµ; (c) MGMSEσ2 ;
(d) MGrcMSEσ2 ; (e) MGMSEskewness; and (f) MGrcMSEskewness average values for ten trivariate
data containing white Gaussian noise (WGN) and 1/ f noise, each with 15,000 samples.

The results given by MGMSEσ2 and MGrcMSEσ2 are shown in Figures 2c,d. We note a slight
increase and then a decrease of the multivariate sample entropy with increasing scale factors, except
for the trivariate data containing only 1/ f noise, where a nearly constant multivariate sample entropy
is observed for increasing scale factors. For scales lower than 40, the multivariate data with channels
containing only white noise show higher multivariate sample entropy than multivariate data with
channels containing only 1/ f noise. Others have reported similar findings for univariate data [19].
Therefore, the scale for which the multivariate data containing only 1/ f noise shows larger entropy
values than those of multivariate data containing only white noise is larger than what was observed
with MGMSEµ: for scales lower than 40, trivariate data containing channels with only 1/ f noise
have a lower multivariate sample entropy than trivariate data containing channels with only white
noise; for MGMSEµ, for scales larger than 2, trivariate data containing channels with only 1/ f noise
have a larger multivariate sample entropy than trivariate data containing channels with only white
noise (see Figures 2a,b). If we focus on the decrease rate observed for MGMSEσ2 and MGrcMSEσ2 , we
can say that the results are consistent with what was expected: the more the multivariate data contain
1/ f noise, the slower the decrease of the multivariate sample entropy values with increasing scale
factors (1/ f data are theoretically more complex than white noise, because 1/ f data contain long-range
correlations [2]). Moreover, we observe that the results obtained with MGMSEσ2 and MGrcMSEσ2 are
rather similar.

The results obtained by computing MGMSEskewness and MGrcMSEskewness are shown in
Figures 2e,f. We observe that—whatever the composition of the multivariate dataset—the multivariate
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sample entropy first increases until scale factor τ = 5, and then decreases. For MGrcMSEskewness,
the most rapid decrease is observed for data with channels containing only white noise. The slowest
decrease is observed for data with channels containing only 1/ f noise. For scale factors larger
than 20, the highest multivariate sample entropy is observed for data with channels containing only
1/ f noise, and the lowest for data with channels containing only white noise. The global trend for
MGMSEskewness is similar to the one of MGrcMSEskewness, but the different rates of decrease for
each variate are not as clear as for MGrcMSEskewness.

The same analysis was also performed for synthesized bivariate data (as are the biomedical
datasets processed thereafter): originally, the two data channels were realizations of mutually
independent white noise [7]. We then gradually decreased the number of variates representing
white noise (from 2 to 0), and simultaneously increased the number of data channels representing
independent 1/ f noise (from 0 to 2). The shortest experimental bivariate data processed thereafter
(EEG data) contain 1000 samples. Therefore, we computed MGMSE and MGrcMSE for two different
synthesized bivariate data: one containing 15,000 samples and another containing 1000 samples.
Our goal is to analyze if the results obtained for the two lengths (15,000 and 1000 samples) are
similar. For this purpose, we considered only scales lower than 10, as data with only 1000 samples
do not reasonably allow us to go beyond this limit. Thus, for data with 15,000 samples, the shortest
coarse-grained time series has a length of 1500 samples. For data with 1000 samples, the shortest
coarse-grained time series has a length of 100 samples. For this last case, the length of the coarse-grained
time series will therefore be lower than 300, as recommended by others [8,18]. With a length of
100 samples, the results obtained with MGrcMSE should still be acceptable, as shown in [9]. For each
length (15,000 samples and 1000 samples), 10 independent realizations were simulated.

For data with 15,000 samples, MGMSEµ and MGrcMSEµ show consistent results with those
observed for trivariate datasets (see Figures 3a,b). However, for data with 1000 samples, we observe
that MGMSEµ leads to undefined entropy values (see Figure 3c). MGrcMSEµ shows similar values to
those obtained with 15,000 samples—except for the bivariate data containing only 1/ f noise, where
wandering are observed (see Figure 3d). However, for scales lower than 10, the results obtained with
MGrcMSEµ are still acceptable.

For MGMSEσ2 and MGrcMSEσ2 (see Figure 4), the bivariate data containing only 1/ f time series
present almost constant multivariate sample entropy values with increasing scale factors. However,
for the bivariate data containing only white noise and for the bivariate data containing both 1/ f
noise and white noise, we observe an increase and then a decrease of the multivariate sample entropy
for increasing scale factors. We also observe that MGMSEσ2 shows different results for data of
15,000 samples and for data of 1000 samples. However, MGrcMSEσ2 shows close findings for the
two lengths.

For MGMSEskewness and MGrcMSEskewness, the results show that—whatever the composition
of the bivariate dataset—the behavior is the same as scales increase (see Figure 5). We observe an
increase of the multivariate sample entropy with increasing scale factors and then a progressive
decrease. However, as above, MGrcMSEskewness shows more stable results for short time series than
MGMSEskewness where wandering are observed.

From all these results obtained with a bivariate dataset, we observe that the findings obtained
with 15,000 samples and with 1000 samples show differences when the data are processed with
MGMSE. When MGrcMSE is used, the differences are much less pronounced. For scales lower
than 10, MGrcMSE computed with 1000 samples leads to consistent results with those obtained with
15,000 samples. This is true for MGrcMSEµ, MGrcMSEσ2 , and MGrcMSEskewness. In what follows,
we will therefore concentrate on the refined versions of the multivariate generalized entropy measures:
MGrcMSEµ, MGrcMSEσ2 , and MGrcMSEskewness.
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Figure 3. MGMSEµ (left column) and MGrcMSEµ (right column) average values for ten bivariate data
containing white Gaussian noise (WGN) and 1/ f noise, each with 15,000 samples (upper panels) and
1000 samples (lower panels).
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Figure 4. MGMSEσ2 (left column) and MGrcMSEσ2 (right column) average values for ten bivariate
data containing white Gaussian noise (WGN) and 1/ f noise, each with 15,000 samples (upper panels)
and 1000 samples (lower panels).



Entropy 2016, 18, 411 9 of 15

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Scale factor

M
G

M
S

E
sk

ew
ne

ss

a) MGMSEskewness − 15,000 samples

 

 
Two channels with WGN
One channel with 1/f noise, one channel with WGN
Two channels with 1/f noise

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Scale factor

M
G

rc
M

S
E

sk
ew

ne
ss

b) MGrcMSEskewness − 15,000 samples

 

 
Two channels with WGN
One channel with 1/f noise, one channel with WGN
Two channels with 1/f noise

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Scale factor

M
G

M
S

E
sk

ew
ne

ss

c) MGMSEskewness − 1000 samples

 

 
Two channels with WGN
One channel with 1/f noise, one channel with WGN
Two channels with 1/f noise

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Scale factor

M
G

rc
M

S
E

sk
ew

ne
ss

d) MGrcMSEskewness − 1000 samples

 

 
Two channels with WGN
One channel with 1/f noise, one channel with WGN
Two channels with 1/f noise

Figure 5. MGMSEskewness (left column) and MGrcMSEskewness (right column) average values for
ten bivariate data containing white Gaussian noise (WGN) and 1/ f noise, each with 15,000 samples
(upper panels) and 1000 samples (lower panels).

3.2. Results for Biomedical Datasets

For the first set of EEG data (EEG recorded in rats), the results obtained applying MSE to each
channel independently are presented in Figure 6. We note that the sample entropy values for the five
pairs of rat EEG signals are close to each other. From this, it seems therefore difficult to distinguish the
five cases. The results obtained with MGrcMSEµ, MGrcMSEσ2 , and MGrcMSEskewness are presented
in Figure 7. We observe that MGrcMSEµ, MGrcMSEσ2 , and MGrcMSEskewness show different patterns
for each of the five cases. However, the highest differences between the five cases are given by
MGrcMSEσ2 . In order to more easily quantify these differences, we propose the computation of a
complexity index, defined here as the sum of the (multivariate) sample entropy for all scales studied.
The computation of a similar index has been performed in other studies (e.g., [20–23]). For the
univariate case, the sum was computed for each channel independently, and then the mean of the
two sums was considered. The results for each case are presented in Figure 8. We observe that
MGrcMSEσ2 leads to a better distinction of the different cases than MGrcMSEµ. Data B, C, D, and E all
contain spike-wave discharges. Therefore, we could have expected to obtain similar signatures for
MGrcMSEσ2 and/or for MGrcMSEskewness. However, we obtain different results on these datasets.
This is consistent with other synchronization measures which were also able to distinguish them [15].
Contents of data B, C, D, and E are therefore different. Our findings suggest that the multivariate
multiscale complexity of the volatility may be more interesting than MGrcMSEµ when studying
multivariate datasets.

For the second set of EEG data (EEG recorded in humans), the results obtained applying MSE to
each channel independently are presented in Figure 9. We note that the sample entropy of the five
cases are close to each other. Therefore, their differentiation is hardly possible. The results obtained
with MGrcMSEµ, MGrcMSEσ2 , and MGrcMSEskewness are presented in Figure 10. We observe that
MGrcMSEµ, MGrcMSEσ2 , and MGrcMSEskewness facilitate the differentiation between the five cases.
However, the highest differences between the five cases are given by MGrcMSEσ2 . As above (and with
the same definition as above), we computed the complexity index. The results for each case are
presented in Figure 11. As previously, we observe that MGrcMSEσ2 leads to a better distinction of the
five cases than MGrcMSEµ.
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Figure 6. MSE values for five electroencephalogram (EEG) cases (data A to E, from top to bottom).
For each subplot, each curve corresponds to a data channel. Data A correspond to a normal EEG,
and data B, C, D, and E contain spike-wave discharges [15,16].
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Figure 7. From top to bottom: MGrcMSEµ, MGrcMSEσ2 , and MGrcMSEskewness for five pairs of rat
EEG signals—see Figure 6.
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Figure 9. MSE values for five EEG cases (data A to E, from top to bottom). For each subplot, each
curve corresponds to a data channel. See text for details on each data set, and [17] for the data
acquisition procedure.

As mentioned above, the coarse-graining procedure can be seen as a FIR (low-pass filter) on the
original time series and to the downsampling of the filtered signal with a factor τ [11]. This multiscale
procedure is reminiscent of multiscale transforms such as wavelet, ridgelet, or curvelet transforms [24–27].
Such transforms can also be used with entropy measures.
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Our work is still in progress. The analysis performed on the synthetic data has to be continued,
and many more real datasets have to be analyzed in order to obtain a better understanding of the
potentialities of MGMSE and MGrcMSE. However, the first findings presented herein are encouraging.
Nevertheless, our study presents limitations. A first limitation is the non-existence of an inverse
transform for this multiscale transform. Another limitation is the computational time of MGMSE
(and even more, the one of MGrcMSE): this computational time prevents real-time analyses. This is
particularly annoying, as we need to record long time series if large scales are to be analyzed.

Therefore, for the future, several directions could be studied. To improve the time complexity
of MSE, several algorithms have been proposed [28–31]. It could now be interesting to adapt these
algorithms to the multivariate case, and to study MGMSE and MGrcMSE based on these faster codes.
Furthermore, the original MSE relies on a sample entropy-based approach, but can be used with
different types of entropic measures: permutation entropy, cross-approximate entropy, compression
entropy, etc. The multivariate generalization proposed herein could be extended to MSE based on
other entropic measures. In addition to rcMSE, several other variants to MSE have been proposed:
refined MSE [11], composite MSE [12], modified MSE for short-term time series [10], and short time
MSE [32], to cite only a few. The multivariate approach of these variants could now be proposed,
as well as their generalization to higher moments. For our simulated time series, MGrcMSEskewness
leads to close values, whatever the composition of the multivariate dataset. These results have to be
studied more thoroughly in the future. However, we observe that different findings are obtained for
EEG data. For the univariate case, MSEskewness has already been shown to give interesting results for
the biomedical field [33].
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Figure 10. From top to bottom: MGrcMSEµ, MGrcMSEσ2 , and MGrcMSEskewness for five pairs of
human EEG signals—see Figure 9.



Entropy 2016, 18, 411 13 of 15

 Data  A Data  B Data  C Data  D Data  E  
0

2

4

6

8

10

12

14

16

18

20

(M
u

lt
iv

a
ri
a

te
) 

s
a

m
p

le
 e

n
tr

o
p

y

 

 

Indices obtained with MGrcMSE
µ

Indices obtained with MGrcMSE
σ

2

Indices obtained with MGrcMSE
skewness

Figure 11. Complexity index for five EEG cases—see Figure 9.

4. Conclusions

MSE is now widely used in a large number of areas. Its refined version (rcMSE) has also been
proposed to improve the results when processing short time series. Their adaptation to multivariate
data exist (MMSE and MrcMSE). MSE, rcMSE, MMSE, and MrcMSE rely (among others) on a
coarse-graining procedure to obtain a set of time series representing the system dynamics on different
time scales. In this coarse-graining procedure, the computation of the mean (first moment) of samples
inside consecutive windows is performed. A generalization of MSE has recently been proposed.
This generalization consists of using other moments in the coarse-graining procedure. Unfortunately,
this generalization did not exist for multivariate datasets. We therefore herein proposed an extension
of this generalized MSE to multivariate datasets. We first analyzed the behavior of MGMSE and
MGrcMSE on synthetic signals, and processed two different publicly available bivariate EEG data
sets. Our results show that MGrcMSE may present better performance than MrcMSE in differentiating
different types of EEG signals. MGrcMSE could therefore become an interesting signal processing
tool for multivariate datasets. Moreover, we have shown that MGMSE and MGrcMSE lead to similar
results when long data are analyzed. However, MGrcMSE shows better performance than MGMSE
when short data are processed. The time complexity of MGrcMSE being worse than the one of MGMSE,
we suggest the use of MGMSE for long data and MGrcMSE for short data.

In our work, the parameter r was kept constant, as done in other studies [6,19]. However,
the coarse-graining procedure is similar to smoothing and decimation of the original sequences [34].
Because the same parameter r is used for all scales, in MSE, some authors concluded that the changes
in MSE on each scale depend on both the regularity and variation of the coarse-grained time series [34].
More work could therefore be conducted to analyze the results when adapting the parameter r to each
scale or for each moment used [33].

Our new method has been applied to EEG data. After a deeper analysis of synthetic time
series, multivariate magnetoencephalography data could also be analyzed, but also data recorded
simultaneously by different modalities. This could help in the diagnosis of pathologies that affect
several organs or systems. For example, the simultaneous acquisition of data from the peripheral and
central cardiovascular systems and their analysis with MG(rc)MSE could help in the understanding
and diagnosis of some cardiovascular diseases. MG(rc)MSE could also be used for many other kinds
of data: financial time series, chemical data, etc.
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