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Abstract: In traditional research, repeated measurements lead to a sample of results, and inferential
statistics can be used to not only estimate parameters, but also to test statistical hypotheses concerning
these parameters. In many cases, the standard error of the estimates decreases (asymptotically) with
the square root of the sample size, which provides a stimulus to probe large samples. In simulation
models, the situation is entirely different. When probability distribution functions for model features
are specified, the probability distribution function of the model output can be approached using
numerical techniques, such as bootstrapping or Monte Carlo sampling. Given the computational
power of most PCs today, the sample size can be increased almost without bounds. The result is that
standard errors of parameters are vanishingly small, and that almost all significance tests will lead to
a rejected null hypothesis. Clearly, another approach to statistical significance is needed. This paper
analyzes the situation and connects the discussion to other domains in which the null hypothesis
significance test (NHST) paradigm is challenged. In particular, the notions of effect size and Cohen’s
d provide promising alternatives for the establishment of a new indicator of statistical significance.
This indicator attempts to cover significance (precision) and effect size (relevance) in one measure.
Although in the end more fundamental changes are called for, our approach has the attractiveness
of requiring only a minimal change to the practice of statistics. The analysis is not only relevant for
artificial samples, but also for present-day huge samples, associated with the availability of big data.

Keywords: significance test; null hypothesis significance testing (NHST); effect size; Cohen’s d;
Monte Carlo simulation; bootstrapping; meta-analysis; big data

1. Introduction

The problem of determining if the difference between two groups is large enough to be labeled
“significant” is an old and well-studied problem. Virtually every university program treats it, often as
a second example of the t-test, the first example being the one-sample case [1–4]. Generalizations
then motivate the study of the analysis of variance (ANOVA) and more robust non-parametric tests,
such as those by Mann–Whitney and Kruskal–Wallis. All these established tests are based on the
comparison of the means (or medians) of two (or more) groups, and as such, the standard error of
these means (or medians) plays a crucial role. Such standard errors typically decrease with the square
root of the sample size. As a result, the question of whether or not a difference between two (or more)
means (or medians) is significant not only depends on the intrinsic properties of the phenomenon
(mean of the difference and variance of the distributions), but also on the sample size, which is not an
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intrinsic property of the phenomenon. In a traditional experimental set-up or field study, this may be
appropriate, because significance means that the limited evidence obtained by small samples suffices
to mark the populations as being different. In such cases, the standard error is a perfect companion.
However, in the context of unlimited or virtually unlimited data—for instance, for computer-generated
samples—this concept of significance breaks down. In such cases, the standard error will not do a good
job, at least not in the way it is used in the standard textbooks.

The prevalence of computer-generated datasets and large datasets has become increasingly
common in the 21st century. Specifically, the following developments should be mentioned:

• Simulation models [5], where artificial samples are generated according to the principles of Monte
Carlo, Latin hypercube, bootstrapping, or any other sampling or resampling method. Depending
on the size of the model and computing power, such techniques easily yield a sample size of 1000
or more.

• Meta-analysis [6], where the results of dozens or hundreds of studies are combined into
one meta-study with an effectively large sample size. Online repositories in particular (such as
those of the Cochrane Library [7]) enable the performance of such meta-analyses.

• Big data [8], where automatically-collected data on millions of customers, patients, vehicles,
or other objects of interested are collected for statistical processing.

In this article, we focus on the case of comparing a numerical variable for two groups, indicated
by subscripts A and B. The reader may think of this in terms of either a control group or a treatment
group (as is often the case in medical research), or of two different situations (as is often the case in
empirical research; for instance, male customers versus female customers). The variable might be
anything like IQ, voltage, or price. Further, to keep the discussion focused, we will assume that the
true mean of group A is lower than that of group B.

Section 2 revisits the basic situation of the null hypothesis significance test on the equality of means
for two groups, also in a historic perspective, contrasting the approaches by Fisher, Neyman–Pearson,
and their synthesis; Section 3 critically analyzes the influence of sample size in the hypothesis test;
Section 4 analyses alternatives to the usual expression and proposes a new test criterion; Section 5
provides a discussion and conclusion.

As for notation, we will use Greek symbols (µ, σ) for population parameters, capital Latin symbols
(Y, Y, S) for random variables sampled from such populations, and lower case Latin symbols (y, y, s)
for the value obtained in a particular sample. Y ∼ N

(
µ,σ2) indicates that random variable Y is

normally distributed with mean µ and variance σ2. Their sample values are indicated by y and s2.
t(ν) is the t-distribution with ν degrees of freedom.

2. Comparing Two Groups

Our motivation comes from the study of comparing the sustainability of different scales of
aquaculture, using a computer simulation fed by a distribution of input data [9]. We will use an example
of the carbon footprint of Pangasius catfish cultivation in Vietnam.

Let us suppose that there are two groups: small-scale (subscript A) and large-scale (subscript B)
fisheries. The carbon footprint varies within one group between sites and per day, so there is
a distribution of carbon footprints for group A, which we indicate by the stochastic variable YA,
and a distribution of carbon footprints for group B, which we indicate by YB. For simplicity, we will
assume that both populations are normally distributed with the same (but unknown) variance σ2:

YA ∼ N
(
µA,σ2

)
and YB ∼ N

(
µB,σ2

)
Now, we collect from both populations a sample of equal size nA = nB = n. The purpose is to

compare the centrality parameter, in particular the means µA and µB.
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Now, there are a number of options for carrying out the statistical analysis. One choice is between
“classical statistics” (as discussed in most mainstream textbooks and handbooks, including [1–4]) and
Bayesian statistics (e.g., [10,11]). In this article, we will build entirely on the classical paradigm, mainly
because it is mainstream, and moreover because the Bayesians emphasize the changing of beliefs as
a result of new evidence, which is not the core issue in big data and computer-generated samples
(although it is a core issue in meta-analysis). Within this classical paradigm, we have a choice of taking
the Fisherian approach, the Neyman–Pearson approach, or their hybrid or synthesized forms, the null
hypothesis significance test [12].

Fisher’s approach calculates the probability of obtaining the observed value (or an even more
extreme value) of a test statistic when an a priori specified null hypothesis would be true. In the
present case, the null hypothesis would be

H0 : µA = µB

and the test statistic would be derived from the observed difference in means (YB − YA).
The standardized form of this is

T =
YB −YA

SP

√
1

nA
+ 1

nB

=
YB −YA

SP

√
2
n

where

SP =

√
(nA + 1) S2

A + (nB + 1) S2
B

nA + nB − 2
=

√
1
2
(
S2

A + S2
B
)

is the pooled estimate of the standard deviation of the two populations. Under H0, the random variable
T is distributed according to a t-distribution, with nA + nB − 2 = 2 (n− 1) degrees of freedom:

T ∼ t (ν = 2 (n− 1))

Denoting the obtained value of the random variable T = YB−YA

SP

√
2
n

by t = yB−yA

sP

√
2
n

, the p-value is then

calculated as the probability that T has the obtained value t or even farther away from the expected
value 0:

p-value = Pt(ν=2(n−1)) (|T| > |t|)

In this approach, no black–white decision as to significance is made, but the p-value suffices to
communicate a level of evidence. In addition, no alternative hypothesis is stated, and we study only
the plausibility of the data with a stated null hypothesis.

In contrast, the approach by Neyman–Pearson starts by formulating two competing simple
hypotheses (often called the null hypothesis and the alternative hypothesis), and calculates the
ratio of the likelihoods of the data for these hypotheses. The result then yields a probability of
the data corresponding to one hypothesis or the other (see [13] for a clear example on coin throwing).
This approach also sets an a priori threshold value for rejecting the null hypothesis against the
alternative one, symbolized as α, conventionally set to 0.05 or 0.01. The notion of significance then
arises in comparing the p-value to α. In addition, the method calculates a second parameter, β, for the
probability of incorrectly accepting the alternative hypothesis. Its complement, 1− β, then represents
the (a posteriori) power of the test.

Whereas Fisher, Neyman, and Pearson were having an acrimonious debate on the weak
and strong points of the two methods, textbooks from the 1950s on were effectively creating
a synthesis (an “anonymous amalgamation of the two incompatible procedures” [14]), using elements
from Fisher and from Neyman–Pearson, which “follow Neyman–Pearson procedurally but Fisher
philosophically” [12]. The result is known as the null hypothesis significance test (NHST), and it
is characterized by the use of p-values in combination by an a priori α, a composite alternative
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hypothesis, and occasional power calculations. In the example elaborated according to NHST, the null
hypothesis is:

H0 : µA = µB

with alternative hypothesis
H1 : µA 6= µB

because we want to find out if the mean carbon footprint differs between the two groups. The math
then follows Fisher’s approach in calculating a p-value. This p-value is compared to the type I error
rate α that has been set in advance (e.g., to 0.05). A smaller p-value will reject the null hypothesis and
accept the alternative hypothesis, while a larger p-value will not reject the null hypothesis, but instead
maintain it (which does not mean acceptance). So, the null hypothesis H0 : µA = µB is rejected at the
pre-determined significance level α when the calculated value of the test statistic (t) is smaller than the
lower critical value (tcrit,lower,α) or larger than the upper critical value (tcrit,upper,α). Critical values are
thus defined by the conditions

Pt(ν=2(n−1)) (T ≤ tcrit,lower,α) =
α

2
and Pt(ν=2(n−1))

(
T ≥ tcrit,upper,α

)
=

α

2

Because the t-distribution is symmetric around the value 0, this can also be formulated as
a rejection when the absolute value of t exceeds tcrit,one−tailed,α. In that case, we use

Pt(ν=2(n−1)) (|T| ≥ tcrit,one−tailed,α) = α

The elaboration above on one hand summarizes the NHST-procedure for the two sample case,
which is helpful in defining concepts and notation for the later sections of this paper. On the other
hand, it briefly recaps the history in terms of the contributions by Fisher and by the tandem Neyman
and Pearson, which will turn out to be useful in the later discussion. We do not pretend to give a full
history of statistical testing; please refer to [4,12,15,16].

3. Critique of NHST in Comparing Two Means

The NHST procedure has been criticized fiercely for quite a few decades; see for instance [16–21].
In the present study, we wish to single out one aspect: the test statistic T scales with

√
n. A sample size

n = 1000 gives a 10 times larger value of T than a sample size n = 10, and a sample size n = 100, 000
a 100 times larger value, while keeping the effects and σ fixed. At a significance level α = 0.05,
the critical values of T are 2.101 (n = 10; ν = 18), 1.961 (n = 1000; ν = 1998), and 1.960 (n = 100, 000;
ν = 199, 998), so if we simplify to tcrit,upper,0.05 ≈ 2, the only term that really matters is the observed
value of the T statistic. We reject H0 when |T| ≥ tcrit,upper,α, so when∣∣∣∣YB −YA

SP

∣∣∣∣ & tcrit,upper,α

√
2
n

As an example, consider the case YA = 5, YB = 6, SP = 1, and let n = 2, . . . , 300. At n ≥ 9,
we have sufficient certainty to reject equality of means. When the difference is smaller, say YB = 5.2
instead, n = 9 will not suffice; however, with a greater effort (n ≥ 194), we will finally be able to reject
equality of means (see Figure 1).

This convincingly reminds us that the decision to reject H0 and to conclude that the two means are
“significantly different” depends not only on the inherent properties of the populations (µA, µB, σ) or
the properties of the samples that have been generated from them (YA, YB, SP), but also on the sample
size n, which is not an inherent property of the population. The concept of statistical significance mixes
a number of aspects:

• the difference µB − µA or its estimate, YB −YA;
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• the standard deviation of the two populations, σ = σA = σB, or its pooled estimate SP;
• the sample size, n.
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Figure 1. The absolute value of the T-statistic when YA = 5.0, YB = 6.0, SP = 1 (upper solid line) for
different values of the sample size n, when YA = 5.0, YB = 5.2, SP = 1 top (lower solid line), and the
upper critical value of the t-distribution (dashed line) at α = 0.05. The null hypothesis of equality of
population means is rejected at 0.05 for n ≥ 9 when ∆Y = 1.0, but when ∆Y = 0.2, we need to push
further and use n ≥ 194 to do the job.

The first of these is natural: the actual difference between YA and YB is of course important in
deciding if the difference is “large”, “substantial”, or—why not—“significant”.

The second one plays a more intricate role. The ratio YB−YA
SP

provides a dimensionless indicator
of the “relative” difference between the two means µA and µB. It is sometimes described as
a signal-to-noise ratio [16].

The third element plays a curious role. Sample size is important for establishing the confidence
level of a result. However, sample size is not part of the nature of the phenomenon under investigation.
The two means (µA and µB) and the standard deviation (σ) are aspects of the research object.
Sample size (n) is an aspect of the instrument that we use to probe the object. Of course, the quality
of the instrument has an influence on the outcome. If we wish to know how many stars there are,
and use a cheap telescope, the number will be lower than when we use a multi-billion dollar telescope.
However, no serious astronomer will proclaim that the number of counted stars is equal to the number
of starts in the universe. Instead, a formula to estimate the number of starts from the number of
counted stars and the quality of the telescope will be developed. The application of this formula to the
two measurement set-ups will give different results, and probably the estimate with the expensive
telescope will be more accurate. In traditional NHST, this is different. What you see depends on the
measurement set-up, and this is not corrected for in the outcome.

A consequence is that money can buy significance. Of course, the mean blood pressure of
two groups of patients will never be equal when you consider the last digit. However, it may be that the
difference is only in the fourth decimal, that yA = 120.0269 and yB = 120.0268. With an exceptionally
large study, this negligible difference can be declared to be “significant”. The distinction between
a significant difference and a large difference is mentioned in most textbooks on statistics, but often in
a slightly cursory way, and it is well-known that many less-informed students and scientists mistake
a significant difference for a large or important difference [22].

Combining the estimated difference YB − YA and the standard error of this difference SP/
√

n
into one formula YB−YA

SP/
√

n has one big advantage: it yields one single number, which can moreover
objectively be tested against a conventional benchmark, such as α = 0.05. Therefore, we only need to
communicate this single number, either as a t-value, as a p-value, or as a significance statement, such as
“p < 0.01”, “**”, or “highly significant difference”. The fact that two things are combined in one is the
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root of the problem, however: information has been lost due to the compression of two complimentary
aspects into one.

4. Alternatives to NHST for Comparing Two Means

Moving away from significance tests in the direction of effect sizes has been propagated by
various authors [19,23], the latter of whom used the term “new statistics” to refer to this change of
paradigm. Cumming [19] makes a strong plea for the use of confidence intervals. Confidence intervals
for a difference of means, such as “95% CI [1.4, 8.6]” (p. 161) indeed display elements of size and
significance, and use two pieces of information, not one.

Ziliak and McCloskey [16] popularize the two elements as “Oomph” and “Precision”.
These two authors introduce more interesting expressions, such as “the sizeless scientist”, who only
focusses on the question if there is an effect, and ignores if the effect is large or otherwise important.
Such critiques on NHST are understandable, but it is questionable if the alternatives provide
a real improvement.

A confidence interval shares a problem with the old statistics of NHST: given a large enough
sample, the width of the confidence interval will shrink to zero, and as students are trained to see if the
no-effect value of 0 is inside or outside the confidence interval, at some point the confidence interval
approach will still be used more to assess the precision rather than the oomph. Of course, we could
train students to ignore the question if 0 is inside the confidence interval, and to more focus on the
confidence interval as such, but there are alternatives which in our view do a better job, and which are
moreover easier to communicate.

Cumming [19] also advocates for effect sizes, where an effect size is “the amount of anything
of research interest” (p. 162). In line with [23], we single out the standardized difference of means,
often referred to as Cohen’s d, defined by

d =
yB − yA

sP

as a measure of effect size, because it basically expresses a signal-to-noise ratio. Cohen [23] arbitrarily
proposed a categorization of values: 0.2 means a small standardized effect size, 0.5 a medium one,
and 0.8 is large. Figure 2 illustrates that even a more-than-large value of d = 1.0 has a substantial
overlap (around 45%) of probability mass. For d = 0.2, the overlap is around 85%.
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Finally, we mention the developments in non-inferiority trials tests, where a “margin”—denoted
as ∆—is defined such that a proposed new drug can be tested to be not unacceptably worse
than an existing one, while it may also be used for testing superiority [24,25]. A null hypothesis
significance test then takes this margin into account. While developed in an environment of clinical
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research, where the existing drug is well studied, this approach has definite benefits. In a context of
two alternatives (i.e., the sustainability of large scale fisheries and small scale fisheries), the situation
is different, and there is no a priori magnitude for such a margin of non-inferiority or superiority.
As such, we are looking for a margin of non-inferiority or superiority that is magnitude-independent.
Such a measure is provided by the standardized effect size, here implemented as the standardized
difference of means, discussed above. Although we agree with many points of critique on the
standardized effect size in comparison to the “simple” effect size [26], we think they serve one
important role in setting a generic standard for “oomph”, as introduced by Cohen [23]. Combining the
idea of superiority with a margin [24,25] formulated in terms of the standardized effect size [23] is the
core of our idea; see the next section.

5. A Proposal to Base Significance on Non-Trivial Effect Sizes

Under the null hypothesis, the standardized effect size is known to follow a non-central
t-distribution [27]. However, it is seldom used, except for finding a confidence interval of the effect
size. In fact, it has become fashionable to oppose effect sizes and significance tests [19]. We feel that
embracing confidence intervals while abolishing significance tests is tantamount to throwing the baby
out with the bathwater. Our aim is to reconcile significance tests (precision) with effect sizes (oomph).
Below is a proposal to do so.

Our proposal is based on the following premise: an effect is “significant”

• when the effect size is large enough;
• and when it has been established with enough precision.

We now propose to operationalize this as follows:

• in advance, we set (as usual) a significance level α, say α = 0.05;
• in advance, we set an importance level δ0, say δ0 = 0.2 (a small effect size);

• we define a test statistic D = YB−YA
SP

that estimates δ = µB−µA
σ ;

• we test the null hypothesis H0 : δ ≤ δ0 at a significance level α.

In this way, we ensure that a rejected null hypothesis means both a “substantial” effect size and
sufficient precision. A p-value larger than α means that the observed signal-to-noise ratio d is too small
to disprove the null hypothesis, which occurs with a small effect no matter the size of the sample,
or with a small sample no matter the size of the effect. A sufficiently large effect size measured with
sufficient precision will reject the null hypothesis.

Under the least extreme version of the null hypothesis, (δ = δ0), the distribution of the test statistic
D is as follows:

T =

(
YB −YA

)
− (µB − µA)

SP

√
2
n

=
D− δ0√

2
n

∼ t (ν = 2 (n− 1))

It is important to observe that the p-value obtained from this t-test (let us call it p2, for a two-sided
test δ = δ0) is not the p-value of the question (p1, for a one-sided test δ ≤ δ0), but must be further
processed according to the following scheme:

p1 =

{
1
2 p2 if d < δ0

1− 1
2 p2 if d > δ0

where d is the obtained value of the D-statistic.
As an illustration, we reconsider the earlier example, YA ∼ N (5, 1) and YB ∼ N (µB, 1) with

two choices for µB: 5.2 and 6.0. Samples are generated with n = 1000. The results are presented in
Table 1.
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We conclude with a real case illustration for the fisheries [9]. Monte Carlo simulations of the
carbon footprint for small-scale and large-scale fisheries with n = 1000 yielded the results of Table 2.
Figure 3 shows the values in a histogram.

Table 1. Simulation results with sample size n = 1000 and population effect size δ = 0.2
(second column) and δ = 1.0 (third column).

Parameter/Statistic Small Effect Size Very Large Size

µ2 5.2 6.0
δ 0.2 1.0
d 0.243 0.969
t 0.927 17.310

p2 0.354 0.000
p1 0.823 0.000

reject H0 : δ ≤ 0.2 at α = 0.05? no yes

Table 2. Monte Carlo simulation results of the carbon footprint of small fisheries and large fisheries,
using sample size n = 1000.

Statistic Value

d 0.489
t 9.153

p2 0.000
p1 0.000

reject H0 : δ ≤ 0.2 at α = 0.05 yes
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Figure 3. Probability density functions of the carbon footprint of a Vietnamese aquaculture system
of Pangasius catfish, obtained from two artificial samples: large-scale (solid line) and small-scale
(dashed line).

As an aside, the assumptions of the performed test are not fully justified in this illustration.
Variances are unequal, so the Welch form of the test would have been more appropriate. However,
our aim is to illustrate the idea, and in our experience, the Welch form in most cases yields similar results.

6. Discussion

We believe that our proposal resolves a dilemma in the application of statistical techniques to large
datasets. Traditional significance tests focus on precision and ignore size, while the “new statistics” [19]
emphasize size and include precision only indirectly. The proposed solution of defining the tuple
(α, δ0) = (0.05, 0.2) at the outset and then testing H0 : δ ≤ δ0 combines precision and size. Like the
old statistics, it still provides an unambiguous statement in the form “there is a significant difference
between the two populations”, which now combines statistical evidence with empirical relevance.
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One may object that our new procedure for the assessment of a significant difference of means
involves an arbitrary element—namely, choosing δ0. That is true, but the choice of α is subjective as
well, and yet it is part of the mainstream “objective” NHST procedure. Of course, depending on the
context, different choices of the tuple (α, δ0) may be made.

Another possible objection is the lack of novelty. In fact, we believe that it is precisely the
lack of revolutionary features that is a strong point of our proposal. Mainstream NHST is highly
institutionalized, through at least two generations of textbooks, through statistical software (Excel,
SPSS, SAS, etc.) and through guidelines for reporting in the social and behavioral sciences (primarily
APA). While many writers have published pleas to abolish NHST, progress has been limited so far
(APA now recommends the reporting of effect sizes). Our proposal falls within NHST, with a central
role for an a priori null hypothesis and α. The only change is that the usual and often implicit null
hypothesis of “no difference” (µA = µB) be replaced by a more interesting null hypothesis of “at
least small difference” (e.g., µB−µA

σ ≤ 0.2). This is emphatically not a Neyman–Pearsonian direction,
because the null hypothesis is still composite (e.g., µB−µA

σ > 0.2), and because the procedure allows
for p-values as well as significance statements. Our proposal to some extent resembles earlier ones
made in the context of Bayesian statistics [28]. Again, despite the methodological attractiveness of
the Bayesian framework, just the fact that the mainstream is not Bayesian is, from a strategic point of
view, a sufficient argument for proposing modifications to the classical framework. On the longer term,
however, Bayesian approaches may solve some of the issues in a more fundamental way, employing
the Bayesian information criterion [14,29], using the Bayes factor [30], or probability–possibility
transformations [31–33]. Schumi and Wittes [24] also briefly discuss the classical approach in a way
that is quite similar to ours, although formulated in terms of a one-sample hypothesis. It is primarily
from the comparative set-up that our proposal derives its appeal: a difference between two treatments
must be sufficiently significant and sufficiently large. Our proposal also shares elements with [34],
which connects it to power calculations. Again, as power is formally part of NHST, it is rarely practiced
by researchers in the applied sciences. Our testing scheme involving the tuple (α, δ0) has a strategic
value in staying close to existing practice, while attempting to remediate the most pressing problem.

Although the issue mentioned (namely: “what do we mean by a significant difference?”) is not
a problem that exclusively occurs in the world of computer simulations, meta-analysis, and big data,
we think that the developments since the start of the 21st century require a renewed confrontation
with the criticism on NHST. We even think that a solution must be provided: an easy solution, close to
the established practice. Our proposal is one step in a longer series of steps.

The described procedure was restricted to the case that µA is smaller than µB. This can be easily
generalized to the opposite case. More importantly, it can also be generalized to the two-sided case,
in which the null hypothesis

∣∣∣µB−µA
σ

∣∣∣ ≤ δ0 is tested. A rejection of this hypothesis implies that we
conclude that the absolute value of the standardized effect size |δ| is larger than δ0.

Another generalization is that of comparing more than two populations. A typical approach
is the ANOVA form, in which the null hypothesis is µA = µB = µC, etc. This is less trivial to
generalize for the (α, δ0) procedure. The alternative of making several pairwise comparisons, each with
a Bonferroni-corrected ( α′, δ0) where α′ < α seems a natural way to go.

A third generalization is the direction of heteroskedastic populations, where σA 6= σB.
There is potential to further generalize the proposed procedure for statistics other than the

standardized effect size (such as correlation coefficients, regression coefficients, and odds ratios),
for cases with dependent distributions (using the paired t-test), and for cases in which the populations
are not normal (requiring the Mann–Whitney test or another non-parametric method).

The era of almost unlimited computer capacity has created studies with tremendous
pseudo-samples using Monte Carlo simulation, bootstrapping, and other methods. In addition,
the internet has created almost unlimited data repositories, which also result in huge samples. This has
eradicated many of the fundamental assumptions of traditional inferential statistics, which have been
developed for small samples. Willam Gosset (“Student”, [35]) developed his t-distribution to assess
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small samples, even as small as n = 2 [10]. Bootstrapping has been at the center of this development,
with formulas even suggested for setting a sample size to satisfy significant differences [36,37].
However, even traditional statistical textbooks typically devote a few pages to choosing sample
size such that a significant result will be obtained (e.g., [1–3]). The fact that this significance refers to
a basically meaningless (“sizeless”) phenomenon is hardly mentioned. This is clearly a questionable
practice that easily leads to the justified rejection of meaningless null hypotheses, which is exactly the
problem raised by those who criticize NHST, such as Ziliak and McCloskey [16]. However, precision is
important, and that is what the alternative schemes [19] have been underemphasizing. Data analysis
in the era of large samples requires a new paradigm. Our proposed reconciliation of effect size and
precision (by setting the tuple (α, δ0) in advance) should be seen as one seminal step in this program.
Whereas we have not applied its working to meta-analysis and big data, and have only demonstrated
its application to computer-generated samples of size 1000, we believe that the problem is serious
enough to deserve more attention in the era of increasing sample sizes.

As indicated, Bayesian concepts might further alleviate some of the problems mentioned, as might
a return to the Neyman–Pearson framework. However, our proposal is an attempt to improve the
situation with a minimum of changes, only replacing one conventional choice (α) by a tuple of
conventional choices (α, δ0). Piecemeal change may be a better solution than revolution in some cases.

Acknowledgments: This work is part of the Sustaining Ethical Aquaculture Trade (SEAT) project, which is
cofunded by the European Commission within the Seventh Framework Programme Sustainable Development
Global Change and Ecosystem (Project 222889). The reviewers made a number of excellent suggestions
for improvement.

Author Contributions: Reinout Heijungs conceived the proposed alternative to traditional NHST and wrote the
paper; Patrik Henriksson and Jeroen Guinée conducted the research on Pangasius catfish that inspired the theme
of the paper; Patrik Henriksson prepared the data used in the example. All authors have read and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wonnacott, T.H.; Wonnacott, R.J. Introductory Statistics, 5th ed.; Wiley: New York, NY, USA, 1990.
2. Moore, D.S.; McCabe, G.P. Introduction to the Practice of Statistics, 5th ed.; Freeman: New York, NY, USA, 2006.
3. Doane, D.P.; Seward, L.E. Applied Statistics in Business & Economics, 5th ed.; McGraw-Hill: New York, NY,

USA, 2015.
4. Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, 5th ed.; CRC Press: Boca Raton,

FL, USA, 2011.
5. Efron, B.; Tibshirani, R. Statistical data analysis in the computer age. Science 1991, 253, 390–395. [CrossRef]

[PubMed]
6. Cooper, H.; Hedges, L.V.; Valentine, J.C. The Handbook of Research Synthesis and Meta-Analysis, 2nd ed.;

Russell Sage Foundation: New York, NY, USA, 1994.
7. Cochrane Library. Available online: http://www.cochranelibrary.com/ (accessed on 27 May 2016).
8. Varian, H. Big data: New tricks for econometrics. J. Econ. Perspect. 2014, 28, 3–28. [CrossRef]
9. Henriksson, P.J.G.; Rico, A.; Zhang, W.; Ahmad-Al-Nahid, S.; Newton, R.; Phan, L.T.; Zhang, Z.; Jaithiang, J.;

Dao, H.M.; Phu, T.M.; et al. A comparison of Asian aquaculture products using statistically supported LCA.
Environ. Sci. Technol. 2015, 49, 14176–14183. [CrossRef] [PubMed]

10. Lee, P.M. Bayesian Statistics: An Introduction, 2nd ed.; Arnold: London, UK, 1997.
11. Lynch, S.M. Introduction to Applied Bayesian Statistics and Estimation for Social Scientists; Springer: New York,

NY, USA, 2007.
12. Perezgonzalez, J.D. Fisher, Neyman–Pearson or NHST? A tutorial for teaching data testing. Front. Psychol.

2015, 6. [CrossRef] [PubMed]
13. Rice, J.A. Mathematical Statistics and Data Analysis, 3rd ed.; Cengage Learning: Boston, MA, USA, 2007.
14. Wagenmakers, E.J. A practical solution to the pervasive problem of p-values. Psychon. Bull. Rev. 2007,

14, 779–804. [CrossRef] [PubMed]

http://dx.doi.org/10.1126/science.253.5018.390
http://www.ncbi.nlm.nih.gov/pubmed/17746394
http://www.cochranelibrary.com/
http://dx.doi.org/10.1257/jep.28.2.3
http://dx.doi.org/10.1021/acs.est.5b04634
http://www.ncbi.nlm.nih.gov/pubmed/26512735
http://dx.doi.org/10.3389/fpsyg.2015.00223
http://www.ncbi.nlm.nih.gov/pubmed/25784889
http://dx.doi.org/10.3758/BF03194105
http://www.ncbi.nlm.nih.gov/pubmed/18087943


Entropy 2016, 18, 361 11 of 11

15. Lehmann, E.L. The Fisher, Neyman–Pearson theories of testing hypotheses: One theory or two? J. Am.
Stat. Assoc. 1993, 88, 1242–1249. [CrossRef]

16. Ziliak, S.T.; McCloskey, D.N. The Cult of Statistical Significance: How the Standard Error Costs Us Jobs, Justice,
and Lives; University of Michigan Press: Ann Arbor, MI, USA, 2007.

17. Cohen, J. The earth is round (p < 0.05). Am. Psychol. 1994, 49, 997–1003.
18. Fan, X.; Konold, T.R. Statistical significance versus effect size. In International Encyclopedia of Education,

3rd ed.; Elsevier: New York, NY, USA, 2010; pp. 444–450.
19. Cumming, G. Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis; Routledge:

London, UK, 2012.
20. Morris, P.E.; Fritz, C.O. Why are effect sizes still neglected? Psychologist 2013, 26, 580–583.
21. Perezgonzalez, J.D. The meaning of significance in data testing. Front. Psychol. 2015, 6. [CrossRef] [PubMed]
22. Goodman, S. A dirty dozen: Twelve p-value misconceptions. Semin. Hematol. 2008, 45, 135–140. [CrossRef]

[PubMed]
23. Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Academic Press: New York, NY,

USA, 1988.
24. Schumi, J.; Wittes, J.T. Through the looking glass: Understanding non-inferiority. Trials 2011, 12. [CrossRef]

[PubMed]
25. Leon, A.C. Comparative effectiveness clinical trials in psychiatry: Superiority, non-inferiority and the role of

active comparators. J. Clin. Psychiatry 2011, 72, 331–340. [CrossRef] [PubMed]
26. Baguley, T. Standardized or simple effect size: What should be reported? Br. J. Psychol. 2009, 100, 603–671.

[CrossRef] [PubMed]
27. Cumming, G.; Finch, S. A primer on the understanding, use, and calculation of confidence intervals that are

based on central and noncentral distributions. Educ. Psychol. Meas. 2001, 61, 161–170. [CrossRef]
28. Berger, J.O.; Delampady, M. Testing precise hypotheses. Stat. Sci. 1987, 2, 317–352. [CrossRef]
29. Raftery, A.E. Bayesian model selection in social research. Sociol. Methodol. 1995, 25, 111–163. [CrossRef]
30. Mulder, J.; Hoijtink, H.; de Leeuw, C. BIEMS: A Fortran 90 program for calculating Bayes factors for inequality

and equality constrained models. J. Stat. Softw. 2012, 46. [CrossRef]
31. Lauretto, M.; Pereira, C.A.B.; Stern, J.M.; Zacks, S. Comparing parameters of two bivariate normal

distributions using the invariant FBST. Braz. J. Probab. Stat. 2003, 17, 147–168.
32. Lauretto, M.S.; Stern, J.M. FBST for mixture model selection. AIP Conf. Proc. 2005, 803, 121–128.
33. Stern, J.M.; Pereira, C.A.B. Bayesian epistemic values: Focus on surprise, measure probability! Log. J. IGPL

2014, 22, 236–254. [CrossRef]
34. Perezgonzalez, J.D. Statistical sensitiveness for science. 2016, arXiv:1604.01844.
35. Student. The probable error of a mean. Biometrika 1908, 6, 1–25.
36. Andrews, D.W.K.; Buchinsky, M. A three-step method for choosing the number of bootstrap repetitions.

Econometrica 2000, 68, 23–51. [CrossRef]
37. Pattengale, N.D.; Alipour, M.; Bininda-Emonds, O.R.P.; Moret, B.M.E.; Stamatakis, A. How many bootstrap

replicates are necessary? J. Comput. Biol. 2010, 17, 337–354. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/01621459.1993.10476404
http://dx.doi.org/10.3389/fpsyg.2015.01293
http://www.ncbi.nlm.nih.gov/pubmed/26379607
http://dx.doi.org/10.1053/j.seminhematol.2008.04.003
http://www.ncbi.nlm.nih.gov/pubmed/18582619
http://dx.doi.org/10.1186/1745-6215-12-106
http://www.ncbi.nlm.nih.gov/pubmed/21539749
http://dx.doi.org/10.4088/JCP.10r06669
http://www.ncbi.nlm.nih.gov/pubmed/21450153
http://dx.doi.org/10.1348/000712608X377117
http://www.ncbi.nlm.nih.gov/pubmed/19017432
http://dx.doi.org/10.1177/0013164401614002
http://dx.doi.org/10.1214/ss/1177013238
http://dx.doi.org/10.2307/271063
http://dx.doi.org/10.18637/jss.v046.i02
http://dx.doi.org/10.1093/jigpal/jzt023
http://dx.doi.org/10.1111/1468-0262.00092
http://dx.doi.org/10.1089/cmb.2009.0179
http://www.ncbi.nlm.nih.gov/pubmed/20377449
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Comparing Two Groups 
	Critique of NHST in Comparing Two Means 
	Alternatives to NHST for Comparing Two Means 
	A Proposal to Base Significance on Non-Trivial Effect Sizes 
	Discussion 

