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Abstract: The cross-efficiency method, as a Data Envelopment Analysis (DEA) extension, calculates
the cross efficiency of each decision making unit (DMU) using the weights of all decision making
units (DMUs). The major advantage of the cross-efficiency method is that it can provide a complete
ranking for all DMUs. In addition, the cross-efficiency method could eliminate unrealistic weight
results. However, the existing cross-efficiency methods only evaluate the relative efficiencies of a
set of DMUs with exact values of inputs and outputs. If the input or output data of DMUs are
imprecise, such as the interval data, the existing methods fail to assess the efficiencies of these DMUs.
To address this issue, we propose the introduction of Shannon entropy into the cross-efficiency
method. In the proposed model, intervals of all cross-efficiency values are firstly obtained by the
interval cross-efficiency method. Then, a distance entropy model is proposed to obtain the weights of
interval efficiency. Finally, all alternatives are ranked by their relative Euclidean distance from the
positive solution.

Keywords: data envelopment analysis (DEA); cross-efficiency; entropy

1. Introduction

When decision making units (DMUs) have multiple inputs and outputs, data envelopment
analysis (DEA) is a well-known non-parametric programming technique for assessing the efficiency
of these DMUs. The maximum of the ratio of a DMU’s weighted sum of outputs to its weighted
sum of inputs is defined as the efficiency score of this DMU. If the efficiency score of a DMU is equal
to 1, it is considered as efficient. Otherwise, it is inefficient. Usually, inefficient DMUs are considered
as performing worse than efficient ones. Since DEA was proposed by Charnes et al. [1], it has been
widely applied to various cases of performance evaluation [2–7]. DEA models (both CCR (Charnes,
Cooper and Rhodes) and BCC (Banker, Charnes, and Cooper) models) classify units into two groups:
efficient and inefficient in the Pareto sense (see Sinuay-Shten et al. [8]). In addition, DEA is not
able to rank the efficient DMUs that all have an efficiency score of 1. In order to solve this problem,
the cross-efficiency method was developed by Sexton et al. [9]. The cross-efficiency method, as a DEA
extension, could obtain the efficiency of each DMU by linking the weights of all DMUs. Its primary
advantage is that all DMUs can be completely ranked [10]. In addition, the cross-efficiency method
could eliminate unrealistic weight results [11].

With these advantages, the cross-efficiency evaluation has been extensively applied in various
performance evaluation problems [12–15]. In spite of its wide applications, cross-efficiency evaluation
still has some defects, such as non-uniqueness of the DEA optimal weights [9]. Usually, the optimal
weights obtained by traditional DEA models are non-unique. If a set of weights are selected
arbitrarily, then cross-efficiency scores will be arbitrarily generated [16]. To solve the problem
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of weight non-uniqueness, Sexton et al. [9] improved the cross-efficiency evaluation method by
incorporating a secondary goal model. Following the idea of Sexton et al. [9], a number of scholars
have proposed secondary goal models. For example, Liang et al. [17] proposed three secondary
goal models, and each secondary goal corresponds to a practical case scenario. Based on the models
of Liang et al. [17], Wang and Chin [18] proposed the improved models by replacing the target
efficiency. Jahanshahloo et al. [19] improved traditional cross-efficiency evaluation by considering
symmetric weights. Wu et al. [20] and Contreras [21] proposed improving the ranking position of the
evaluated DMU when choosing weights. In the study of Lim [22], the secondary goal was proposed
to minimize (or maximize) the cross efficiencies of evaluated DMUs. Maddahi et al. [23] proposed a
proportional weight assignment secondary goal, making weights be assigned proportionally to input
or output evaluated DMUs. In these secondary models, most models are benevolent or aggressive.
In the benevolent (aggressive) model, the selected weights for evaluated DMUs are to make the
cross-efficiencies of other DMUs as large (small) as possible. Different from the above ideas, scholars
also have proposed new cross-efficiency models from different perspectives. For example, Cook
and Zhu [24] proposed a units-invariant multiplicative DEA model, directly generating the unique
cross-efficiency scores. Based on the Pareto optimality, Wu et al. [25] proposed the Pareto improvement
cross-efficiency evaluation, which could obtain Pareto-optimal cross efficiencies for all DMUs.

Besides secondary goals in the cross-efficiency evaluation, scholars also have examined
aggregating cross-efficiencies for obtaining cross-efficiency matrix. For example, Wu et al. [26]
introduced Shapley cooperative game theory into cross-efficiency evaluation, considering each DMU
as a player, and proposed a Shapley DEA model to obtain all the weights of cross-efficiencies.
Wang et al. [27] considered that all cross-efficiencies of DMUs should have different preference
weights. From the preference deviation degree, they proposed three different models for aggregating
cross-efficiencies. Angiz et al. [28] argued that the DMU may be more concerned about whether
the assigned weights improve their ranking when weights are selected for their cross-efficiencies.
Based on this idea, they proposed a ranking preference model. Yang et al. [29] regarded the
cross-efficiency as the independent evidence, and thus the evidence reasoning method was used
to aggregate cross-efficiencies.

The traditional DEA or cross-efficiency models assume that the data of DMUs are known exactly.
However, because of the existence of uncertainty, the data may be given in a fuzzy form. Therefore,
a number of studies examined how to evaluate the efficiencies of DMUs with fuzzy data. For example,
Cooper et al. [30] proposed an imprecise DEA (IDEA) model, which can be transformed into a
linear programming model based on a series of variable alternations and scale transformations.
However, Lee et al. [31] argued that IDEA model was complicated, and may lead to a rapid increase
in computation burden. To solve this problem, Despotis and Smirlis [32] proposed two improved
models. Through these two improved models, the lower and upper efficiency of each DMU could
be obtained. Wang et al. [33] pointed out that Despotis and Smirlis’s model [32] used two different
production frontiers to measure the efficiencies of DMUs, and this may lead to the efficiencies of
DMUs’ lack of comparability. To deal with such an issue, Wang et al. [33] proposed the new DEA
models based on a common frontier to obtain the interval efficiency of each DMU and a minimax
regret-based approach was then used for ranking the interval efficiencies of all DMUs. To determine
the range of interval efficiency of each DMU, Azizi and Jahed [34] introduced a virtual ideal DMU
into the DEA model. The efficiency of ideal DMU is definitely the largest among all the DMUs,
so the worst and the best relative efficiencies of each DMU can be obtained. Then, the worst and
the best relative efficiencies constitute an interval for the overall performance evaluation of each
DMU. Wang and Chin [35] proposed the fuzzy DEA models based on two pairs of expected value
models to measure the optimistic and the pessimistic efficiencies of DMUs. They integrated two
extreme efficiencies through a geometric average for obtaining the overall performances of the DMUs.
Dotoli et al. [36] proposed a novel approach by integrating the DEA cross-efficiency technique with
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the fuzzy logic framework. This approach not only maintains the cross-efficiency DEA discriminative
power but also deals with uncertainty.

Although the existing cross-efficiency methods have well examined how to be aggressive or
benevolent to DMUs when evaluating the efficiencies, the maximum discrimination of DMUs has
been largely ignored. In addition, there is a paucity of research on aggregating interval cross-efficiency
matrices. To fill these gaps, the present study proposes a new cross-efficiency method based on the
entropy theory. In this new approach, the model of Wang et al. [33] is first extended into cross-efficiency
evaluation to obtain the intervals of all cross-efficiency values. Then, the DEA entropy model is used
to calculate the weights of all interval cross-efficiencies. Finally, all DMUs are evaluated and ranked
according to the distance to ideal positive cross-efficiency. This approach is illustrated and verified
by a demonstrative case using data from China’s primary schools. We conclude that the proposed
approach is effective to evaluate DMUs with interval data and can provide complete and fair results
for all DMUs.

The rest of the paper is organized as follows. Section 2 introduces the interval DEA models and
Section 3 presents the cross-efficiency evaluation method with interval data. The cross-efficiency model
based on Shannon entropy is discussed in Section 4, followed by a numerical demonstration using
data from Chinese primary schools in Section 5. Conclusions are presented in Section 6.

2. Interval DEA Models

There are n DMUs to be evaluated, and each DMU has s different outputs and m different inputs.
Input i and output r for DMUj are denoted as xij and yrj, respectively. The input and output data
may be imprecise because of uncertainty and thus only their bounded intervals [xl

ij, xu
ij] and [yl

rj, yu
rj],

with xl
ij > 0 and yl

rj > 0, are provided. For measuring the efficiencies of the DMUs with interval data,
Despotis and Smirlis [32] proposed a linear problem model to generate the lower and upper bounds of
the efficiency for each DMU, as shown in Model (1):

maxEdd =

s
∑

r=1
µrd [yl

rd ,yu
rd ]

m
∑

j=1
ωid [xl

id ,xu
id ]

s.t.

s
∑

r=1
µrd [yl

rd ,yu
rd ]

m
∑

j=1
ωid [xl

id ,xu
id ]
≤ 1, j = 1, 2, · · · , n

ωid, µrd ≥ ε ∀id, rd

. (1)

However, Wang et al. [33] pointed out that Despotis and Smirlis [32] used two different production
frontiers to obtain interval efficiency, and thus all DMUs cannot be compared on the basis of a
common evaluation criterion. In order to calculate the lower and upper bound of the efficiency of
DMUd, Wang et al. [33] proposed two linear formulations to generate the bounded interval [El

dd, Eu
dd],

as follows:
maxEl

dd =
s
∑

r=1
µrdyl

rd

s.t.
m
∑

i=1
ωidxl

ij −
s
∑

r=1
µrdyu

rj ≥ 0, j = 1, 2, · · · , n
m
∑

j=1
ωidxu

id = 1

ωid, µrd ≥ ε, ∀id, rd

, (2)
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and
max Eu

dd =
s
∑

r=1
µrdyu

rd

s.t.
m
∑

i=1
ωidxl

ij −
s
∑

r=1
µrdyu

rj ≥ 0, j = 1, 2, · · · , n
m
∑

i=1
ωidxl

id = 1

ωid, µrd ≥ ε, ∀id, rd

. (3)

In Models (2) and (3), DMUd is to be evaluated. ωid and µrd are the weights of the input
i and output r, respectively. El

dd (or Eu
dd) is the lower (or upper) efficiency for DMUd. ε is the

non-Archimedean infinitesimal. From Models (2) and (3), it is clear that El
dd ≤ Eu

dd.

3. Cross-Efficiency Evaluation Method with Interval Data

Models (2) and (3) are the self-assessment models. The self-evaluated DEA model enables each
DMU to choose the most favorable weights for evaluating its efficiency. This may lead to more than
one DMU is assessed as efficient, and such DEA-efficient DMUs cannot be further distinguished
(Wang and Chin, [37]). To solve this problem, Sexton et al. [9] proposed a cross-efficiency DEA method
by introducing the concept of peer evaluation. However, the method of Sexton et al. [9] has a problem
of multiple optimum weight solutions. A weight scheme obtained by Sexton et al. [9] may be favorable
to one DMU, but not to another. To address this ambiguity of weight selection, Doyle and Green [10]
proposed the aggressive and benevolent formulations by introducing a secondary goal into the
cross-efficiency method. In the case of aggressive (or benevolent) formulation, the secondary goal
could choose the weights to make the efficiency of the target DMU the best that it can be, and
all other DMUs worst (or best). However, Oukil and Amin [38] pointed out that the aggressive
and benevolent models of Doyle and Green [10] used a common set of weights for all DMUs,
which would not guarantee maximum discrimination among DMUs. To improve discrimination,
Oukil and Amin [38] proposed using different weights for cross-efficiency scores. The purpose of our
present study is to effectively discriminate all DMUs with interval data. Therefore, our study adopts
the viewpoint of Oukil and Amin [38]. In our study, the model [33] is extended to obtain the lower
and upper cross-efficiencies for each DMU. Model (4) can calculate the low cross-efficiency values for
interval data:

max
s
∑

r=1
µrdyl

rj

s.t.
m
∑

i=1
ωidxl

ij −
s
∑

r=1
µrdyu

rj ≥ 0, j = 1, 2, · · · , n
m
∑

i=1
ωidxu

ij = 1

El
dd ×

m
∑

j=1
ωidxu

id −
s
∑

r=1
µrdyl

rd = 0

ωid, µrd ≥ ε, ∀id, rd

. (4)

Similarly, the upper cross-efficiency values of interval data can be computed with Model (5):

max
s
∑

r=1
µrdyu

rj

s.t.
m
∑

i=1
ωidxl

ij −
s
∑

r=1
µrdyu

rj ≥ 0, j = 1, 2, · · · , n
m
∑

i=1
ωidxl

ij = 1

Eu
dd ×

m
∑

j=1
ωidxl

id −
s
∑

r=1
µrdyu

rd = 0

ωid, µrd ≥ ε, ∀id, rd

. (5)
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After all cross-efficiency values are computed, an interval efficiency matrix can be obtained
as shown in Table 1. In each column, [El

dj,E
u
dj] represents the lower and upper bounds of the

cross-efficiency scores of DMUj by using the weights of DMUd.

Table 1. A generalized interval cross-efficiency matrix.

Rating DMUd
Rated DMUj

1 2 3 . . . n

1 [El
11,Eu

11] [El
12,Eu

12] [El
13,Eu

13] . . . [El
1n,Eu

1n]
2 [El

21,Eu
21] [El

22,Eu
22] [El

23,Eu
23] . . . [El

2n,Eu
2n]

3 [El
31,Eu

31] [El
32,Eu

32] [El
33,Eu

33] . . . [El
3n,Eu

3n]
. . . . . . . . . . . . . . . . . .
n [El

n1,Eu
n1] [El

n2,Eu
n2] [El

n3,Eu
n3] . . . [El

nn,Eu
nn]

Models (4) and (5) are built upon the classical cross-efficiency DEA framework, and we consider
only the CRS (constant returns to scale) condition in the present study. Models (4) and (5) are
inappropriate to be extended to the case of VRS (variable returns to scale). The reason is that integrating
the concept of the VRS into the cross-efficiency DEA framework may yield negative cross-efficiency
scores (Cook and Zhu [39] and Lim and Zhu [40]).

The DEA method mainly has two orientation modes—inputs and outputs. Under the form
of the multiplier DEA model, the input orientation mode is expressed as maximizing the ratio of
the DMU’s sum of weighted outputs to its sum of weighted inputs. Output orientation mode is
formulated as maximizing the ratio of the DMU’s sum of weighted inputs to its sum of weighted
outputs (Cooper et al. [41] and Cook and Bala [42]). Therefore, per these definitions, Models (4) and
(5) are input orientation modes.

4. The Cross-Efficiency Model Based on Shannon Entropy

Shannon entropy is a useful and effective mathematical concept for measuring uncertainty [43].
Incorporating Shannon entropy into DEA has attracted the interests of a number of scholars [44–46].
In this section, Shannon entropy is utilized to calculate the weights of interval cross-efficiency. The
weights are obtained by making the distance between the self-evaluation entropy score and peer
evaluation entropy score as small as possible. The cross-efficiency entropy model is proposed as in the
following steps:

• Step 1: Determining the entropy value of interval cross-efficiency.

As defined in Table 1, E = (El
ij, Eu

ij)
∣∣∣(El

ij ∈ Rn×n
+ , Eu

ij ∈ Rn×n
+ ) is the interval cross-efficiency

matrix, and the elements El
dj and Eu

dj represent the interval efficiency that DMUd accords to DMUj.
After normalizing the matrix E, the entropy value of interval cross-efficiency can be defined as follows:

Definition 1. For DMUj, the lower (or upper) entropy value of lower (or upper) cross-efficiency score is
defined as:

hl
ij = −Dl

ijlnDl
ij, (6)

hu
ij = −Du

ijlnDu
ij, (7)

where Dl
ij =

El
ij

n
∑

i=1
El

ij

and Du
ij =

Eu
ij

n
∑

i=1
Eu

ij

.

Theorem 1. Entropy values can be added.
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For each DMU (e.g., DMUj), it has n lower cross-efficiency scores (El
ij, i = 1, 2, · · · , n) and n upper

cross-efficiency scores (Eu
ij, i = 1, 2, · · · , n). After Step 1, the lower (or upper) entropy of DMUj is equal to the

sum of its n entropy cross-efficiency scores. That is,

Hl
j =

n

∑
i=1

hl
ij = −

n

∑
i=1

Dl
ijlnDl

ij or Hu
j =

n

∑
i=1

hu
ij = −

n

∑
i=1

Du
ijlnDu

ij.

• Step 2: Calculating the weights based on the proposed cross-efficiency entropy model.

Definition 2. For DMUj, the distance entropy function between cross-efficiency score and its self-evaluation
efficiency score is defined as:

bl
ij = hl∗

jj − hl
ij, i = 1, 2, · · · , n, (8)

bu
ij = hu∗

jj − hu
ij, i = 1, 2, · · · , n, (9)

where hl
ij (or hu

ij) and hl∗
jj (or hu∗

jj ) are the entropy values of cross-efficiency score El
ij (or Eu

ij) and efficiency score

El
jj (or Eu

jj) of Models (2) or (3), respectively. Entropy is a measurement of uncertainty, and we assume that the
reasonable weights should make distance entropy of all cross-efficiencies be the smallest and thus uncertainty of
interval cross-efficiency would be the smallest. Therefore, cross-efficiency entropy model are as follows:

min Z =
n
∑

j=1

n
∑

i=1
(bl

ij)
2
λ2

i +
n
∑

j=1

n
∑

i=1
(bu

ij)
2λ2

i

=
n
∑

j=1

n
∑

i=1
(hl∗

jj − hl
ij)

2
λ2

i +
n
∑

j=1

n
∑

i=1
(hu∗

jj − hu
ij)

2λ2
i

=
n
∑

j=1

n
∑

i=1
[(hl∗

jj − hl
ij)

2
+ (hu∗

jj − hu
ij)

2]λ2
i

s.t.
n
∑

i=1
λi = 1

λi > 0(j = 1, · · · , n)

. (10)

Model (10) essentially is a multi-attribute decision making method. According to characteristics of
multi-attribute decision making model (Wang and Parkan [47], Wang and Luo [48], and Tzeng and Huang [49]),
the sum of weights is equal to 1. Therefore, the weights λi in Model (10) also need to satisfy this constraint.
Then, according to Lagrangian sufficiency theorem, the weight λi can be determined as follows:

λi =

{
n
∑

j=1
[(hl∗

jj − hl
ij)

2
+ (hu∗

jj − hu
ij)

2]

}−1

n
∑

i=1
(

n
∑

j=1
[(hl∗

jj − hl
ij)

2
+ (hu∗

jj − hu
ij)

2])−1
. (11)

• Step 3: Determining the weighted normalization decision matrix.

The weighted normalization value is calculated by

V l
ij = λi ∗ El

ij, Vu
ij = λi ∗ Eu

ij, (12)

where λi is the weight of attribute j, for all i = 1, 2, · · · , n and j = 1, 2, · · · , n.

• Step 4: Determining the positive ideal solutions.

After Step 3, there are two weighted normalization matrix (V l
ij and Vu

ij ). In this step, the maximum
value of each row in each matrix is found as the positive ideal solution:
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vl∗
i = max

1≤j≤n
vl

ij, i = 1, 2, · · · , n, vu∗
i = max

1≤j≤n
vu

ij, i = 1, 2, · · · , n. (13)

• Step 5: Calculating the Euclidean distance from the positive solutions:

du∗
j =

n

∑
i=1

(vu
ij − vu∗

i )2, dl∗
j =

n

∑
i=1

(vl
ij − vl∗

i )
2
, d∗j = du∗

j + dl∗
j . (14)

Therefore, the final distance from the positive solutions is d∗j .

• Step 6: Determining the rank of all alternatives on the basis of their relative Euclidean distance from
the positive solutions.

The smaller the dj is, the better the alternative Ai will be. The best alternative is the one with the
smallest relative Euclidean distance to the ideal solutions.

Theorem 2. The constraints of Model (10) are non-empty convex set.

Proof. Let C be the constraints of Model (7). It is evident that C is non-empty. Now, assume both
(λ′1, · · · , λ′n) and (λ′′1 , · · · , λ

′′
n) ∈ C. For any β ∈ [0, 1], we have βλ′i + (1− β)λ′′i ∈ C. Therefore,

C is convex. �

Theorem 3. The objective function Z =
n
∑

j=1

n
∑

i=1
(bl

ij)
2
λ2

i +
n
∑

j=1

n
∑

i=1
(bu

ij)
2λ2

i is a convex function in the

definition domain.

Proof. For C ⊂ Rn
+ and C is a non-empty convex set, the objective function Z =

n
∑

j=1

n
∑

i=1
(bl

ij)
2
λ2

i +

n
∑

j=1

n
∑

i=1
(bu

ij)
2λ2

i has the continuous second partial derivatives. The Hessian matrix of the objective

function is: 
∂2

z
∂λ1∂λ1

∂2
z

∂λ1∂λ2
· · · ∂2

z
∂λ1∂λn

∂2
z

∂λ2∂λ1

∂2
z

∂λ2∂λ2
· · · ∂2

z
∂λ2∂λn

· · · · · · · · · · · ·
∂2

z
∂λn∂λ1

∂2
z

∂λn∂λ2
· · · ∂2

z
∂λn∂λn



=



2
n
∑

j=1
[(bl

1j)
2
+ (bu

1j)
2] 0 · · · 0

0 2
n
∑

j=1
[(bl

2j)
2
+ (bu

2j)
2] · · · 0

· · · · · · · · · · · ·
0 0 · · · 2

n
∑

j=1
[(bl

nj)
2
+ (bu

nj)
2]


.

(15)

Hessian matrix is always positive definite. Therefore, the objective function is a strongly
convex function. �

Theorem 4. λ∗i is the global optimal solution of Model (10).

Proof. C is a non-empty convex set, the objective function Z =
n
∑

j=1

n
∑

i=1
(bl

ij)
2
λ2

i +
n
∑

j=1

n
∑

i=1
(bu

ij)
2λ2

i is a

convex function, thus Model (10) is a convex programming model, and the generated λ∗i is the global
optimal solution of Model (10). �
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5. Illustrations

5.1. The Case of Primary Schools

The illustrative application uses a dataset of all primary schools in China’s Jinhu County, Jiangsu,
China. To be consistent with extant studies in the literature, we choose input variables as the number
of staff, school building area (in Square meters), copies of books, fixed assets (in 106 RMB), and school
budget (in 106 RMB). The output variable is the number of students in each school. All the data was
collected from the Education Bureau of Jinhu County. The school profile is shown in Table 2.

Table 2. The data of input and output of all schools.

School Number of
Staff

School Building Area
(Square meters)

Copies of
Books

Fixed Asset
(Million RMB)

School Budget
(Million RMB)

Number of
Students

1 [47,53] 3964 8947 3.54 9.26 [313,360]
2 [39,40] 965 4247 2.04 3.41 [102,110]
3 [65,70] 2222 8543 2.23 12.07 [263,300]
4 [43,54] 2316 7560 2.42 5.70 [261,274]
5 [47,49] 3362 11,035 1.23 5.90 [292,312]
6 [49,59] 3273 6120 5.61 8.53 [261,289]
7 [30,36] 1534 7439 2.55 5.73 [256,270]
8 [45,57] 1130 4043 2.25 10.07 [73,81]
9 [38,45] 2278 7306 1.51 7.60 [293,311]
10 [104,124] 7321 25,218 16.91 15.73 [1129,1195]
11 [92,110] 6218 11,552 10.86 13.95 [410,455]
12 [38,40] 1878 4155 3.89 6.43 [191,202]
13 [42,46] 2649 6986 1.41 6.22 [242,263]
14 [39,50] 2402 8623 2.18 7.25 [264,341]
15 [55,57] 2359 7200 5.06 8.57 [221,264]
16 [30,39] 1328 6260 1.87 5.68 [179,227]
17 [132,137] 11,922 53,840 8.28 20.07 [2672,3122]
18 [59,62] 3552 11,674 6.76 8.20 [417,505]
19 [17,19] 1666 3926 2.98 2.83 [125,147]
20 [173,180] 23,200 40,000 23.09 25.18 [3066,3122]
21 [73,74] 3271 21,484 2.34 10.90 [360,386]
22 [59,72] 4301 10,300 2.26 10.14 [290,363]
23 [99,112] 21,175 47,060 7.34 14.35 [1995,2317]
24 [35,41] 1410 13,803 1.65 5.37 [212,230]
25 [65,105] 30,705 22,000 38.30 15.99 [1252,1276]

Table 2 indicates significant differences in the input–outputs of these primary schools, with the
maximum value being 31 times greater than the minimum value. The differences between the variables
of school building area, fixed asset and the number of students among schools are substantial. Of these
indicators, the number of staff and the number of students are given in an interval form. The staff and
students might quit from the school or transfer from one school to another. Therefore, these data were
not fixed, and we thus collected data from the beginning and end of the year, in an interval form.

5.2. The Results and Compared with Other Models

After solving Models (2) and (3), we can obtain the cross-efficiency matrix according to Models (4)
and (5), as listed in Table 3.

Table 3 is the cross-efficiency matrix. The elements on the diagonal are the self-evaluation results
when DMUd evaluates itself according to Models (2) and (3). After normalizing the elements in the
cross-efficiency matrix, we can calculate the final weights by using Model (12). The weights of all
DMUs are:

ω1 = 0.0204, ω2 = 0.0289, ω3 = 0.0289, ω4 = 0.0289, ω5 = 0.0028, ω6 = 0.0289,
ω7 = 0.0076, ω8 = 0.0289, ω9 = 0.0203, ω10 = 0.0289, ω11 = 0.0289, ω12 = 0.0289,
ω13 = 0.0204, ω14 = 0.0289, ω15 = 0.0289, ω16 = 0.0076, ω17 = 0.4714, ω18 = 0.0289,
ω19 = 0.0289, ω20 = 0.0537, ω21 = 0.0076, ω22 = 0.0203, ω23 = 0.0041, ω24 = 0.0069,
ω25 = 0.0107.
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Table 3. Interval cross-efficiencies of all DMUs.

Evaluated DMUs

DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9 DMU10 DMU11 DMU12 DMU13

Evaluating
DMUs

DMU1 [0.50,0.58] [0.33,0.35] [0.49,0.56] [0.52,0.55] [0.47,0.50] [0.45,0.50] [0.52,0.54] [0.24,0.26] [0.66,0.70] [0.55,0.58] [0.37,0.42] [0.49,0.51] [0.57,0.62]
DMU2 [0.50,0.57] [0.41,0.44] [0.51,0.58] [0.55,0.58] [0.42,0.45] [0.56,0.63] [0.60,0.64] [0.29,0.33] [0.64,0.68] [0.72,0.77] [0.47,0.52] [0.65,0.69] [0.52,0.56]
DMU3 [0.50,0.57] [0.41,0.44] [0.51,0.58] [0.55,0.58] [0.42,0.45] [0.56,0.63] [0.60,0.64] [0.29,0.33] [0.64,0.68] [0.72,0.77] [0.47,0.52] [0.65,0.69] [0.52,0.56]
DMU4 [0.50,0.57] [0.41,0.44] [0.51,0.58] [0.55,0.58] [0.42,0.45] [0.56,0.63] [0.60,0.64] [0.29,0.33] [0.64,0.68] [0.72,0.77] [0.47,0.52] [0.65,0.69] [0.52,0.56]
DMU5 [0.24,0.27] [0.13,0.14] [0.31,0.36] [0.29,0.30] [0.63,0.67] [0.13,0.14] [0.27,0.28] [0.09,0.10] [0.52,0.55] [0.20,0.21] [0.11,0.12] [0.13,0.14] [0.46,0.50]
DMU6 [0.50,0.57] [0.41,0.44] [0.51,0.58] [0.55,0.58] [0.42,0.45] [0.56,0.63] [0.60,0.64] [0.29,0.33] [0.64,0.68] [0.72,0.77] [0.47,0.52] [0.65,0.69] [0.52,0.56]
DMU7 [0.30,0.35] [0.40,0.44] [0.45,0.52] [0.43,0.45] [0.33,0.36] [0.31,0.34] [0.64,0.67] [0.25,0.27] [0.49,0.52] [0.59,0.63] [0.26,0.28] [0.39,0.41] [0.35,0.38]
DMU8 [0.50,0.57] [0.41,0.44] [0.51,0.58] [0.55,0.58] [0.42,0.45] [0.56,0.63] [0.60,0.64] [0.29,0.33] [0.64,0.68] [0.72,0.77] [0.47,0.52] [0.65,0.69] [0.52,0.56]
DMU9 [0.50,0.58] [0.33,0.35] [0.49,0.56] [0.52,0.55] [0.47,0.50] [0.45,0.50] [0.51,0.54] [0.23,0.26] [0.66,0.70] [0.55,0.58] [0.37,0.42] [0.48,0.51] [0.57,0.62]
DMU10 [0.50,0.57] [0.41,0.44] [0.51,0.58] [0.55,0.58] [0.42,0.45] [0.56,0.63] [0.60,0.64] [0.29,0.33] [0.64,0.68] [0.72,0.77] [0.47,0.52] [0.65,0.69] [0.52,0.56]
DMU11 [0.50,0.57] [0.41,0.44] [0.51,0.58] [0.55,0.58] [0.42,0.45] [0.56,0.63] [0.60,0.64] [0.29,0.33] [0.64,0.68] [0.72,0.77] [0.47,0.52] [0.65,0.69] [0.52,0.56]
DMU12 [0.50,0.57] [0.41,0.44] [0.51,0.58] [0.55,0.58] [0.42,0.45] [0.56,0.63] [0.60,0.64] [0.29,0.33] [0.64,0.68] [0.72,0.77] [0.47,0.52] [0.65,0.69] [0.52,0.56]
DMU13 [0.50,0.58] [0.33,0.35] [0.49,0.56] [0.52,0.55] [0.47,0.50] [0.45,0.50] [0.51,0.54] [0.23,0.26] [0.66,0.70] [0.55,0.58] [0.37,0.42] [0.48,0.51] [0.57,0.62]
DMU14 [0.50,0.57] [0.41,0.44] [0.51,0.58] [0.55,0.58] [0.42,0.45] [0.56,0.63] [0.60,0.64] [0.29,0.33] [0.64,0.68] [0.72,0.77] [0.47,0.52] [0.65,0.69] [0.52,0.56]
DMU15 [0.50,0.57] [0.41,0.44] [0.51,0.58] [0.55,0.58] [0.42,0.45] [0.56,0.63] [0.60,0.64] [0.29,0.33] [0.64,0.68] [0.72,0.77] [0.47,0.52] [0.65,0.69] [0.52,0.56]
DMU16 [0.30,0.35] [0.40,0.44] [0.45,0.52] [0.43,0.45] [0.33,0.36] [0.31,0.34] [0.64,0.67] [0.25,0.27] [0.49,0.52] [0.59,0.64] [0.26,0.28] [0.39,0.41] [0.35,0.38]
DMU17 [0.50,0.58] [0.41,0.44] [0.51,0.58] [0.55,0.58] [0.63,0.67] [0.56,0.63] [0.64,0.67] [0.29,0.33] [0.66,0.70] [0.72,0.77] [0.47,0.52] [0.65,0.69] [0.57,0.62]
DMU18 [0.50,0.57] [0.41,0.44] [0.51,0.58] [0.55,0.58] [0.42,0.45] [0.56,0.63] [0.60,0.64] [0.29,0.33] [0.64,0.68] [0.72,0.77] [0.47,0.52] [0.65,0.69] [0.52,0.56]
DMU19 [0.50,0.57] [0.41,0.44] [0.51,0.58] [0.55,0.58] [0.42,0.45] [0.56,0.63] [0.60,0.64] [0.29,0.33] [0.64,0.68] [0.72,0.77] [0.47,0.52] [0.65,0.69] [0.52,0.56]
DMU20 [0.50,0.58] [0.41,0.44] [0.51,0.58] [0.55,0.58] [0.47,0.50] [0.56,0.63] [0.60,0.64] [0.29,0.33] [0.66,0.70] [0.72,0.77] [0.47,0.52] [0.65,0.69] [0.57,0.62]
DMU21 [0.30,0.35] [0.40,0.44] [0.45,0.52] [0.43,0.45] [0.33,0.36] [0.31,0.34] [0.64,0.67] [0.25,0.27] [0.49,0.52] [0.59,0.63] [0.26,0.28] [0.39,0.41] [0.35,0.39]
DMU22 [0.50,0.58] [0.33,0.35] [0.49,0.56] [0.52,0.55] [0.47,0.50] [0.45,0.50] [0.51,0.54] [0.23,0.26] [0.66,0.70] [0.55,0.58] [0.37,0.42] [0.49,0.51] [0.57,0.62]
DMU23 [0.24,0.29] [0.21,0.23] [0.16,0.18] [0.32,0.33] [0.34,0.36] [0.22,0.24] [0.31,0.35] [0.05,0.06] [0.27,0.31] [0.48,0.51] [0.21,0.23] [0.22,0.23] [0.27,0.30]
DMU24 [0.28,0.35] [0.40,0.44] [0.45,0.52] [0.43,0.45] [0.33,0.36] [0.31,0.34] [0.64,0.67] [0.25,0.27] [0.49,0.52] [0.59,0.63] [0.26,0.28] [0.39,0.41] [0.35,0.38]
DMU25 [0.45,0.46] [0.21,0.31] [0.32,0.40] [0.40,0.45] [0.34,0.37] [0.41,0.55] [0.44,0.49] [0.14,0.23] [0.49,0.52] [0.58,0.62] [0.34,0.46] [0.39,0.59] [0.40,0.45]
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Table 3. Cont.

Evaluated DMUs

DMU14 DMU15 DMU16 DMU17 DMU18 DMU19 DMU20 DMU21 DMU22 DMU23 DMU24 DMU25 -

Evaluating
DMUs

DMU1 [0.49,0.63] [0.37,0.44] [0.44,0.56] [0.86,1.00] [0.46,0.56] [0.37,0.43] [0.98,1.00] [0.30,0.32] [0.46,0.58] [0.72,0.84] [0.27,0.30] [0.43,0.44] -
DMU2 [0.50,0.65] [0.48,0.57] [0.50,0.63] [0.86,1.00] [0.57,0.69] [0.46,0.54] [0.98,1.00] [0.31,0.33] [0.41,0.51] [0.60,0.70] [0.30,0.33] [0.46,0.47] -
DMU3 [0.50,0.65] [0.48,0.57] [0.50,0.63] [0.86,1.00] [0.57,0.69] [0.46,0.54] [0.98,1.00] [0.31,0.33] [0.41,0.51] [0.60,0.70] [0.30,0.32] [0.46,0.47] -
DMU4 [0.50,0.65] [0.48,0.57] [0.50,0.63] [0.86,1.00] [0.57,0.69] [0.46,0.54] [0.98,1.00] [0.31,0.33] [0.41,0.51] [0.60,0.70] [0.30,0.32] [0.46,0.47] -
DMU5 [0.32,0.42] [0.12,0.14] [0.26,0.32] [0.86,1.00] [0.17,0.21] [0.11,0.13] [0.39,0.40] [0.40,0.43] [0.34,0.43] [0.73,0.83] [0.34,0.37] [0.11,0.11] -
DMU6 [0.50,0.65] [0.48,0.57] [0.50,0.63] [0.86,1.00] [0.57,0.69] [0.46,0.54] [0.98,1.00] [0.31,0.33] [0.41,0.51] [0.60,0.70] [0.30,0.32] [0.46,0.47] -
DMU7 [0.42,0.54] [0.36,0.43] [0.51,0.65] [0.86,1.00] [0.45,0.55] [0.29,0.34] [0.54,0.54] [0.42,0.45] [0.26,0.33] [0.38,0.44] [0.57,0.62] [0.17,0.18] -
DMU8 [0.50,0.65] [0.48,0.57] [0.50,0.63] [0.86,1.00] [0.57,0.69] [0.46,0.54] [0.98,1.00] [0.31,0.33] [0.41,0.51] [0.60,0.70] [0.30,0.32] [0.46,0.47] -
DMU9 [0.49,0.63] [0.37,0.44] [0.44,0.56] [0.86,1.00] [0.46,0.56] [0.37,0.43] [0.99,1.00] [0.30,0.32] [0.46,0.58] [0.72,0.84] [0.27,0.30] [0.43,0.44] -
DMU10 [0.50,0.65] [0.48,0.57] [0.50,0.63] [0.86,1.00] [0.57,0.69] [0.46,0.54] [0.98,1.00] [0.31,0.33] [0.41,0.51] [0.60,0.70] [0.30,0.32] [0.46,0.47] -
DMU11 [0.50,0.65] [0.48,0.57] [0.50,0.63] [0.86,1.00] [0.57,0.69] [0.46,0.54] [0.98,1.00] [0.31,0.33] [0.41,0.51] [0.60,0.70] [0.30,0.32] [0.46,0.47] -
DMU12 [0.50,0.65] [0.48,0.57] [0.50,0.63] [0.86,1.00] [0.57,0.69] [0.46,0.54] [0.98,1.00] [0.31,0.33] [0.41,0.51] [0.60,0.70] [0.30,0.32] [0.46,0.47] -
DMU13 [0.49,0.63] [0.37,0.44] [0.44,0.56] [0.86,1.00] [0.46,0.56] [0.37,0.43] [0.99,1.01] [0.29,0.32] [0.46,0.58] [0.73,0.85] [0.27,0.30] [0.44,0.44] -
DMU14 [0.50,0.65] [0.48,0.57] [0.50,0.63] [0.86,1.00] [0.57,0.69] [0.46,0.54] [0.98,1.00] [0.31,0.33] [0.41,0.51] [0.60,0.70] [0.30,0.32] [0.46,0.47] -
DMU15 [0.50,0.65] [0.48,0.57] [0.50,0.63] [0.86,1.00] [0.57,0.69] [0.46,0.54] [0.98,1.00] [0.31,0.33] [0.41,0.51] [0.60,0.70] [0.30,0.32] [0.46,0.47] -
DMU16 [0.42,0.54] [0.36,0.43] [0.51,0.65] [0.86,1.00] [0.45,0.55] [0.29,0.34] [0.54,0.55] [0.42,0.45] [0.26,0.33] [0.38,0.44] [0.57,0.62] [0.17,0.18] -
DMU17 [0.50,0.65] [0.48,0.57] [0.51,0.65] [0.86,1.00] [0.57,0.69] [0.46,0.54] [0.98,1.00] [0.42,0.45] [0.46,0.58] [0.86,1.00] [0.57,0.62] [0.65,0.89] -
DMU18 [0.50,0.65] [0.48,0.57] [0.50,0.63] [0.86,1.00] [0.57,0.69] [0.46,0.54] [0.98,1.00] [0.31,0.33] [0.41,0.51] [0.60,0.70] [0.30,0.32] [0.46,0.47] -
DMU19 [0.50,0.65] [0.48,0.57] [0.50,0.63] [0.86,1.00] [0.57,0.69] [0.46,0.54] [0.98,1.00] [0.31,0.33] [0.41,0.51] [0.60,0.70] [0.30,0.32] [0.46,0.47] -
DMU20 [0.50,0.65] [0.48,0.57] [0.50,0.63] [0.86,1.00] [0.57,0.69] [0.46,0.54] [0.98,1.00] [0.31,0.33] [0.46,0.58] [0.79,0.92] [0.30,0.32] [0.72,0.89] -
DMU21 [0.42,0.54] [0.36,0.43] [0.51,0.65] [0.86,1.00] [0.45,0.55] [0.29,0.34] [0.52,0.55] [0.42,0.45] [0.26,0.33] [0.38,0.44] [0.57,0.62] [0.16,0.18] -
DMU22 [0.49,0.63] [0.37,0.44] [0.44,0.56] [0.86,1.00] [0.46,0.56] [0.37,0.43] [0.98,1.00] [0.30,0.32] [0.46,0.58] [0.73,0.85] [0.27,0.30] [0.43,0.44] -
DMU23 [0.26,0.34] [0.18,0.22] [0.22,0.60] [0.86,1.00] [0.35,0.42] [0.31,0.36] [0.80,0.81] [0.22,0.24] [0.20,0.25] [0.86,1.00] [0.26,0.29] [0.52,0.59] -
DMU24 [0.42,0.54] [0.36,0.43] [0.51,0.65] [1.24,1.00] [0.46,0.55] [0.29,0.34] [0.52,0.55] [0.42,0.45] [0.29,0.33] [0.37,0.44] [0.57,0.62] [0.05,0.18] -
DMU25 [0.39,0.50] [0.33,0.40] [0.37,0.44] [0.65,1.00] [0.46,0.51] [0.41,0.48] [0.98,0.99] [0.22,0.27] [0.36,0.38] [0.55,0.90] [0.20,0.28] [0.72,0.89] -



Entropy 2016, 18, 358 11 of 17

Table 4. The distance and ranking results of all DMUs.

DMU
The Proposed Model

The Model of Sun et al. [50]

h1 = 0.1, h2 = 0.9 h1 = 0.2, h2 = 0.8 h1 = 0.3, h2 = 0.7 h1 = 0.4, h2 = 0.6

Distance Ranking Efficiency Ranking Efficiency Ranking Efficiency Ranking Efficiency Ranking

1 0.3445 18 0.5718 18 0.5643 18 0.5567 18 0.5491 18
2 0.5383 24 0.4410 24 0.4377 24 0.4345 24 0.4313 24
3 0.3348 17 0.5766 16 0.5694 17 0.5622 17 0.5550 17
4 0.3097 16 0.5750 17 0.5722 16 0.5695 16 0.5667 16
5 0.2000 9 0.6684 10 0.6641 10 0.6598 9 0.6555 9
6 0.2671 12 0.6192 14 0.6132 14 0.6071 14 0.6011 13
7 0.1926 8 0.6686 9 0.6652 9 0.6617 8 0.6582 8
8 0.7852 25 0.3239 25 0.3207 25 0.3175 25 0.3142 25
9 0.1612 6 0.6996 6 0.6955 6 0.6915 6 0.6874 6

10 0.1030 5 0.7620 4 0.7578 4 0.7536 4 0.7493 4
11 0.4191 22 0.5151 22 0.5099 22 0.5048 22 0.4996 22
12 0.1783 7 0.6821 7 0.6784 7 0.6746 7 0.6709 7
13 0.2610 11 0.6197 13 0.6147 13 0.6097 12 0.6048 11
14 0.3031 15 0.6318 12 0.6172 12 0.6026 15 0.5880 15
15 0.3683 19 0.5642 20 0.5549 19 0.5455 19 0.5362 19
16 0.2880 14 0.6389 11 0.6251 11 0.6113 11 0.5975 14
17 0.0135 3 0.9856 3 0.9712 3 0.9568 3 0.9423 3
18 0.2250 10 0.6788 8 0.6667 8 0.6547 10 0.6426 10
19 0.4118 21 0.5319 21 0.5238 21 0.5157 21 0.5077 21
20 0.0000 1 0.9982 1 0.9964 1 0.9946 1 0.9928 1
21 0.5298 23 0.4476 23 0.4446 23 0.4415 23 0.4385 23
22 0.3839 20 0.5652 19 0.5536 20 0.5420 20 0.5304 20
23 0.0125 2 0.9861 2 0.9722 2 0.9583 2 0.9444 2
24 0.2681 13 0.6180 15 0.6132 15 0.6083 13 0.6034 12
25 0.1009 4 0.7417 5 0.7403 5 0.7389 5 0.7375 5
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The relative Euclidean distances to the ideal cross-efficiency of all DMUs can be then calculated.
Based on these relative Euclidean distances, the ranking results of the DMUs are obtained, which
are shown in Table 4. In order to compare our approach with other models, the interval DEA model
proposed by Sun et al. [50] is selected to evaluate these DMUs. Hadad and Hanani [51] provided a
survey on the common weight DEA models (Ganley and Cubbin [52]; Friedman and Sinuany-Stern [53]
and Adler et al. [54]). However, these models can only be used to evaluate the efficiencies of DMUs
with precise data, and they are incapable of assessing DMUs with interval data. Based on the idea
of common weights, Sun et al. [50] proposed an interval DEA model. Therefore, to make a fair
comparison, we compare our results with the results from Sun et al. [50]. Sun et al. [50] used a simple
weighting method to aggregate the lower and upper efficiencies for obtaining the final efficiency.
The aggregating weights of the lower and upper efficiencies are h1 and h2, and h1 + h2 = 1. The results
obtained by Sun et al. [50] are presented in Table 4.

By comparing the results, we have several findings. Firstly, Sun et al. [50] used a simple weighted
method to aggregate the lower and upper efficiencies of each DMU. However, the different aggregation
weights are given to the lower or upper bound of the interval, and the final ranking results are not
the same. This may confuse the decision makers regarding how to determine aggregation weights.
This problem does not appear in our model. The results of our models show that only one set of
solutions are obtained. Secondly, Despotis [16] pointed out that using the simple weighted method to
aggregate efficiencies is not good enough since it is not a Pareto solution. However, this problem does
not appear in the model in our study. Our study proposes a Shannon entropy DEA model to obtain a set
of aggregation weights, which are proved to be the global optimal solutions. Thirdly, Sun et al.’s [50]
model is a self-evaluated model. There is a significant shortcoming in the self-evaluated DEA model.
The self-evaluated DEA allows each DMU to be evaluated using its most favorable weights. This leads
to the weights obtained by the DEA being usually inconsistent with the real-world production processes
(Wang et al. [55]). From Table 5, we find that each DMU has zero weight, which is inconsistent with the
production process or prior knowledge (Ramón et al. [56]). However, this problem can be effectively
solved by our approach. Our approach uses the peer-evaluated model, which ranks all DMUs using the
weights of all DMUs and can eliminate unreasonable weight schemes without any priori assumptions
on weight restrictions. Fourthly, from Table 4, we can find that the performance of DMU20 is the best,
while DMU8 is the worst. In the column of DMU20 of Table 3, we can find that most of the upper and
lower interval efficiencies of DMU20 are the largest among cross efficiencies of all DMUs. The most
interval efficiencies of DMU8 are the smallest among cross-efficiencies of all DMUs. These findings are
consistent with our ranking results, which indirectly confirm the reliability and practicability of the
approach proposed in our present study.

Table 5. Weights for 25 schools from Sun et al. [50].

DMU Input 1 Input 2 Input 3 Input 4 Input 5 Output 1

1 0.000000 0.000000 0.000082 0.000000 0.076254 0.001609
2 0.000000 0.000226 0.000184 0.000000 0.000000 0.004038
3 0.000000 0.000109 0.000089 0.000000 0.000000 0.001946
4 0.000000 0.000118 0.000096 0.000000 0.000000 0.002108
5 0.000000 0.000000 0.000000 0.000000 0.813008 0.002156
6 0.000000 0.000121 0.000099 0.000000 0.000000 0.002164
7 0.000000 0.000652 0.000000 0.000000 0.000000 0.002489
8 0.000000 0.000226 0.000184 0.000000 0.000000 0.004039
9 0.000000 0.000000 0.000115 0.000000 0.107204 0.002263
10 0.000000 0.000036 0.000029 0.000000 0.000000 0.000641
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Table 5. Cont.

DMU Input 1 Input 2 Input 3 Input 4 Input 5 Output 1

11 0.000000 0.000064 0.000052 0.000000 0.000000 0.001143
12 0.000000 0.000190 0.000155 0.000000 0.000000 0.003395
13 0.000000 0.000000 0.000120 0.000000 0.112541 0.002375
14 0.000000 0.000106 0.000086 0.000000 0.000000 0.001895
15 0.000000 0.000122 0.000099 0.000000 0.000000 0.002173
16 0.000000 0.000753 0.000000 0.000000 0.000000 0.002876
17 0.000000 0.000004 0.000005 0.004922 0.072459 0.000320
18 0.000000 0.000077 0.000062 0.000000 0.000000 0.001368
19 0.000000 0.000206 0.000167 0.000000 0.000000 0.003673
20 0.000000 0.000006 0.000013 0.012582 0.000862 0.000320
21 0.000000 0.000306 0.000000 0.000000 0.000000 0.001167
22 0.000000 0.000000 0.000081 0.000000 0.075290 0.001589
23 0.000000 0.000001 0.000000 0.060539 0.014946 0.000432
24 0.000000 0.000709 0.000000 0.000000 0.000000 0.002708
25 0.000000 0.000000 0.000045 0.000000 0.000000 0.000582

5.3. Validating the Model by Adding Simulated Schools

To further verify the effectiveness and practicability of our approach, we simulate 10 virtual
schools, as shown in Table 6. The simulation requirements of the 10 schools’ data are as follows:
(1) input data gradually increase from simulated school 26 to school 35; and (2) output data gradually
decrease from simulated school 26 to school 35. All the input and output data of simulated schools are
randomly generated by Matlab software (2010b version). If a school has more students (outputs) with
fewer resources (inputs), it will get higher performance. Through comparing the data of Table 2 (real
data) and Table 6 (simulated data), there are three observations.

(1) The performance ranking of 10 simulated schools are:
DMU26 � DMU27 � DMU28 � DMU29 � DMU30 � DMU31 � DMU32 � DMU33 �
DMU34 � DMU35.

(2) School 26 uses the least education resources but educates the largest number of students.
Therefore, its efficiency is the highest.

(3) Compared with other schools, School 35 has the least number of students, but its educational
resources are the largest. Thus, School 35 has the worst performance.

Table 6. The data of input and output of 10 simulated schools.

School Number of
Staff

School Building Area
(Square Meters)

Copies of
Book

Fixed Asset
(Million RMB)

School Budget
(Million RMB)

Number of
Students

26 [17,19] 965 3926 1.23 2.83 [3066,3122]
27 [20,24] 1098 4053 3.56 2.90 [2233,2678]
28 [40,46] 2031 9083 9.73 4.51 [1865,1964]
29 [49,66] 3066 10,101 10.06 6.73 [1360,1461]
30 [80,97] 9678 15,352 11.73 9.11 [921,1076]
31 [116,143] 10,666 25,453 19.64 10.15 [831,910]
32 [147,154] 15,732 36,436 20.13 15.63 [506,783]
33 [163,170] 25,932 47,538 29.64 17.98 [365,393]
34 [171,172] 28,162 50,684 36.03 19.07 [161,232]
35 [173,180] 30,705 53,840 38.30 20.07 [73,81]

Next, we will verify that whether the results of our model meet the three above observations.
After solving Models (2) and (3), we can obtain the cross-efficiency matrix according to Models (4)

and (5). After normalizing the elements in the cross-efficiency matrix, the final weights are calculated
by using Model (12). Then, the relative Euclidean distances to the ideal cross-efficiency of all 35 DMUs
can be calculated. These 35 schools are ranked according to the Euclidean distance results, which are
shown in Figure 1. From Figure 1, we can find: (1) the Euclidean distance of DMU26 is zero, so it
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should be ranked first among all DMUs; (2) DMU35 has the largest Euclidean distance of 0.0822, so it is
ranked last; (3) and the Euclidean distances gradually increase from DMU26 to DMU35. This indicates
that performance rankings are gradually reduced from DMU26 to DMU35. These ranking results meet
all the above observations, suggesting that the ranking obtained by our approach can represent the
true ranking.Entropy2016, 18, 358 15 of 17 
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Traditional cross-efficiency models assume that the data of all DMUs are precise. However, this
assumption is not always correct in the real world. In many real circumstances, the outputs and
inputs of DMUs are not perfectly precise, which may only have a range in an interval form. In these
cases, traditional cross-efficiency models cannot evaluate the efficiencies of DMUs. To address this
problem, the present study proposes a new approach. In this approach, we firstly extend traditional
cross-efficiency models for obtaining the interval efficiency of each DMU. Then, the distance entropy
model is utilized to calculate the weights of interval cross-efficiency scores. Finally, all DMUs are
assessed and ranked by the distance to the positive ideal cross-efficiency. A demonstrative case using
data from China’s primary schools is used to illustrate the newly proposed model. Through this real
case, we can conclude that the proposed method is convenient to solve problems with interval data of
DMUs, and can provide complete and fair results for all DMUs.

The method proposed in this paper can be further expanded in the future studies. The DEA
Shannon entropy model is proposed based on the cross-efficiency method. The proposed model can
also be extended to other DEA models with intervals in the future studies. In addition, our study
collected the imprecise data in an interval form. However, in some real cases, a proportion of data
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