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Abstract:



In this paper, we propose a generalization of Rényi divergence, and then we investigate its induced geometry. This generalization is given in terms of a φ-function, the same function that is used in the definition of non-parametric φ-families. The properties of φ-functions proved to be crucial in the generalization of Rényi divergence. Assuming appropriate conditions, we verify that the generalized Rényi divergence reduces, in a limiting case, to the φ-divergence. In generalized statistical manifold, the φ-divergence induces a pair of dual connections [image: there is no content] and [image: there is no content]. We show that the family of connections [image: there is no content] induced by the generalization of Rényi divergence satisfies the relation [image: there is no content], with [image: there is no content].
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1. Introduction


Information geometry, the study of statistical models equipped with a differentiable structure, was pioneered by the work of Rao [1], and gained maturity with the work of Amari and many others [2,3,4]. It has been successfully applied in many different areas, such as statistical inference, machine learning, signal processing or optimization [4,5]. In appropriate statistical models, the differentiable structure is induced by a (statistical) divergence. The Kullback–Leibler divergence induces a Riemannian metric, called the Fisher–Rao metric, and a pair of dual connections, the exponential and mixture connections. A statistical model endowed with the Fisher–Rao metric is called a (classical) statistical manifold. Amari also considered a family of α-divergences that induce a family of α-connections.



Much research in recent years has focused on the geometry of non-standard statistical models [6,7,8]. These models are defined in terms of a deformed exponential (also called ϕ-exponential). In particular, κ-exponential models and q-exponential families are investigated in [9,10]. Non-parametric (or infinite-dimensional) φ-families were introduced by the authors in [11,12], which generalize exponential families in the non-parametric setting [13,14,15,16]. Based on the similarity between exponential and φ-families, we defined the so-called φ-divergence, with respect to which the Kullback–Leibler divergence is a particular case. Statistical models equipped with a geometric structure induced by φ-divergences, which are called generalized statistical manifolds, are investigated in [17,18]. With respect to these connections, parametric φ-families are dually flat.



The φ-divergence is intrinsically related to the [image: there is no content]-model of Zhang, which was proposed in [19,20], extended to the infinite-dimension setting in [21], and explained in more details in [22,23]. For instance, the metric induced by φ-divergence and the [image: there is no content]-generalization of the Fisher–Rao metric, for the choices [image: there is no content] and [image: there is no content], differ by a conformal factor.



Among many attempts to generalize Kullback–Leibler divergence, Rényi divergence [24] is one of the most successful, having found many applications [25]. In the present paper, we propose a generalization of Rényi divergence, which we use to define a family of α-connections. This generalization is based on an interpretation of Rényi divergence as a kind of normalizing function. To generalize Rényi divergence, we considered functions satisfying some suitable conditions. To a function for which these conditions hold, we give the name of φ-function. In a limiting case, the generalized Rényi divergence reduces to the φ-divergence. In [17,18], the φ-divergence gives rise to a pair of dual connections [image: there is no content] and [image: there is no content]. We show that the connection [image: there is no content] induced by the generalization of Rényi divergence satisfies the convex combination [image: there is no content].



Eguchi in [26] investigated a geometry based on a normalizing function similar to the one used in the generalization of Rényi divergence. In [26], results were derived supposing that this normalizing function exists; conditions for its existence were not given. In the present paper, the existence of the normalizing function is ensured by conditions involved in the definition of φ-functions.



The rest of the paper is organized as follows. In Section 2, φ-functions are introduced and some properties are discussed. The Rényi divergence is generalized in Section 3. We investigate in Section 4 the geometry induced by the generalization of Rényi divergence. Section 4.2 provides evidence of the role of the generalized Rényi divergence in φ-families.




2. φ-Functions


Rényi divergence is defined in terms of the exponential function (to be more precise, the logarithm). A way of generalizing Rényi divergence is to replace the exponential function by another function, which satisfies some suitable conditions. To a function for which these conditions hold, we give the name φ-function. In this section, we define and investigate some properties of φ-functions.



Let [image: there is no content] be a measure space. Although we do not restrict our analysis to a particular measure space, the reader can think of T as the set of real numbers [image: there is no content], Σ as the Borel σ-algebra on [image: there is no content], and μ as the Lebesgue measure. We can also consider T to be a discrete set, a case in which μ is the counting measure.



We say that [image: there is no content] is a φ-function if the following conditions are satisfied:

	(a1)

	
[image: there is no content] is convex;




	(a2)

	
[image: there is no content] and [image: there is no content];




	(a3)

	
there exists a measurable function [image: there is no content] such that


∫Tφ(c+λu0)dμ<∞,forallλ>0,



(1)




for each measurable function [image: there is no content] satisfying [image: there is no content].









Thanks to condition (a3), we can generalize Rényi divergence using φ-functions. These conditions appeared first at [12] where the authors constructed non-parametric φ-families of probability distributions. We remark that if T is finite, condition (a3) is always satisfied.



Examples of functions [image: there is no content] satisfying (a1)–(a3) abound. An example of great relevance is the exponential function [image: there is no content], which satisfies conditions (a1)–(a3) with [image: there is no content]. Another example of φ-function is the Kaniadakis’ κ-exponential [12,27,28].



Example 1.

The Kaniadakis’ κ-exponential [image: there is no content] for [image: there is no content] is defined as


expκ(u)=(κu+1+κ2u2)1/κ,ifκ≠0,exp(u),ifκ=0,








whose inverse is the so called the Kaniadakis’ κ-logarithm [image: there is no content], which is given by


logκ(u)=uκ−u−κ2κ,ifκ≠0,ln(u),ifκ=0.











It is clear that [image: there is no content] satisfies (a1) and (a2). Let [image: there is no content] be any measurable function for which [image: there is no content]. We will show that [image: there is no content] satisfies expression (1). For any [image: there is no content] and [image: there is no content], we can write


expκ(αu)=α1/|κ|(|κ|u+1/α2+|κ|2u2)1/|κ|≤α1/|κ|(|κ|u+1+|κ|2u2)1/|κ|=α1/|κ|expκ(u),








where we used that [image: there is no content]. Then, we conclude that [image: there is no content] for all [image: there is no content]. Fix any measurable function [image: there is no content] such that [image: there is no content]. For each [image: there is no content], we have


∫Texpκ(c+λu0)dμ≤12∫Texpκ(2c)dμ+12∫Texpκ(2λu0)dμ≤21/|κ|−1∫Texpκ(c)dμ+21/|κ|−1∫Texpκ(λu0)dμ<∞,








which shows that [image: there is no content] satisfies (a3). Therefore, the Kaniadakis’ κ-exponential [image: there is no content] is an example of φ-function.





The restriction that [image: there is no content] can be weakened, as asserted in the next result.



Lemma 1.

Let [image: there is no content] be any measurable function such that [image: there is no content]. Then, [image: there is no content] for all [image: there is no content].





Proof. 

Notice that if [image: there is no content], then [image: there is no content] for some [image: there is no content]. From the definition of [image: there is no content], it follows that [image: there is no content], where [image: there is no content]. Now assume that [image: there is no content]. Consider any measurable set [image: there is no content] with measure [image: there is no content]. Let [image: there is no content] be a measurable function supported on A satisfying [image: there is no content], where [image: there is no content]. Defining [image: there is no content], we see that [image: there is no content]. By the definition of [image: there is no content], we can write


∫Tφ(c˜+λu0)dμ≤∫Tφ(c+λu0)dμ<∞,foranyλ>0,








which is the desired result. ☐





As a consequence of Lemma 1, condition (a3) can be replaced by the following one:



(a3’)  There exists a measurable function [image: there is no content] such that


∫Tφ(c+λu0)dμ<∞,forallλ>0,



(2)




for each measurable function [image: there is no content] for which [image: there is no content].



Without the equivalence between conditions (a3) and (a3’), we could not generalize Rényi divergence in the manner we propose. In fact, φ-functions could be defined directly in terms of (a3’), without mentioning (a3). We chose to begin with (a3) because this condition appeared initially in [12].



Not all functions [image: there is no content], for which conditions (a1) and (a2) hold, satisfy condition (a3). Such a function is given below.



Example 2.

Assume that the underlying measure μ is σ-finite and non-atomic. This is the case of the Lebesgue measure. Let us consider the function


[image: there is no content]



(3)




which clearly is convex, and satisfies the limits [image: there is no content] and [image: there is no content]. Given any measurable function [image: there is no content], we will find a measurable function [image: there is no content] with [image: there is no content], for which expression (2) is not satisfied.



For each [image: there is no content], we define


[image: there is no content]








where [image: there is no content]. Because [image: there is no content], we can find a sub-sequence [image: there is no content] such that


[image: there is no content]











According to (Lemma 8.3 in [29]) , there exists a sub-sequence [image: there is no content] and pairwise disjoint sets [image: there is no content] for which


[image: there is no content]











Let us define [image: there is no content], where [image: there is no content] and [image: there is no content] is any measurable function such that [image: there is no content] for [image: there is no content] and [image: there is no content]. Observing that


e(wk(t)+u0(t)+1)2/2=2mnke(wk(t)+1)2/2,fort∈Ak,








we get


∫Ake(wk+1)2/2dμ=12mnk,foreverym≥1.











Then, we can write


∫Tφ(c)dμ=∫T\Aφ(c¯)dμ+∑k=1∞∫Ake(wk+1)2/2dμ=∫T\Aφ(c¯)dμ+∑k=1∞12mnk<∞.











On the other hand,


∫Tφ(c+u0)dμ=∫T\Aφ(c¯)dμ+∑k=1∞∫Ake(u0+wk+1)2/2dμ=∫T\Aφ(c¯)dμ+∑k=1∞1=∞,








which shows that (2) is not satisfied.






3. Generalization of Rényi Divergence


In this section, we provide a generalization of Rényi divergence, which is given in terms of a φ-function. This generalization also depends on a parameter [image: there is no content]; for [image: there is no content], it is defined as a limit. Supposing that the underlying φ-function is continuously differentiable, we show that this limit exists and results in the φ-divergence [12]. In what follows, all probability distributions are assumed to have positive density. In other words, they belong to the collection


Pμ=p∈L0:∫Tpdμ=1andp>0,








where [image: there is no content] is the space of all real-valued, measurable functions on T, with equality μ-a.e. (μ-almost everywhere).



The Rényi divergence of order [image: there is no content] between two probability distributions p and q in [image: there is no content] is defined as


[image: there is no content]



(4)







For [image: there is no content], the Rényi divergence is defined by taking a limit:


[image: there is no content]



(5)






[image: there is no content]



(6)







Under some conditions, the limits in (5) and (6) are finite-valued, and converge to the Kullback–Leibler divergence. In other words,


[image: there is no content]








where [image: there is no content] denotes the Kullback–Leibler divergence between p and q, which is given by


[image: there is no content]











These conditions are stated in Proposition 1, given in the end of this section, for the case involving the generalized Rényi divergence.



The Rényi divergence in its standard form is given by


D(α)(p∥q)=11−αlog∫Tpαq1−αdμ,forα∈(0,1).



(7)







Expression (4) is related to this form by


[image: there is no content]











Beyond the change of variables, which results in α ranging in [image: there is no content], expressions (4) and (7) differ by the factor [image: there is no content]. We opted to insert the term [image: there is no content] so that some kind of symmetry could be maintained when the limits [image: there is no content] and [image: there is no content] are considered. In addition, the geometry induced by the version (4) conforms with Amari’s notation [5].



The Rényi divergence [image: there is no content] can be defined for every [image: there is no content]. However, for [image: there is no content], the expression (4) may not be finite-valued for every p and q in [image: there is no content]. To avoid some technicalities, we just consider [image: there is no content].



Given p and q in [image: there is no content], let us define


κ(α)=−log∫Tp1−α2q1+α2dμ,forα∈[−1,1],








which can be used to express the Rényi divergence as


DR(α)(p∥q)=41−α2κ(α),forα∈(−1,1).











The function [image: there is no content], which depends on p and q, can be defined as the unique non-negative real number for which


[image: there is no content]



(8)







The function [image: there is no content] makes the role of a normalizing term. The generalization of Rényi divergence, which we propose, is based on the interpretation of [image: there is no content] given in (8). Instead of the exponential function, we consider a φ-function in (8).



Fix any φ-function [image: there is no content]. Given any p and q in [image: there is no content], we take [image: there is no content] so that


[image: there is no content]



(9)




or, in other words, the term inside the integral is a probability distribution in [image: there is no content]. The existence and uniqueness of [image: there is no content] as defined in (9) is guaranteed by condition (a3’).



We define a generalization of the Rényi divergence of order [image: there is no content] as


[image: there is no content]



(10)







For [image: there is no content], this generalization is defined as a limit:


[image: there is no content]



(11)






[image: there is no content]



(12)







The cases [image: there is no content] are related to a generalization of the Kullback–Leibler divergence, the so-called φ-divergence, which was introduced by the authors in [12]. The φ-divergence is given by (It was pointed out to us by an anonymous referee that this form of divergence is a special case of the [image: there is no content]-divergence for [image: there is no content] and [image: there is no content] (see Section 3.5 in [19]) apart from a conformal factor, which is the denominator of (13)):


[image: there is no content]



(13)







Under some conditions, the limit in (11) or (12) is finite-valued and converges to the φ-divergence:


[image: there is no content]



(14)







To show (14), we make use of the following result.



Lemma 2.

Assume that [image: there is no content] is continuously differentiable. If for [image: there is no content], the expression


[image: there is no content]



(15)




is satisfied for all [image: there is no content], then the derivative of [image: there is no content] exists at any [image: there is no content], and is given by


[image: there is no content]



(16)




where [image: there is no content].





Proof. 

For [image: there is no content] and [image: there is no content], define


[image: there is no content]








The function [image: there is no content] is defined implicitly by [image: there is no content]. If we show that

	(i)

	
the function [image: there is no content] is continuous in a neighborhood of [image: there is no content],




	(ii)

	
the partial derivatives [image: there is no content] and [image: there is no content] exist and are continuous at [image: there is no content],




	(iii)

	
and [image: there is no content],






then by the Implicit Function Theorem [image: there is no content] is differentiable at [image: there is no content], and


[image: there is no content]



(17)







We begin by verifying that [image: there is no content] is continuous. For fixed [image: there is no content] and [image: there is no content], set [image: there is no content]. Denoting [image: there is no content], we can write


φ1−β2φ−1(p)+1+β2φ−1(q)+λu0≤φφ−1(p)+1+β2[φ−1(q)−φ−1(p)]+κ0u0≤φφ−1(p)+1+α12[φ−1(q)−φ−1(p)]+κ0u01A+φφ−1(p)+1+α02[φ−1(q)−φ−1(p)]+κ0u01T\A,



(18)




for every [image: there is no content] and [image: there is no content]. Because the function on the right-hand side of (18) is integrable, we can apply the Dominated Convergence Theorem to conclude that


[image: there is no content]











Now, we will show that the derivative of [image: there is no content] with respect to α exists and is continuous. Consider the difference


[image: there is no content]



(19)




where [image: there is no content]. Represent by [image: there is no content] the function inside the integral sign in (19). For fixed [image: there is no content] and [image: there is no content], denote [image: there is no content], [image: there is no content], and [image: there is no content]. Because [image: there is no content] is convex and increasing, it follows that


|fβ,γ,λ|≤fα¯1,α1,κ01A−fα¯0,α0,κ01T\A=:f,forallβ,γ∈(α¯0,α¯1)andλ∈(0,κ0),








where [image: there is no content]. Observing that f is integrable, we can use the Dominated Convergence Theorem to get


[image: there is no content]








and then


[image: there is no content]



(20)







For [image: there is no content] and [image: there is no content], the function inside the integral sign in (20) is dominated by f. As a result, a second use of the Dominated Convergence Theorem shows that [image: there is no content] is continuous at [image: there is no content]:


[image: there is no content]











Using similar arguments, one can show that [image: there is no content] exists and is continuous at any [image: there is no content] and [image: there is no content], and is given by


[image: there is no content]



(21)







Clearly, expression (21) implies that [image: there is no content] for all [image: there is no content] and [image: there is no content].



We proved that items (i)–(iii) are satisfied. As consequence, the derivative of [image: there is no content] exists at any [image: there is no content]. Expression (16) for the derivative of [image: there is no content] follows from (17), (20) and (21). ☐





As an immediate consequence of Lemma 2, we get the proposition below.



Proposition 1.

Assume that [image: there is no content] is continuously differentiable.

	(a)

	
If, for some [image: there is no content], expression (15) is satisfied for all [image: there is no content], then


[image: there is no content]












	(b)

	
If, for some [image: there is no content], expression (15) is satisfied for all [image: there is no content], then


[image: there is no content]




















4. Generalized Statistical Manifolds


Statistical manifolds consist of a collection of probability distributions endowed with a metric and α-connections, which are defined in terms of the derivative of [image: there is no content]. In a generalized statistical manifold, the metric and connection are defined in terms of [image: there is no content]. Instead of the logarithm, we consider the inverse [image: there is no content] of a φ-function. Generalized statistical manifolds were introduced by the authors in [17,18]. Among examples of the generalized statistical manifold, (parametric) φ-families of probability distributions are of greatest importance. The non-parametric counterpart was investigated in [11,12]. The metric in φ-families can be defined as the Hessian of a function; i.e., φ-families are Hessian manifolds [30]. In [17,18], the φ-divergence gives rise to a pair of dual connections [image: there is no content] and [image: there is no content]; and then for [image: there is no content] the α-connection [image: there is no content] is defined as the convex combination [image: there is no content]. In the present paper, we show that the connection induced by [image: there is no content], the generalization of Rényi divergence, corresponds to [image: there is no content].



4.1. Definitions


Let [image: there is no content] be a φ-function. A generalized statistical manifold [image: there is no content] is a collection of probability distributions [image: there is no content], indexed by parameters [image: there is no content] in a one-to-one relation, such that

	(m1)

	
Θ is a domain (open and connected set) in [image: there is no content];




	(m2)

	
[image: there is no content] is differentiable with respect to θ;




	(m3)

	
the matrix [image: there is no content] defined by


[image: there is no content]



(22)




is positive definite at each [image: there is no content], where


[image: there is no content]



(23)








	(m4)

	
the operations of integration with respect to μ and differentiation with respect to [image: there is no content] commute in all calculations found below, which are related to the metric and connections.









The matrix [image: there is no content] equips [image: there is no content] with a metric. By the chain rule, the tensor related to [image: there is no content] is invariant under change of coordinates. The (classical) statistical manifold is a particular case in which [image: there is no content] and [image: there is no content].



We introduce a notation similar to Equation (23) that involves higher order derivatives of [image: there is no content]. For each [image: there is no content], we define


[image: there is no content]



(24)







We also use [image: there is no content], [image: there is no content] and [image: there is no content] to denote [image: there is no content] for [image: there is no content], respectively. The notation (24) appears in expressions related to the metric and connections.



Using property (m4), we can find an alternate expression for [image: there is no content] as well as an identification involving tangent spaces. The matrix [image: there is no content] can be equivalently defined by


[image: there is no content]



(25)







As a consequence of this equivalence, the tangent space [image: there is no content] can be identified with [image: there is no content], the vector space spanned by [image: there is no content], and endowed with the inner product [image: there is no content]. The mapping


[image: there is no content]








defines an isometry between [image: there is no content] and [image: there is no content].



To verify (25), we differentiate [image: there is no content], with respect to [image: there is no content], to get


[image: there is no content]



(26)







Now, differentiating with respect to [image: there is no content], we obtain


[image: there is no content]








and then (25) follows. In view of (26), we notice that every vector [image: there is no content] belonging to [image: there is no content] satisfies [image: there is no content].



The metric [image: there is no content] gives rise to a Levi–Civita connection ∇ (i.e., a torsion-free, metric connection), whose corresponding Christoffel symbols [image: there is no content] are given by


[image: there is no content]



(27)







Using expression (25) to calculate the derivatives in (27), we can express


Γijk=Eθ″∂2φ−1(pθ)∂θi∂θj∂φ−1(pθ)∂θk+12Eθ‴∂φ−1(pθ)∂θi∂φ−1(pθ)∂θj∂φ−1(pθ)∂θk=−12Eθ″∂φ−1(pθ)∂θi∂φ−1(pθ)∂θkEθ″u0∂φ−1(pθ)∂θj−12Eθ″∂φ−1(pθ)∂θj∂φ−1(pθ)∂θkEθ″u0∂φ−1(pθ)∂θi=+12Eθ″∂φ−1(pθ)∂θi∂φ−1(pθ)∂θjEθ″u0∂φ−1(pθ)∂θk.











As we will show later, the Levi–Civita connection ∇ corresponds to the connection derived from the divergence [image: there is no content] with [image: there is no content].




4.2. φ-Families


Let [image: there is no content] be a measurable function for which [image: there is no content] is a probability density in [image: there is no content]. Fix measurable functions [image: there is no content]. A (parametric) φ-family [image: there is no content], centered at [image: there is no content], is a set of probability distributions in [image: there is no content], whose members can be written in the form


pθ:=φc+∑i=1nθiui−ψ(θ)u0,foreachθ=(θi)∈Θ,



(28)




where [image: there is no content] is a normalizing function, which is introduced so that expression (28) defines a probability distribution belonging to [image: there is no content].



The functions [image: there is no content] are not arbitrary. They are chosen to satisfy the following assumptions:

	(i)

	
[image: there is no content] are linearly independent,




	(ii)

	
[image: there is no content], and




	(iii)

	
there exists [image: there is no content] such that [image: there is no content], for all [image: there is no content].









Moreover, the domain [image: there is no content] is defined as the set of all vectors [image: there is no content] for which


∫Tφc+λ∑i=1nθiuidμ<∞,forsomeλ>1.











Condition (i) implies that the mapping defined by (28) is one-to-one. Assumption (ii) makes of ψ a non-negative function. Indeed, by the convexity of [image: there is no content], along with (ii), we can write


[image: there is no content]








which implies [image: there is no content]. By condition (iii), the domain Θ is an open neighborhood of the origin. If the set T is finite, condition (iii) is always satisfied. One can show that the domain Θ is open and convex. Moreover, the normalizing function ψ is also convex (or strictly convex if [image: there is no content] is strictly convex). Conditions (ii) and (iii) also appears in the definition of non-parametric φ-families. For further details, we refer to [11,12].



In a φ-family [image: there is no content], the matrix [image: there is no content] given by (22) or (25) can be expressed as the Hessian of ψ. If [image: there is no content] is strictly convex, then[image: there is no content] is positive definite. From


∂φ−1(pθ)∂θi=ui−∂ψ∂θi,−∂2φ−1(pθ)∂θi∂θj=−∂2ψ∂θi∂θj,








it follows that [image: there is no content].



The next two results show how the generalization of Rényi divergence and the φ-divergence are related to the normalizing function in φ-families.



Proposition 2.

In a φ-family [image: there is no content], the generalization of Rényi divergence for [image: there is no content] can be expressed in terms of the normalizing function ψ as follows:


[image: there is no content]



(29)




for all [image: there is no content].





Proof. 

Recall the definition of [image: there is no content] as the real number for which


[image: there is no content]











Using expression (28) for probability distributions in [image: there is no content], we can write


1−α2φ−1(pθ)+1+α2φ−1(pϑ)+κ(α)u0=c+∑i=1n1−α2θi+1+α2ϑiui−1−α2ψ(θ)+1+α2ψ(ϑ)−κ(α)u0=c+∑i=1n1−α2θi+1+α2ϑiui−ψ1−α2θ+1+α2ϑu0.











The last equality is a consequence of the domain Θ being convex. Thus, it follows that


[image: there is no content]











By the definition of [image: there is no content], we get (29). ☐





Proposition 3.

In a φ-family [image: there is no content], the φ-divergence is related to the normalizing function ψ by the equality


[image: there is no content]



(30)




for all [image: there is no content].





Proof. 

To show (30), we use


[image: there is no content]








which is a consequence of (Lemma 10 in [12]). In view of [image: there is no content], expression (13) with [image: there is no content] and [image: there is no content] results in


[image: there is no content]



(31)







Inserting into (31) the difference


φ−1(pθ)−φ−1(pϑ)=c+∑i=1nθiui−ψ(θ)u0−c+∑i=1nϑiui−ψ(ϑ)u0=ψ(ϑ)u0−ψ(θ)u0−∑i=1n(ϑi−θi)ui,








we get expression (30). ☐





In Proposition 2, the expression on the right-hand side of Equation (29) defines a divergence on its own, which was investigated by Jun Zhang in [19]. Proposition 3 asserts that the φ-divergence [image: there is no content] coincides with the Bregman divergence [31,32] associated with the normalizing function ψ for points ϑ and θ in Θ. Because ψ is convex and attains a minimum at [image: there is no content], it follows that [image: there is no content] at [image: there is no content]. As a result, equality (30) reduces to [image: there is no content].




4.3. Geometry Induced by [image: there is no content]


In this section, we assume that [image: there is no content] is continuously differentiable and strictly convex. The latter assumption guarantees that


Dφ(α)(p∥q)=0ifandonlyifp=q.



(32)







The generalized Rényi divergence induces a metric [image: there is no content] in generalized statistical manifolds [image: there is no content]. This metric is given by


[image: there is no content]



(33)







To show that this expression defines a metric, we have to verify that [image: there is no content] is invariant under change of coordinates, and [image: there is no content] is positive definite. The first claim follows from the chain rule. The positive definiteness of [image: there is no content] is a consequence of Proposition 4, which is given below.



Proposition 4.

The metric induced by [image: there is no content] coincides with the metric given by (22) or (25).





Proof. 

Fix any [image: there is no content]. Applying the operator [image: there is no content] to


[image: there is no content]








where [image: there is no content], we obtain


[image: there is no content]








which results in


[image: there is no content]











By the standard differentiation rules, we can write


∂∂θipθ∂∂θjpϑκ(α)=−1+α2∫T[1−α2∂φ−1(pθ)∂θi+(∂∂θi)pθκ(α)u0]∂φ−1(pϑ)∂θjφ″(cα)dμ∫Tu0φ′(cα)dμ+1+α2∫T∂φ−1(pϑ)∂θjφ′(cα)dμ∫Tu0φ′(cα)dμ∫Tu0[1−α2∂φ−1(pθ)∂θi+(∂∂θi)pθκ(α)u0]φ″(cα)dμ∫Tu0φ′(cα)dμ.



(34)







Noticing that [image: there is no content] for [image: there is no content], the second term on the right-hand side of Equation (34) vanishes, and then


[image: there is no content]











If we use the notation introduced in (24), we can write


[image: there is no content]











It remains to show the case [image: there is no content]. Comparing (13) and (23), we can write


[image: there is no content]



(35)







We use the equivalent expressions


[image: there is no content]








which follows from condition (32), to infer that


[image: there is no content]



(36)







Because [image: there is no content], we conclude that the metric defined by (22) coincides with the metric induced by [image: there is no content] and [image: there is no content]. ☐





In generalized statistical manifolds, the generalized Rényi divergence [image: there is no content] induces a connection [image: there is no content], whose Christoffel symbols [image: there is no content] are given by


[image: there is no content]











Because [image: there is no content], it follows that [image: there is no content] and [image: there is no content] are mutually dual for any [image: there is no content]. In other words, [image: there is no content] and [image: there is no content] satisfy the relation [image: there is no content]. A development involving expression (35) results in


[image: there is no content]



(37)




and


Γijk(−1)=Eθ″∂2φ−1(pθ)∂θi∂θj∂φ−1(pθ)∂θk+Eθ‴∂φ−1(pθ)∂θi∂φ−1(pθ)∂θj∂φ−1(pθ)∂θk=−Eθ″∂φ−1(pθ)∂θj∂φ−1(pθ)∂θkEθ″u0∂φ−1(pθ)∂θi=−Eθ″∂φ−1(pθ)∂θi∂φ−1(pθ)∂θkEθ″u0∂φ−1(pθ)∂θj.



(38)







For [image: there is no content], the Christoffel symbols [image: there is no content] can be written as a convex combination of [image: there is no content] and [image: there is no content], as asserted in the next result.



Proposition 5.

The Christoffel symbols [image: there is no content] induced by the divergence [image: there is no content] satisfy the relation


Γijk(α)=1−α2Γijk(−1)+1+α2Γijk(1),forα∈[−1,1].



(39)









Proof. 

For [image: there is no content], equality (39) follows trivially. Thus, we assume [image: there is no content]. By (34), we can write


∂∂θipθ∂∂θkpϑκ(α)=−1+α2∫T[1−α2∂φ−1(pθ)∂θi+(∂∂θi)pθκ(α)u0]∂φ−1(pϑ)∂θkφ″(cα)dμ∫Tu0φ′(cα)dμ=+1+α2∫T∂φ−1(pϑ)∂θkφ′(cα)dμ∫Tu0φ′(cα)dμ∫Tu0[1−α2∂φ−1(pθ)∂θi+(∂∂θi)pθκ(α)u0]φ″(cα)dμ∫Tu0φ′(cα)dμ.



(40)







Applying [image: there is no content] to the first term on the right-hand side of (40), and then equating [image: there is no content], we obtain


−1−α24Eθ″∂2φ−1(pθ)∂θi∂θj∂φ−1(pθ)∂θk−1+α2∂2∂θi∂θjpθκ(α)Eθ″u0∂φ−1(pθ)∂θk−1−α241−α2Eθ‴∂φ−1(pθ)∂θi∂φ−1(pθ)∂θj∂φ−1(pθ)∂θk+1−α241−α2Eθ″∂φ−1(pθ)∂θi∂φ−1(pϑ)∂θkEθ″u0∂φ−1(pϑ)∂θj.



(41)







Similarly, if we apply [image: there is no content] to the second term on the right-hand side of (40), and make [image: there is no content], we get


[image: there is no content]



(42)







Collecting (41) and (42), we can write


Γijk(α)=−41−α2∂2∂θi∂θjpθ∂∂θkpϑκ(α)pθ=pϑ=Eθ″∂2φ−1(pθ)∂θi∂θj∂φ−1(pθ)∂θk+1−α2Eθ‴∂φ−1(pθ)∂θi∂φ−1(pθ)∂θj∂φ−1(pθ)∂θk=−1−α2Eθ″∂φ−1(pθ)∂θj∂φ−1(pθ)∂θkEθ″u0∂φ−1(pθ)∂θi=−1−α2Eθ″∂φ−1(pθ)∂θi∂φ−1(pϑ)∂θkEθ″u0∂φ−1(pϑ)∂θj=−1+α2Eθ′∂2φ−1(pθ)∂θi∂θjEθ″u0∂φ−1(pθ)∂θk,



(43)




where we used


∂2∂θi∂θjpθκ(α)=1−α24∂2∂θi∂θjpθDφ(α)(pθ∥pϑ)pϑ=pθ=1−α24gij=−1−α24Eθ′∂2φ−1(pθ)∂θi∂θi.











Expression (39) follows from (37), (38) and (43). ☐







5. Conclusions


In [17,18], the authors introduced a pair of dual connections [image: there is no content] and [image: there is no content] induced by φ-divergence. The main motivation of the present work was to find a (non-trivial) family of α-divergences, whose induced α-connections are convex combinations of [image: there is no content] and [image: there is no content]. As a result of our efforts, we proposed a generalization of Rényi divergence. The connection [image: there is no content] induced by the generalization of Rényi divergence satisfies the relation [image: there is no content]. To generalize Rényi divergence, we made use of properties of φ-functions. This makes evident the importance of φ-functions in the geometry of non-standard models. In standard statistical manifolds, even though Amari’s α-divergence and Rényi divergence (with [image: there is no content]) do not coincide, they induce the same family of α-connections. This striking result requires further investigation. Future work should focus on how the generalization of Rényi divergence is related to Zhang’s [image: there is no content]-divergence, and also how the present proposal is related to the model presented in [33].
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