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Abstract: Assessing Landslide Susceptibility Mapping (LSM) contributes to reducing the risk of
living with landslides. Handling the vagueness associated with LSM is a challenging task. Here we
show the application of hybrid GIS-based LSM. The hybrid approach embraces fuzzy membership
functions (FMFs) in combination with Shannon entropy, a well-known information theory-based
method. Nine landslide-related criteria, along with an inventory of landslides containing 108 recent
and historic landslide points, are used to prepare a susceptibility map. A random split into training
(=70%) and testing (~30%) samples are used for training and validation of the LSM model. The study
area—Izeh—is located in the Khuzestan province of Iran, a highly susceptible landslide zone.
The performance of the hybrid method is evaluated using receiver operating characteristics (ROC)
curves in combination with area under the curve (AUC). The performance of the proposed hybrid
method with AUC of 0.934 is superior to multi-criteria evaluation approaches using a subjective
scheme in this research in comparison with a previous study using the same dataset through extended
fuzzy multi-criteria evaluation with AUC value of 0.894, and was built on the basis of decision makers’
evaluation in the same study area.

Keywords: Shannon entropy; fuzzy membership function (FMF); landslide susceptibility mapping
(LSM); 1zeh

1. Introduction

A landslide is either geophysical or climate-related disaster that is described as a mass movement
of earth surface material. This usually involves shear displacement of soil and/or rock masses along
one or several slip surfaces [1]. A landslide susceptibility map (LSM) is a promising solution for both
understanding and predicting probable future landslides. It assists planners in decision-making phase
aimed for further mitigation of landslide consequences. Accordingly, a LSM depicts areas likely to
have landslides in the future by correlating some of the principal factors that contribute to landslides
with the past distribution of slope failures [2]. In this respect, production of LSM at the early stage
of landslide assessments is of crucial importance for safe economic planning, such as urbanization
activities and the engineering of structures. However, a standard procedure for the production of
landslide susceptibility maps does not exist [3].Thus, LSM can be accomplished by providing risk
managers with easily accessible, continuous, and accurate information about landslide occurrence.
The predictive capacity is poorly understood in LSM and is vague. In general, the spatial prediction of
landslides is not easy due to the complex nature of landslides [4]. LSM provide important information

Entropy 2016, 18, 343; d0i:10.3390/e18100343 www.mdpi.com/journal/entropy


http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy

Entropy 2016, 18, 343 2 of 20

for predicting landslides hazards which include an indication of the time scale within which particular
landslides are likely to occur [5]. The associated vagueness can be dealt using fuzzy sets theory.

Introduced by Zadeh, fuzzy set theory handles indefiniteness arising from intrinsic ambiguity
than from a statistical variation [6]. A functional defined on the class of generalised characteristic
functions (fuzzy sets), called “entropy”, is introduced using no probabilistic concepts in order to
obtain a global measure of the indefiniteness connected with the situations described by fuzzy sets [7].
The meaning of this quantity is quite different from the one of classical entropy because no probabilistic
concept is needed in order to define it. This function gives a global measure of the “indefiniteness”
of the situation of the problem at hand [8]. Although there is a well-defined mathematical theory
of probability, there is no universal agreement about the meaning of probability. Thus, for example,
there is the view that probability is an objective property of a system and another view that it describes
a subjective state of belief of a person. Then there is the frequentist view that the probability of an event
is the relative frequency of its occurrence in a long or infinite sequence of trials. Thus, entropy is often
used as a characterization of the information content of a data source, this information content is not
absolute: it depends crucially on the probabilistic model [9].

Effective LSMs could provide a proper understanding of “susceptible regions” [10]. In order to
better assist planners in understanding landslide hazard, a variety of GIS-based susceptibility mapping
techniques are employed and developed [11]. These approaches can be classified into three main
groups: subjective, objective and hybrid methods. The subjective methods typically include inventory
mapping and decision makers’ (DMs) evaluation in both standardisation and weighting of selected
criteria [12]. There are various GIS-based studies on LSM through the use of subjective approaches.
Some of them used multi-criteria evaluation (MCE) techniques including: simple additive weighting [13],
ordered weighted average [14], analytical hierarchy process [15], analytical network process [16],
PROMETHEE [17], etc. and some used different heuristic and knowledge driven techniques in order to
assess landslide susceptibility mapping [18-20]. Other studies, on the other hand, have shown a variety
of objective methods in the assessment of the landslide susceptibility because of some limitations such as
insufficient knowledge about the area of interest. The objective methods mostly rely on statistical [21-27],
soft computing [4,28,29], deterministic analysis [30], neuro-fuzzy [4,31], artificial neural network [32-34],
decision trees [35,36], and index of entropy [37—41], which are more rigorous and mostly relying on
objective assessments. On the other hand, there are various hybrid GIS-based LSM methods which are
both subjective and objective. In other words, some hybrid GIS-based LSM methods used subjective
standardisation and an objective weighing technique [42—44], and vice versa.

The accuracy of LSM mostly depends on the amount and quality of available data, the working
scale and the selection of the appropriate methodology for analysis and modelling [17]. In methodology
implementation and its assessment, landslide casual criteria play a key role. In this study, we decipher
the optimality of predictive solutions for objective criteria weighting. In an attempt to find an optimal
solution, we show how modified Shannon entropy algorithm in association with fuzzy set theory can
be successfully applied to the numerical solution of the LSM while there is no sufficient knowledge
about the area of interest. In other words, the main objective of the present study is to extend a hybrid
GIS-based LSM method within which fuzzy membership functions (FMFs) have been applied for
criteria standardisation using “global knowledge” about landslides, while no “local knowledge” is
utilised for criteria weighting. In literature, although different GIS-based models have been used
for landslide susceptibility mapping, however, LSM map extracted from modified Shannon entropy
algorithm in association with fuzzy set theory has seldom been carried out. Therefore, this study aims
to fill this identified gap in the relevant literature.

Since the LSM deals with a various sets of criteria it can be assumed that integration of
fuzzy set theory with information theory, and in particular with Shannon entropy, will assist in
performing accurate landslide susceptibility mapping. This accurate LSM is due to the flexibility of
fuzzy membership functions and objective evaluation of criteria weights. Based on this assumption,
the present research is an attempt to propose a novel hybrid method, which contributes to the objective
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decision making for regional landslide management. In other words, by using only the entropy
values of previous landslide events for each criterion and regardless of experts” opinions, we intend to
facilitate criteria weighting process while improving or preserving LSM predictive accuracy compared
with accurate subjective methods.

The paper is organized as follows: after a description of the study area in Section 2, a detailed
definition of the material and methods of the research is described in Section 3. Section 4 presents
results while Section 5 discusses the achieved results and contributions, respectively. At the end,
we provide the conclusions of this research in Section 6.

2. Description of the Study Region

Izeh is located in the eastern part of Khuzestan province, in south-western Iran (see Figure 1),
where the high susceptibility for a mass movement and in particular landslides is considered as
a potential natural hazard for human society and their activities such as the hydropower plants in Izeh.
According to the inventory of landslides compiled by the Ministry of Natural Resources [45], there are
108 recorded landslide events in the region.
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Figure 1. Location map of the study area.

The climate is a temperate in north, while in south a warm climate prevails. Similarly, mean annual
precipitation within the study area varies from 450 to 700 mm. The region is important in terms of the
agricultural activities and in particular hydropower plants. The Karun River, the main and longest
river in all of Iran, passes through this area. The suitable topography of Karun canyon provides the
possibility of constructing hydropower plants and three main dams have been constructed so far on
different branches of the Karun River [44].

Geologically, there are several minor faults and one major thrust in the region along with the
13 types of geologic formations cropping out in the region. The Izeh fault zone is a transverse fault zone
with right-lateral strike slip (and some reverse component) in the Zagros Mountains, south-western
Iran. That is majority controlled by the subsidence and sedimentation of the embayment. In terms of
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13 types of geologic formations, nearly all of them composed of sedimentary rocks including, marl,
shale, limestone, gypsum, siltstone and other Quaternary deposits. It also should be mentioned that in
the case of any triggering cause, there will be a significant chance of landslide occurrence within the
south and south-east where the rough topography coincides with major thrust fault, Karun canyon
and susceptible lithology. In other words, where there is susceptible lithology, proximity to faults
contributes to slope instability, affecting not just surface structures but also terrain permeability.
Eventually, the erosion associated with Karun River in nearby areas further leads to slope instability
and generally increases the rate of subsequent slope failure. This is considered another prominent
reason for the notable landslide recurrence in the region [44].

3. Materials and Methods

3.1. Landslide Influencing Data Layers

First of all, with respect to the available peer-reviewed GIS-based LSM research, nine criteria of
the study area have been employed and prepared (Table 1 and Figure 2).

Table 1. Selected landslide related criteria on the basis of literature review.

Criteria Data Source Former Studies Using the Same Criterion for GIS-Based LSM
Lee and Min [21]; Komac [46]; Ayalew et al. [14]; Conoscenti et al. [47];
Slope 30 m, STRM DEM Thiery et al. [48]; Yalcin [15]; Kayastha et al. [49]; Bennett et al. [50];

Kritikos et al. [51]
Ayalew and Yamagishi [52]; Komac [46]; Guzzetti et al. [53];

Aspect 30 m, STRM DEM Thiery et al. [48]; Yalcin [15]; Lotfi et al. [54]
River 1:50,000, Topo-map Yalcin [15]; Feizizadeh et al. [44]; Faraji Sabokbar et al. [55]
Drainage 1:50,000, Topo-map Yalcin [15]; Pareek et al. [56]; Shadman et al. [17]; Feizizadeh et al. [44]
Fault 1:100,000, Geo-map Havenith et al. [22]; Kanungo et al. [57]; Lee and Pradhan [58];

Marjanovié et al. [59]; Shahabi et al. [60]
Rainfall 30 years, IMO data Hong et al. [61]; Guzzetti et al. [62]; Feizizadeh et al. [44]
Ayalew and Yamagishi [52]; Yalcin [15]; Youssef et al. [63];

Road 1:50,000, Topo-map Bathrellos et al. [64]; Pradhan [31]

. . : Ercanoglu and Gokceoglu [3]; Ayalew and Yamagishi [52];
Lithology 1:100,000, Geo-map Thiery et al. [48]; Akgun et al. [65]; Davis and Blesius [43]
Land use 30 m, Landsat image Lee and Pradhan [58]; Bathrellos et al. [64]; Feizizadeh et al. [44]

It must be noted that landslide susceptibility map of the study area has been derived from
landslide related criteria mentioned in above Table 1. Road, river and drainage input maps were
extracted from the topographical map (1:50,000) of the study area, while the fault and lithology maps
were obtained from geologic maps (1:100,000). In addition, the slope and aspect criteria were derived
from 30 m shuttle radar topography mission (SRTM) digital elevation model (DEM). Land use/cover
maps were derived from Landsat ETM* satellite images with 30 m spatial resolution employing image
analysis methods [66].

The average of 30 years mean annual rainfall data from the Iran Meteorological Organization
(IMO) was used to create mean annual rainfall map using kriging interpolation methods in the ArcGIS
environment. Finally, we also used an inventory of landslides containing 108 recent and historic
landslide points which were recorded by GPS in field survey [45] for both geo-data layer weight
evaluation and further validation of proposed LSM. The recorded landslides points are centroids of
of each landslide polygon. Almost all of these landslides belong to slide-type landslides which are
down-slope movement of material along a distinctive surface of weakness such as a fault, joint or
bedding plane. In terms of landslide inventory, it was randomly split into a train (=70%) and test
(=30%) samples for training the proposed hybrid model and subsequent validation purpose, prior
and posterior map elaboration, respectively.
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Figure 2. Nine applied criteria used in LSM of Izeh involving: (a) Slope; (b) Aspect; (c) Distance to
river; (d) Drainage Density; (e) Distance to faults; (f) Mean annual rainfall; (g) Distance to roads;
(h) Lithology and (i) Land use/cover.
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3.2. Proposed Methodology

In order to depict the proposed methodology, it is best to consider a three-step procedure: in
step 1, using fuzzy sets theory, data standardisation has been implemented in ArcGIS environment.
To this end, a proper FMF is fitted on each selected criterion posterior to preprocessing phase.
These FMFs has been selected according to peer literature review of similar LSM studies and local
expert opinions. Accordingly, in step 2, the Shannon entropy is used for further evaluation of criteria
weights, which determines the subsequent contribution of each landslide related criteria in overall
susceptibility. This phase is implemented in MATLAB. Here, Shannon entropy technique is used as
an objective-weighting scheme in LSM process. Finally, in the third step, results from above two steps
are integrated using ArcGIS software (Figure 3). Further, results were validated using receiver operating
characteristics (ROC) curves and simple overlay technique using MATLAB and ArcGIS environments,
respectively. Each step is explained as below:

: Producing test
and train

Constructing
Start 4

subsets

7 Using ArcGIS
° Package
STEP 1 STEP.2: Using ArcGIS ——___ STEP 3:
Criteria Assessment of Package - Integration phase
. standardization weights
Mainly using —
MatLab
Software
End

Figure 3. Schematic representation of the 3-steps methodology implementation.

3.2.1. Fuzzy Membership Function (FMF)

A major contribution of fuzzy set theory and related fuzzy membership functions (FMFs) is its
capability of representing vague data. The theory also allows mathematical operators and programming
to apply to the fuzzy domain. A fuzzy set is a class of objects with a continuum of grades of
membership [6]. Such a set is mainly characterised by a membership function, which designates
a membership value to every single object ranging from 0 and 1 and vice versa. In terms of LSM,
fuzzy sets approve the possibility of partial membership of a considered geographic location to
more than one susceptibility class. FMFs accordingly, were used to determine pattern variation
forming a gradual class boundaries between each susceptibility class. The shape of each applied FMF
determines how the transition between 0 and 1 takes place.

3.2.2. Shannon Entropy

The information theory application, originated from thermodynamics in 1948 [42], is used in
diverse disciplines and application areas. In information theory, entropy is the quantitative measure
of system disorder, instability, imbalance, and uncertainty and can forecast development trend of
specified system [42,54,67,68]. The Shannon entropy usually indicates to quantification of the expected
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amount of information enclosed by a message. At present, it has been widely used to determine the
weighted index in natural hazards, and in integrated assessment of natural-environmental processes
such as debris flows, droughts, sandstorms, etc. [69,70].

In the case of landslides, it measures the dissimilarity or diversity in the environment, indicating
the potential of each factor in causing landslides. In other words, the entropy of landslides refers to the
extent the various factors influence landslide. Greater is the entropy index, greater is the influence
of the factor in causing landslide [68]. Finally, it also should be mentioned that various landslide
related criteria are not the same regarding their attributes and dimension. Therefore, it is not possible
to conduct a direct comparison between those mentioned criteria which are applied in a LSM process.
In order to construct proper comparison, it is necessary to conduct standardisation process in the first
step (see Equations (1) and (2)).

1 X = Xmax
X — X
Positive effect = { 0.5(1 — COS(m——""—))  Xpmin < X < Xmax 1)
Xmac — Xmin
0 X = Xmin
1 X = Xmin
Xmac — X

Negative effect = ¢ 0.5(1+ COS(m ) Xmin < X < Xmax (2)

Xmac — Xmin
0 X = Xmax

Equation (1) is applicable for specific criteria with positive effect on probability of landslide
occurrence (such as drainage density and mean annual rainfall). It means the more the value of the
considered criteria is, the more the probability of landslide is as a simple rule. However, for some
other criteria (viz. distance to river, distance to faults and distance to road) Equation (2) is well-suited,
where the reverse condition exists. Then, landslide entropy matrix R is formed by m landslide samples
and n geo-data layer:

1’1,1 1’1’2 e rlrn
1’2]1 1’2,2 e 1’2,,1
= . . . ®)
"ml Tm2 -+ Tmn
Accordingly, Shannon entropy is defined by [42]:
m
Ej= —kg pijInpi @)
i=

where E; is entropy value, p;; is value of i" landslide in j* criteria and k is a positive constant,
essentially a choice of unit of measure which is given by:

k= (Inm)~" (5)

where m is number of occurred landslide events. Accordingly, normalized decision matrix p; ; for each

landslide criteria can be defined by:
s
Pij = A (6)
Y Tij
i=1
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The weights have attributed the role the factors play in the synthesis assessment, and the bigger
value indicates that the factor’s function is more important in this index system.

Y
Wi = @)
Y. v;
i=1
where W; is weight of j" geo-data layer and V; is defined by:
Uj =1- Ej (8)
3.2.3. Hybrid Landslide Susceptibility Mapping Model
The proposed hybrid model of landslide susceptibility mapping can be defined as:
n
S = Z w; ® X; 9)
i=1

where S is a degree of landslide susceptibility, W; stands for the weight of each criterion and X; is
standardised landslide criteria.

3.3. Methodology Implementation

The following 3-steps experimental design is implemented (see Figure 3).

3.3.1. Step 1: Data Standardisation Using FMFs

Considering the fact that GIS-based landslide related criteria measured not only in different units
but also in different scales of measurement (data types), such as nominal, ordinal, interval, and ratio
scales [71], there is an urgent need for data standardisation. This rises from the inherent need to
integrate all landslide criteria into the single output in the evaluation process. In this regard, the fuzzy
membership approach is considered one of the frequently applied standardisation methods that have
been proposed [72].

The use of fuzzy sets within GIS-based hazard and susceptibility assessment has been
demonstrated to have a good effect [71-73]. For this reason, fuzzy sets were used in this study. In this
context, all the factors used were standardised to a float-level range of 0-1, where 0 is assigned to the
least susceptible areas and 1 to the most susceptible ones. This transforms the different measurement
units of all landslide casual criteria into comparable values using FMFs [74]. Figure 4 shows selected
and applied FMFs for LSM of the study region.

There is no optimal method for choosing the most appropriate FMF and their respective
parameters; these are generally selected according to the preferences of the DMs [17,75]. However, the
predictive and causal value of landslide casual criteria seems more or less similar in most of the studies.
In this study, three different membership functions have been employed for landslide susceptibility
purpose including sigmoidal (s-shaped) FMFs, i.e., monotonically increasing and monotonically
decreasing, user-defined fuzzy membership functions along with crisp membership functions are
specified for each criterion (see Figure 4). The sigmoidal membership function is likely the most
commonly used FMF in fuzzy set theory, and provides a gradual variation from non-membership
(zero) to complete membership (one) [6,71,72,76], whereas it is sometimes inevitable to use user-defined
FMFs or crisp membership functions. Nevertheless, all applied functions of criteria and the resultant
output raster files are shown in Figures 4 and 5, respectively.
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river, distance to faults and distance to road) and monotonically increasing (for: (d) drainage density
and mean annual rainfall) and (Type III) Crisp MF (for: (e) lithology and (f) land use).
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Figure 5. Obtained output after applying selected membership functions (i.e., Fuzzy or crisp) on each
related parameter: (a) Slope; (b) Aspect; (c) Distance to river; (d) Drainage Density; (e) Distance to
faults; (f) Mean annual rainfall; (g) Distance to roads; (h) Lithology and (i) Land use.

3.3.2. Step 2: Assessment of Weights with Shannon Entropy

Here, this study selects a total number of 76 landslides to calculate the weights of each
landslide criteria in southern Izeh. Following the insertion of all nine selected landslide criteria
into the entropy matrix R, in order to standardise the basic data into the mentioned entropy matrix,
both Equations (1) and (2) were employed along with user defined FMF and crisp MF (Figure 4).
Next, weights of all criteria are determined by the help of Shannon entropy in the successive steps:

1 1.000 0.583 0.747 1.000 0.000 0.143 0.970 1.000 0.300
R — 2 0.337 0.000 0.708 1.000 0.000 0.138 1.000 1.000 0.300 (10)
o M M M M M M M M M

7'6 0.364 0.124 0.000 0.140 0.184 0.122 1.000 0.900 0.600
Entropy values and weights can be calculated using (4)—(7):

Ejz{ 0.883 0.874 0.735 0.902 0.715 0.861 0.915 0.927 0.902} (11)

v; {0.116 0.097 0.264 0.097 0.284 0.138 0.084 0.072 0.097} (12)

wj:{ 0.090 0.097 0.206 0.075 0.222 0.108 0.066 0.056 0.075 (13)

——
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Finally, after further calculation of entropy value, we obtain the weights (Table 2) to be used in
criteria integration in the next step.

Table 2. The calculated weight vector from Shannon entropy method.

Criteria Weight
Slope 0.090
Aspect 0.097
Distance to river 0.206

Drainage density 0.075
Distance to Fault 0.222

Rainfall 0.108
Distance to roads 0.066
Lithology 0.056

Land use/cover 0.075

3.3.3. Step 3: Integration Phase

The prepared database of LSM is successfully georeferenced using Universal Transverse Mercator
(UTM) coordinate system in the ArcGIS environment. The weight derived from Shannon entropy index
for each landslide related criteria is calculated using the 76 occurred landslide events and is applied
for integration purpose. Afterwards, the resultant susceptibility map is calculated as the summation of
the weighted criteria as shown in Equation (9).

Using all the factors (Table 1), susceptibility values range from 0 to 8.00 showing various levels of
susceptibility. The higher susceptibility values refer greater probability of expected landslides occurrence
in the near future. Finally, the landslide susceptibility map (Figure 6) is divided into five susceptibility
classes very low, low, moderate, high and very high using natural breaks classification.

211000 azuouu azaovu 35000 aarvvu
1 1 L L L

3530000
3530000

3520000
3520000

3510000

3510000

3500000
3500000

3490000
3490000

Susceptibility

Very Low
e} Low
Moderate
High
Very High
Train Landslides
Test Landslides
9

3480000
3480000

411000 420000 429000 438000 447000

Figure 6. Final susceptibility map using the proposed hybrid GIS-based method. A, B and C circles
are only for better representation of contiguous landslide points density and positions within the
study area.
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The “natural breaks” classifier is based on natural grouping of data values. Normally,
the breakpoints are identified by looking for groups and patterns inherent in the data. However,
the reasons for using certain methods in previous works are usually not explained by the authors.
In this study, the manual classifier method was used to reclassify the LSM values into five different
susceptibility zones, according to the classification method that was proposed by [77].

4. Results

After layer standardisation of landslide casual criteria, the susceptibility map was produced based
on a hybrid GIS-based LSM technique (see Figure 6). In terms of criteria weighting, typically, in spatial
MCDA (multi-criteria decision analysis) problems the greater the value of the entropy corresponding to
a spatial attribute, which implies the smaller attribute’s weight, the less the discriminant power of that
attribute in decision-making process (see Equation (8)) [54]. Accordingly, fault and river criteria are
considered as the two first important landslide criteria. Also, the distance from faults and river criteria
both indicate potential trigger factors of the slope failure, are also among the principal indexes of
alandslide. As a result, the objectively obtained weights of the landslide related criteria using Shannon
entropy index is consistent with the basic rules of identification, characterization and development
of landslides.

4.1. Validation of the Results Using ROC Curve

The validation phase could be considered as one of the most fundamental stages in the
development of all susceptibility maps and determination of their prediction capability for future usage
in any natural hazards study and managements. The prediction efficacy of each LSM and its resultant
output is typically evaluated by using available independent information of recorded landslide events,
which are not used through LSM process (i.e., test subset of landslide inventory map) [17]. As a result,
in the present study, the landslide inventory database has been divided into two parts, including
training and test datasets. Therefore, the accuracy of the proposed LSM in the study area was evaluated
by calculating relative operating characteristics (ROC) [17,24,78] and percentage of known occurred
landslides events in various susceptibility classes using test landslide samples. Here, the Area under the
ROC Curve (AUC) value, ranging from 0.5 to 1.0, is a numeric indicator of map accuracy. Meaning that
AUC is close to 1, the result of the test is more reliable, while closer the AUC to 0.5 indicates to the less
reliable result [17,31].

In pursuance of further implementation of the ROC evaluation technique, a precise and
comprehensive test dataset was prepared using 32 landslides and 32 randomly selected non-landslide
points of the study area. In this regard, following the early identification of landslide-free area using
aerial photo interpretation and field survey, non-landslide points are selected within the boundary
of these landslide-free areas. Subsequently, the AUC value of 0.934 has been obtained with standard
deviation (area) of 0.034 (see Figure 7).

ROC Curve
1.0+
=
2
s
LS
L33
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Figure 7. ROC curve for the proposed Landslide Susceptibility Map (LSM) of fuzzy Shannon entropy.
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4.2. Validation of the Results Using Simple Overlay

In the second validation process, the LSM result has been evaluated using the test landslide
locations, accordingly, these 32 points were overlaid on the susceptibility map of proposed hybrid
GIS-based LSM (see Figure 6). The result shows that approximately about 90 percent of the recorded
landslides occurred in the high and very high susceptibility classes, which only cover 30.63% of
the study area, while, no recorded landslide appears in the low and very low susceptibility zones.
In addition to the above, only three landslide points (=10% of all recorded landslides) fall into the
medium susceptibility zone of the map, which covers about 18.22% of the study area (see Figure 8).
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Figure 8. Histogram of calculated landslide susceptibility map showing the relative areas for each
susceptibility class (susceptibility classes are labelled with the numbers of the observed landslide
points accordingly).

5. Discussion

The accuracy of predictive models is considered a major concern in the majority of environmental
modelling applications including LSM [50]. The predictive accuracy of subjective LSM models can be
affected by the inherent bias that emanates from DMs’ point of view during both data standardisation
and criteria weighting. Moreover, the absence of expert DMs may be a serious hindrance in the LSM
process when using a subjective method. Considering criteria standardization schemes, by applying
a more computationally intensive approach we attempted to preserve the original quality of spatial
data. In this respect using a variety of FMFs positively affected the validity and accuracy of input
spatial criteria. Therefore, missing or generalised values can represent otherwise precise data. Further,
the proposed methodology shows promising results to predict landslide susceptibility values regardless
of experts” opinion. According to the obtained results, the accuracy of the proposed hybrid model is
improved significantly compared with the accuracy of accurate subjective approaches, which have
been previously implemented in the study area using the same dataset [44].

5.1. Obtained Results and Relevance to the Previous Studies

Considering the high frequency of landslides ocurring in several areas of southern Izeh, there was
a demand to establish an accurate landslide susceptibility map. The expected accuracy of LSM depends
not only on the presence of concise and comprehensive data, in terms of data scale and accuracy, but
also on the selection of the appropriate methodology of data processing and modelling [15]. Regardless
of data scale and accuracy, the present study aimed to explore landslide susceptibility of southern
Izeh by developing a hybrid GIS-based LSM that uses neither DM's evaluation nor sophisticated
objective methods. This is an integrated strategic LSM framework with an emphasis on structuring
the decision-making process problem. Within this approach, Shannon entropy was employed to
determine the criteria weightings from an objective evaluation of spatial domain while different fuzzy
membership functions were employed for criteria standardization.
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Obtained results of ROC curve analysis (AUC = 0.934) (see Figure 7) and simple overlay technique
(see Figure 8) signify that the proposed hybrid fuzzy Shannon entropy evaluation technique is
a promising tool for integrating multiple raster-based criteria for LSM while there is not sufficient
knowledge about the criteria weights with respect to landslide mechanism of the study region.
The previous study using the same dataset through extended fuzzy multi-criteria evaluation which
was built on the basis of DMs’ evaluation achieved AUC value of 0.894 [44]. This further approves the
capability of proposed hybrid model for prediction of landslide susceptibility values. In other words,
achieved results of accuracy metrics comparison approves that the proposed LSM model can achieve
superior prediction accuracy to what that can be achieved by using DMs’ points of view (Table 3),
with significant time saving.

Table 3. Accuracy metrics of implemented data-driven (objective) and expert-driven (subjective) LSMs
using fuzzy Shannon entropy and extended fuzzy multi-criteria evaluation methods, respectively.

Metric Objective Weighting Approach  Subjective Weighting Approach
Number of Cases 64 212
Number Correct 56 (76% of total) 173 (81% of total)
AUC 0.93 0.89
Std. Dev. (Area) 0.01 0.02
Accuracy 76.6% 81.6%
Sensitivity 100.0% 98.1%
Specificity 53.1% 65.1%
Pos Cases Missed 0 2
Neg Cases Missed 15 37

5.2. Spatial Information Extraction and Prediction

This study contributed in the area of the spatially structured dilemma of predicting landslide
susceptibility values for specific geographic locations. This may be implemented through standardising
and subsequent summing of landslide casual criteria. In this paper, we attempted to present
an assessment of LSM, carried out by the implementation of hybrid fuzzy Shannon entropy evaluation
within which fuzzy set theory has been used for criteria standardisation, and Shannon entropy
algorithm was used for weighting of some factors that may affect the landslide susceptibility. Therefore,
the prepared hybrid susceptibility map is the result of a pixel-based combination of nine standardised
criteria affecting the degree of landslide susceptibility. The optimal criteria weights are obtained
objectively by a precise mathematical solution through the proposed entropy-based model [79]. In this
respect, the lower the landslide entropy of a criterion, the higher the weight is. In other words, a lower
landslide entropy within certain criteria (i.e., distance to faults and distance to river) indicates the
presence of predictive spatial frequency and vice versa.

Further, as expected, the estimated data driven (objective) criteria weights using Shannon entropy
algorithm do not conform to the subjective criteria weights estimated using an aggregation of DMs’
votes from our prior research (Figure 9).

According to the obtained fuzzy Shannon entropy criteria weighting scheme results the distance
to fault is the most important criterion, followed by distance to river and rainfall criteria, respectively.
Therefore, considering the estimated criteria weights, the spatial distribution of landslide susceptibility
values is mostly controlled by these mentioned criteria. This may be further proved by the high
concentration of recorded landslide events along the Karun River (Figure 6). Nonetheless, considering
the DMs’ evaluation slope is referred to as the most significant criterion followed by lithology and
distance to road layers. Considering these two weighting approach, fuzzy Shannon entropy seems
more realistic for predictive modelling of spatial pattern of landslides compared to the latter method.
Even though the slope criterion is of paramount importance in any shape of slope instability, it is not the
only constituent of landslides. Accordingly, the spatial pattern of landslides (at least in the study region)
is controlled by other important but less geographically available landslide casual criteria (distance
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to fault, distance to river and rainfall criteria). In other words, if similar high susceptible values of
slope (or any other criteria) are prevailing all around a region while the landslide distribution pattern
is represented by a different spatial order (Figure 5a), a secondary criterion (such as distance to river)
with less availability may be the determinant factor of landslides” spatial distribution (Figure 5c,e,f).
This indicates the insight of the proposed objective weighting scheme in local evaluation of the
landslide casual criteria. In other words, in the current study area, the slope angle is usually sufficient
to influence landsliding. Nonetheless, considering the spatial distribution of landslides, there is limited
evidence which proves that the slope criterion plays an important role in landsliding. In the present
study area, susceptible slope values are distributed almost evenly over the study region; however,
actual landslide events are more or less concentrated along the Karun Canyon. This may be due to the
fact that the required water for slope failure, as a triggering factor, is controlling landslide events in
southern Izeh. Water is not always directly involved as the transporting medium in mass movement
processes while it does play an important role. This is not only proved by the obtained criteria weights
of the Shannon entropy method but also it can be recognized by visual inspection of landslide spatial
patterns and frequency along the Karun River (Figure 6).

0.25
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+
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toriver density to Fault to roads use/cover
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Figure 9. Histogram of estimated data driven (objective) and experts driven (subjective) landslide
casual criteria weights for selected landslide criteria.

Further, considering the results of our proposed objective weighting approach lithology criterion
is the least important among all selected criteria, while the expert opinion refers to the rainfall layer
as the least important. The achieved accuracy value of fuzzy Shannon entropy, however, is still
remarkably superior.

5.3. Decision Aiding and Planning

Many researchers, [13,80,81] have pointed out that the traditional subjective weighting schemes
usually suffer from sensitivity in decision-making and they are susceptible to intrinsic experts’
knowledge errors. Looking into the contribution to decision aiding, this study presents an integrated
strategic weighting procedure using an objective method which determines the criteria weights by
solving mathematical models. This is executed without any consideration of the decision maker’s
preferences as it is a convention in subjective methods, such as the AHP method, OWA method,
Delphi method, etc. In other words, this article introduces an objective approach that integrates
fuzzy set theory and information theory algorithm (i.e., Shannon entropy), which could be a useful
geospatial tool for integrating multiple features/attributes that affect the LSM process. This can largely
compensate for the absence of expert DMs or the lack of local knowledge about study area when it
comes to producing quality LSMs.
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5.4. Limitation of the Proposed Methodology in LSM

While information theory-based methods such as the one proposed in the present research have
shown considerable potential in different predictive spatial modelling scenarios, they do have their
own limitations. Even though the application of the proposed methodology as an objective weighting
scheme is not dependent on decision maker’s expertise and judgment, it relies on quantification of
defined attributes of landslide data points using step by step mathematical computations. This is
conditional on the existence of a concise and representative database. In terms of the present research,
the availability of a comprehensive and readily accessible landslide inventory database was quite
beneficial in achieving the desired outcome.

Another limitation of the implemented methodology is observable in particular in the NE part of
the study region where false alarms exist in the form of low slope areas indicated as a high susceptibility
class (very few pixels as a very high susceptible class). This is mainly due to the fact that the slope angle
is not characterised as a primary criterion shaping the landslide occurrence spatial pattern. Most LSM
approaches end up with extremely high false positive rates in terms of high or very high susceptible
areas compared to the total landslide areas. This problem is not only limited to our study, therefore,
we would like to call the attention of the physical geography community, in particular methodological
development researchers, to exploring ways to reduce the problem of over-estimated susceptibility in
future studies.

Further, after fitting the desired membership function, the proposed fuzzy Shannon entropy
technique considers the dataset as a collection of distributions, which may not be suitable to extract
specific spatial structures embedded in the underlying features/attributes [82]. Even though datasets
with the same histogram certainly have the same entropy (i.e., distance to river and distance to fault in
the present study), the distributions of their data values in space could be totally different. In addition,
the result can be sensitive to the level of discretization caused by different membership functions
(i.e., crisp or fuzzy) when using the histogram. We believe that further interest from researchers with
access to larger data sample sizes is vital for developing more robust entropy-based LSM methods that
can incorporate generalizable results.

6. Conclusions

This study showed promising results for GIS-SMCDA tackling two major limitations. Firstly,
the inherent subjectivity which emanates from decision makers’ (DMs’) preferences is diminished during
the criteria standardization phase. Secondly, intrinsic biases and probable errors of DMs’ preferences
corresponding to the subjective weighting approaches are also eliminated using the proposed LSM
model. This LSM approach involves a thoughtful selection and elaborative standardization of landslide
casual criteria while weighting procedures are accomplished using an objective method. This is
performed by constructing a mathematical approach without any consideration of the DMs’ preferences
from the beginning to the end of model implementation. Our results show that the integration of fuzzy
sets with Shannon entropy can contribute to the production of landslide susceptibility maps with
a reasonably high level of reliability. Finally, considering the fact that the proposed hybrid method has
the advantage of objective weight evaluation, it can be used not only in similar areas of geo-hazard
risk assessment and mapping, such as land subsidence, earthquake and flood risk mapping, but also
in multi-hazard risk assessment for a further combination of risk elements. However, in order to
apply the proposed objective weighting approach more generally by conducting different case studies,
new hybrid models of GIS-based landslide susceptibility mapping need to be developed.

Acknowledgments: This research was supported by CSIRO Australian Sustainable Agriculture Scholarship
(ASAS) as a top-up scholarship to Majid Shadman Roodposhti, a PhD scholar, at the University of Tasmania
(RT109121), School of Land and Food. We thank three anonymous reviewers for their suggestions in improving
the manuscript. Special thanks to Brett A. Bryan and Jeff Connor from CSIRO, Australia for their support.

Author Contributions: This paper was prepared using the contributions of all the authors. All authors have read
and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Entropy 2016, 18, 343 17 of 20

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Varnes, D.J. Slope movement types and processes. Transp. Res. Board Spec. Res. 1978, 176, 11-33.

Brabb, E.E. Innovative approaches to landslide hazard and risk mapping. In Proceedings of the
Fourth International Symposium on Landslides; Canadian Geotechnical Society: Torento, Canada, 1984;
Volume 1, pp. 307-324.

Ercanoglu, M.; Gokceoglu, C. Use of fuzzy relations to produce landslide susceptibility map of a landslide
prone area (West Black Sea Region, Turkey). Eng. Geol. 2004, 75, 229-250. [CrossRef]

Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Spatial prediction of landslide hazards in Hoa
Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy
logic models. Catena 2012, 96, 28—40.

Atkinson, PM.; Massari, R. Autologistic modelling of susceptibility to landsliding in the Central Apennines,
Italy. Geomorphol. 2011, 130, 55-64. [CrossRef]

Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338-353. [CrossRef]

De Luca, A.; Termini, S. A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory.
Inf. Control 1972, 20, 301-312. [CrossRef]

Kosko, B. Fuzzy entropy and conditioning. Inf. Sci. 1986, 40, 165-174. [CrossRef]

Majernik, V. Entropy—A universal concept in sciences. Nat. Sci. 2014, 6, 552-564. [CrossRef]

Xu, C.; Dai, F; Xu, X.; Lee, Y.H. GIS-based support vector machine modeling of earthquake-triggered
landslide susceptibility in the Jianjiang River watershed, China. Geomorphology 2012, 145, 70-80. [CrossRef]
Shahabi, H.; Hashim, M.; Ahmad, B.B. Remote sensing and GIS-based landslide susceptibility mapping using
frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Iran. Environ. Earth Sci.
2015, 73, 8647-8668. [CrossRef]

Wang, W.D.; Guo, ].; Fang, L.G.; Chang, X.S. A subjective and objective integrated weighting method for
landslides susceptibility mapping based on GIS. Environ. Earth Sci. 2012, 65, 1705-1714. [CrossRef]
Feizizadeh, B.; Blaschke, T. GIS-multicriteria decision analysis for landslide susceptibility mapping;:
Comparing three methods for the Urmia lake basin, Iran. Nat. Hazards 2013, 65, 2105-2128. [CrossRef]
Ayalew, L.; Yamagishi, H.; Ugawa, N. Landslide susceptibility mapping using GIS-based weighted linear
combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 2004, 1, 73-81.
[CrossRef]

Yalcin, A. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate
statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena 2008, 72, 1-12. [CrossRef]
Neaupane, K.M.; Piantanakulchai, M. Analytic network process model for landslide hazard zonation.
Eng. Geol. 2006, 85, 281-294. [CrossRef]

Roodposhti, M.S.; Rahimi, S.; Beglou, M.]. PROMETHEE II and fuzzy AHP: An enhanced GIS-based
landslide susceptibility mapping. Nat. Hazards 2014, 73, 77-95. [CrossRef]

Barredo, J.; Benavides, A.; Hervés, J.; van Westen, C. J. Comparing heuristic landslide hazard assessment
techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. Int. |. Appl. Earth Obs. Geoinf. 2000, 2,
9-23. [CrossRef]

Van Westen, C.J.; Getahun, F.L. Analyzing the evolution of the Tessina landslide using aerial photographs
and digital elevation models. Geomorphology 2003, 54, 77-89. [CrossRef]

Ruff, M.; Czurda, K. Landslide susceptibility analysis with a heuristic approach in the Eastern Alps
(Vorarlberg, Austria). Geomorphology 2008, 94, 314-324. [CrossRef]

Lee, S.; Min, K. Statistical analysis of landslide susceptibility at Yongin, Korea. Environ. Geol. 2001, 40,
1095-1113. [CrossRef]

Havenith, H.B.; Strom, A.; Caceres, F; Pirard, E. Analysis of landslide susceptibility in the Suusamyr region,
Tien Shan: Statistical and geotechnical approach. Landslides 2006, 3, 39-50. [CrossRef]

Greco, R.; Sorriso-Valvo, M.; Catalano, E. Logistic regression analysis in the evaluation of mass movements
susceptibility: The Aspromonte case study, Calabria, Italy. Eng. Geol. 2007, 89, 47—66. [CrossRef]

Nandi, A.; Shakoor, A. A GIS-based landslide susceptibility evaluation using bivariate and multivariate
statistical analyses. Eng. Geol. 2010, 110, 11-20. [CrossRef]

Ozdemir, A. Landslide susceptibility mapping using Bayesian approach in the Sultan Mountains
(Aksehir, Turkey). Nat. Hazards 2011, 59, 1573-1607. [CrossRef]


http://dx.doi.org/10.1016/j.enggeo.2004.06.001
http://dx.doi.org/10.1016/j.geomorph.2011.02.001
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0019-9958(72)90199-4
http://dx.doi.org/10.1016/0020-0255(86)90006-X
http://dx.doi.org/10.4236/ns.2014.67055
http://dx.doi.org/10.1016/j.geomorph.2011.12.040
http://dx.doi.org/10.1007/s12665-015-4028-0
http://dx.doi.org/10.1007/s12665-011-1148-z
http://dx.doi.org/10.1007/s11069-012-0463-3
http://dx.doi.org/10.1007/s10346-003-0006-9
http://dx.doi.org/10.1016/j.catena.2007.01.003
http://dx.doi.org/10.1016/j.enggeo.2006.02.003
http://dx.doi.org/10.1007/s11069-012-0523-8
http://dx.doi.org/10.1016/S0303-2434(00)85022-9
http://dx.doi.org/10.1016/S0169-555X(03)00057-6
http://dx.doi.org/10.1016/j.geomorph.2006.10.032
http://dx.doi.org/10.1007/s002540100310
http://dx.doi.org/10.1007/s10346-005-0005-0
http://dx.doi.org/10.1016/j.enggeo.2006.09.006
http://dx.doi.org/10.1016/j.enggeo.2009.10.001
http://dx.doi.org/10.1007/s11069-011-9853-1

Entropy 2016, 18, 343 18 of 20

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

Budimir, M.E.A.; Atkinson, PM.; Lewis, H.G. A systematic review of landslide probability mapping using
logistic regression. Landslides 2015, 12, 419-436. [CrossRef]

Shahabi, H.; Hashim, M. Landslide susceptibility mapping using GIS-based statistical models and Remote
sensing data in tropical environment. Sci. Rep. 2015, 5, 9899. [CrossRef] [PubMed]

Lee, S.; Ryu, J.H.; Won, ].S.; Park, H.J. Determination and application of the weights for landslide
susceptibility mapping using an artificial neural network. Eng. Geol. 2004, 71, 289-302. [CrossRef]
Pradhan, B.; Lee, S. Regional landslide susceptibility analysis using back-propagation neural network model
at Cameron Highland, Malaysia. Landslides 2010, 7, 13-30. [CrossRef]

Carrara, A. Multivariate models for landslide hazard evaluation. J. Int. Assoc. Math. Geol. 1983, 15, 403—426.
[CrossRef]

Pradhan, B. A comparative study on the predictive ability of the decision tree, support vector machine
and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 2013, 51, 350-365.
[CrossRef]

Bui, D.T.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide
hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks,
kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361-378.

Conforti, M.; Pascale, S.; Robustelli, G.; Sdao, F. Evaluation of prediction capability of the artificial neural
networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy).
Catena 2014, 113, 236-250. [CrossRef]

Dou, J.; Yamagishi, H.; Pourghasemi, H.R.; Yunus, A.P; Song, X.; Xu, Y.; Zhu, Z. An integrated artificial
neural network model for the landslide susceptibility assessment of Osado Island, Japan. Nat. Hazards 2015,
78,1749-1776. [CrossRef]

Yeon, Y.K.; Han, J.G.; Ryu, K.H. Landslide susceptibility mapping in Injae, Korea, using a decision tree.
Eng. Geol. 2010, 116, 274-283. [CrossRef]

Hong, H.; Pradhan, B.; Xu, C.; Bui, D.T. Spatial prediction of landslide hazard at the Yihuang area (China)
using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena
2015, 133, 266-281. [CrossRef]

Youssef, A.M.; Pourghasemi, H.R.; El-Haddad, B.A.; Dhahry, B.K. Landslide susceptibility maps using
different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad
Basin, Asir Region, Saudi Arabia. Bull. Eng. Geol. Environ. 2016, 75, 63-87. [CrossRef]

Pourghasemi, H.R.; Mohammady, M.; Pradhan, B. Landslide susceptibility mapping using index of entropy
and conditional probability models in GIS: Safarood Basin, Iran. Catena 2012, 97, 71-84. [CrossRef]
Constantin, M.; Bednarik, M.; Jurchescu, M.C.; Vlaicu, M. Landslide susceptibility assessment using the
bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ. Earth Sci. 2011,
63, 397-406. [CrossRef]

Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yoshida, K.; Pradhan, B.; Ryu, I.C.; Dhital, M.R;;
Althuwaynee, O.F. Landslide susceptibility mapping using certainty factor, index of entropy and logistic
regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya.
Nat. Hazards 2013, 65, 135-165. [CrossRef]

Tsangaratos, P.; Ilia, I. Combining fuzzy logic and information theory for producing a landslide susceptibility
model. In Proceedings of the 14th International Congress of the Geological Society of Greece, Thessaloniki,
Greece, 25-27 May 2016; Volume 50, pp. 34-46.

Zongji, Y.; Jianping, Q.; Xiaogang, Z. Regional landslide zonation based on entropy method in Three Gorges
area, China. In Proceedings of the Fuzzy Systems and Knowledge Discovery (FSKD), Yantai, China,
10-12 August 2010; pp. 1336-1339.

Davis, J.; Blesius, L. A hybrid physical and maximum-entropy landslide susceptibility model. Entropy 2015,
17,4271-4292. [CrossRef]

Feizizadeh, B.; Roodposhti, M.S.; Jankowski, P.; Blaschke, T. A GIS-based extended fuzzy multi-criteria
evaluation for landslide susceptibility mapping. Comput. Geosci. 2014, 73, 208-221. [CrossRef] [PubMed]
Ministry of Natural Resources. Landslide Event Report; Ministry of Natural Resources: Khuzestan, Iran, 2010.
Komac, M. A landslide susceptibility model using the analytical hierarchy process method and multivariate
statistics in perialpine Slovenia. Geomorphology 2006, 74, 17-28. [CrossRef]


http://dx.doi.org/10.1007/s10346-014-0550-5
http://dx.doi.org/10.1038/srep09899
http://www.ncbi.nlm.nih.gov/pubmed/25898919
http://dx.doi.org/10.1016/S0013-7952(03)00142-X
http://dx.doi.org/10.1007/s10346-009-0183-2
http://dx.doi.org/10.1007/BF01031290
http://dx.doi.org/10.1016/j.cageo.2012.08.023
http://dx.doi.org/10.1016/j.catena.2013.08.006
http://dx.doi.org/10.1007/s11069-015-1799-2
http://dx.doi.org/10.1016/j.enggeo.2010.09.009
http://dx.doi.org/10.1016/j.catena.2015.05.019
http://dx.doi.org/10.1007/s10064-015-0734-9
http://dx.doi.org/10.1016/j.catena.2012.05.005
http://dx.doi.org/10.1007/s12665-010-0724-y
http://dx.doi.org/10.1007/s11069-012-0347-6
http://dx.doi.org/10.3390/e17064271
http://dx.doi.org/10.1016/j.cageo.2014.08.001
http://www.ncbi.nlm.nih.gov/pubmed/26089577
http://dx.doi.org/10.1016/j.geomorph.2005.07.005

Entropy 2016, 18, 343 19 of 20

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Conoscenti, C.; Di Maggio, C.; Rotigliano, E. GIS analysis to assess landslide susceptibility in a fluvial basin
of NW Sicily (Italy). Geomorphology 2008, 94, 325-339. [CrossRef]

Thiery, Y.; Malet, ].P.; Sterlacchini, S.; Puissant, A.; Maquaire, O. Landslide susceptibility assessment by
bivariate methods at large scales: Application to a complex mountainous environment. Geomorphology 2007,
92, 38-59. [CrossRef]

Kayastha, P; Dhital, M.R.; De Smedt, F. Landslide susceptibility mapping using the weight of evidence
method in the Tinau watershed, Nepal. Nat. Hazards 2012, 63, 479-498. [CrossRef]

Bennett, N.D.; Croke, B.E.; Guariso, G.; Guillaume, J.H.; Hamilton, S. H.; Jakeman, A.].; Marsili-Libelli, S.;
Newham, L.T.; Norton, J.P; Perrin, C.; et al. Characterising performance of environmental models.
Environ. Model. Softw. 2013, 40, 1-20. [CrossRef]

Kritikos, T.; Robinson, T.R.; Davies, T.R. Regional coseismic landslide hazard assessment without historical
landslide inventories: A new approach. J. Geophys. Res. Earth Surf. 2015, 120, 711-729. [CrossRef]

Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility
mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15-31. [CrossRef]
Guzzetti, F; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the quality of landslide
susceptibility models. Geomorphology 2006, 81, 166-184. [CrossRef]

Lotfi, FH.; Fallahnejad, R. Imprecise Shannon’s entropy and multi attribute decision making. Entropy 2010,
12, 53-62. [CrossRef]

Sabokbar, H.F; Roodposhti, M.S.; Tazik, E. Landslide susceptibility mapping using geographically-weighted
principal component analysis. Geomorphology 2014, 226, 15-24. [CrossRef]

Pareek, N.; Sharma, M.L.; Arora, M.K. Impact of seismic factors on landslide susceptibility zonation: A case
study in part of Indian Himalayas. Landslides 2010, 7, 191-201. [CrossRef]

Kanungo, D.P,; Arora, M.K,; Sarkar, S.; Gupta, R.P. A comparative study of conventional, ANN black
box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in
Darjeeling Himalayas. Eng. Geol. 2006, 85, 347-366. [CrossRef]

Lee, S.; Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic
regression models. Landslides 2007, 4, 33—41. [CrossRef]

Marjanovi¢, M.; Kovacevi¢, M.; Bajat, B.; VoZenilek, V. Landslide susceptibility assessment using SVM
machine learning algorithm. Eng. Geol. 2011, 123, 225-234. [CrossRef]

Shahabi, H.; Ahmad, B.B.; Khezri, S. Evaluation and comparison of bivariate and multivariate statistical
methods for landslide susceptibility mapping (case study: Zab basin). Arab. |. Geosci. 2013, 6, 3885-3907.
[CrossRef]

Hong, Y.; Hiura, H.; Shino, K.; Sassa, K.; Suemine, A.; Fukuoka, H.; Wang, G. The influence of intense rainfall
on the activity of large-scale crystalline schist landslides in Shikoku Island, Japan. Landslides 2005, 2, 97-105.
[CrossRef]

Guzzetti, F,; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central
and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239-267. [CrossRef]

Youssef, A.M.; Maerz, N.H.; Hassan, A.M. Remote sensing applications to geological problems in Egypt:
Case study, slope instability investigation, Sharm El-Sheikh/Ras-Nasrani Area, Southern Sinai. Landslides
2009, 6, 353-360. [CrossRef]

Bathrellos, G.D.; Kalivas, D.P.; Skilodimou, H.D. GIS-based landslide susceptibility mapping models applied
to natural and urban planning in Trikala, Central Greece. Estud. Geol. 2009, 65, 49-65. [CrossRef]

Akgun, A.; Sezer, E.A.; Nefeslioglu, H.A.; Gokceoglu, C.; Pradhan, B. An easy-to-use MATLAB program
(MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Comput. Geosci.
2012, 38, 23-34. [CrossRef]

Giunli, A.; Sivrikaya, F; Baskent, E.Z.; Keles, S.; Cakir, G.; Kadiogullari, A.I. Estimation of stand type
parameters and land cover using landsat-7 ETM image: A case study from Turkey. Sensors 2008, 8, 2509-2525.
Shi, Y.F; Jin, FX. Landslide stability analysis based on generalized information entropy. In Proceedings of the
International Conference on Environmental Science and Information Application Technology (ESIAT 2009),
Los Alamitos, CA, USA, 4-5 July 2009; pp. 83-85.

Sujatha, E.R. Geoinformatics based landslide susceptibility mapping using probabilistic analysis and entropy
index of Tevankarai stream sub-watershed, India. Disaster Adv. 2012, 5, 26-33.


http://dx.doi.org/10.1016/j.geomorph.2006.10.039
http://dx.doi.org/10.1016/j.geomorph.2007.02.020
http://dx.doi.org/10.1007/s11069-012-0163-z
http://dx.doi.org/10.1016/j.envsoft.2012.09.011
http://dx.doi.org/10.1002/2014JF003224
http://dx.doi.org/10.1016/j.geomorph.2004.06.010
http://dx.doi.org/10.1016/j.geomorph.2006.04.007
http://dx.doi.org/10.3390/e12010053
http://dx.doi.org/10.1016/j.geomorph.2014.07.026
http://dx.doi.org/10.1007/s10346-009-0192-1
http://dx.doi.org/10.1016/j.enggeo.2006.03.004
http://dx.doi.org/10.1007/s10346-006-0047-y
http://dx.doi.org/10.1016/j.enggeo.2011.09.006
http://dx.doi.org/10.1007/s12517-012-0650-2
http://dx.doi.org/10.1007/s10346-004-0043-z
http://dx.doi.org/10.1007/s00703-007-0262-7
http://dx.doi.org/10.1007/s10346-009-0158-3
http://dx.doi.org/10.3989/egeol.08642.036
http://dx.doi.org/10.1016/j.cageo.2011.04.012

Entropy 2016, 18, 343 20 of 20

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.
82.

Mon, D.L.; Cheng, C.H.; Lin, J.C. Evaluating weapon system using fuzzy analytic hierarchy process based
on entropy weight. Fuzzy Sets Syst. 1994, 62, 127-134. [CrossRef]

Wang, E; Cao, Y,; Liu, M. Risk early-Warning method for natural disasters based on integration of entropy
and DEA model. Appl. Math. 2011, 2, 23-32. [CrossRef]

Akgun, A.; Tirk, N. Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by
multicriteria decision analysis. Environ. Earth Sci. 2010, 61, 595-611. [CrossRef]

Liu, ].G.; Mason, PJ.; Hilton, E; Lee, H. Detection of rapid erosion in SE Spain: A GIS approach based on ERS
SAR coherence imagery: INSAR Application. Photogramm. Eng. Remote Sens. 2004, 70, 1179-1185. [CrossRef]
Mason, PJ.; Rosenbaum, M. Geohazard mapping for predicting landslides: An example from the Langhe
Hills in Piemonte, NW Italy. Q. J. Eng. Geol. Hydrogeol. 2002, 35, 317-326. [CrossRef]

Gemitzi, A,; Petalas, C.; Tsihrintzis, V.A.; Pisinaras, V. Assessment of groundwater vulnerability to pollution:
A combination of GIS, fuzzy logic and decision making techniques. Environ. Geol. 2006, 49, 653—673. [CrossRef]
Rojas-Mora, J.; Josselin, D.; Aryal, J.; Mangiavillano, A.; Ellerkamp, P. The weighted fuzzy barycenter:
Definition and application to forest fire control in the PACA region. Int. ]. Agric. Environ. Inf. Syst. 2013, 4,
48-67. [CrossRef]

Eastman, J.R. IDRISI Kilimanjaro: Guide to GIS and Image Processing; Clark University: Worcester, MA,
USA, 2003.

Galang, J.S. A Comparison of GIS Approaches to Slope Instability Zonation in the Central Blue Ridge
Mountains of Virginia. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA,
USA, 21 December 2004.

Fawecett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861-874. [CrossRef]

Stein, A.; Aryal, J.; Gort, G. Use of the Bradley-Terry model to quantify association in remotely sensed images.
IEEE Trans. Geosci. Remote Sens. 2005, 43, 852-856. [CrossRef]

Lerner, J.S.; Li, Y.; Valdesolo, P.; Kassam, K.S. Emotion and decision making. Annu. Rev. Psychol. 2015, 66,
799-823. [CrossRef] [PubMed]

Castellan, N.J. Individual and Group Decision Making: Current Issues; Psychology Press: Hove, UK, 2013.
Wang, C.; Shen, H.-W. Information theory in scientific visualization. Entropy 2011, 13, 254-273. [CrossRef]

@ © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/0165-0114(94)90052-3
http://dx.doi.org/10.4236/am.2011.21003
http://dx.doi.org/10.1007/s12665-009-0373-1
http://dx.doi.org/10.14358/PERS.70.10.1179
http://dx.doi.org/10.1144/1470-9236/00047
http://dx.doi.org/10.1007/s00254-005-0104-1
http://dx.doi.org/10.4018/ijaeis.2013100103
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1109/TGRS.2005.843569
http://dx.doi.org/10.1146/annurev-psych-010213-115043
http://www.ncbi.nlm.nih.gov/pubmed/25251484
http://dx.doi.org/10.3390/e13010254
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Description of the Study Region 
	Materials and Methods 
	Landslide Influencing Data Layers 
	Proposed Methodology 
	Fuzzy Membership Function (FMF) 
	Shannon Entropy 
	Hybrid Landslide Susceptibility Mapping Model 

	Methodology Implementation 
	Step 1: Data Standardisation Using FMFs 
	Step 2: Assessment of Weights with Shannon Entropy 
	Step 3: Integration Phase 


	Results 
	Validation of the Results Using ROC Curve 
	Validation of the Results Using Simple Overlay 

	Discussion 
	Obtained Results and Relevance to the Previous Studies 
	Spatial Information Extraction and Prediction 
	Decision Aiding and Planning 
	Limitation of the Proposed Methodology in LSM 

	Conclusions 

