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Abstract: How variability in the brain’s neurophysiologic signals evolves during development
is important for a global, system-level understanding of brain maturation and its disturbance in
neurodevelopmental disorders. In the current study, we use multiscale entropy (MSE), a measure that
has been related to signal complexity, to investigate how this variability evolves during development
across a broad range of temporal scales. We computed MSE, standard deviation (STD) and standard
spectral analyses on resting EEG from 188 healthy individuals aged 8–22 years old. We found
age-related increases in entropy at lower scales (<~20 ms) and decreases in entropy at higher scales
(~60–80 ms). Decreases in the overall signal STD were anticorrelated with entropy, especially in the
lower scales, where regression analyses showed substantial covariation of observed changes. Our
findings document for the first time the scale dependency of developmental changes from childhood
to early adulthood, challenging a parsimonious MSE-based account of brain maturation along a
unidimensional, complexity measure. At the level of analysis permitted by electroencephalography
(EEG), MSE could capture critical spatiotemporal variations in the role of noise in the brain. However,
interpretations critically rely on defining how signal STD affects MSE properties.
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1. Introduction

The brain operates at the “edge of criticality” between formation and dissipation of network
configurations [1], displaying a spontaneous exploratory behavior which, in nonlinear systems, is
critically fueled by noise [2–4]. Such a perspective challenges the intuitive notion of noise as a nuisance
factor and has motivated a rapidly evolving literature seeking significance of brain signals beyond the
traditional emphasis on mean responses into investigating their variability [5].

Development is assumed to progress towards an optimization of virtually all expressions of brain
functions, and a plethora of changes have been detailed affecting all levels of organization. A system
level perspective on development—including an understanding of variability changes—would be
the natural framework to accommodate such global modifications, providing a unified account of the
changes observed through broad, critical developmental periods such as that spanning childhood
to adulthood.

Noise acts on many different spatial and temporal scales from thermal and molecular noise that
modify ion channel densities, to neuronal population firing activity as seen in electroencephalography
(EEG) recordings [6–8]. Given the nontrivial effects of noise, in theory differently affecting each of
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these multiple non-linear processes, it is difficult to predict how the variability in brain signals changes
throughout development. Optimal levels of noise have been postulated—as in the context of stochastic
resonance theory [5,9,10]. Since an identical increase of variability could either deteriorate neuronal
communications or optimize metastable brain dynamics, the directionality of variability changes
assumed to be beneficial to improvements in information processing critically depends on the level at
the initial, immature condition.

The variability in brain signals conveys important information about the neural system
dynamics [8]. Concepts and analysis techniques derived from nonlinear dynamics are applied
under the assumption that the observed time series allows a reconstruction of the underlying
multidimensional system [11]. The analytical challenge is deriving a measure that is able to capture
key aspects of brain dynamics such as complexity. The term is used to refer to the degree of structured
interactions observed in systems that exhibit a mixture of randomness and regularity. Accordingly, an
ideal measure would yield optimal values for meaningful variability while being minimal for both
completely regular and completely random systems [12–15].

Multiscale entropy (MSE [11,12]) has been shown to satisfy this requirement. It captures the
richness of complex signals by computing predictability estimates at multiple time scales. The use
at each scale of a regularity estimator (Sample Entropy, SampEn [16]) that can be applied to finite,
relatively short time series further justified its application to complex biological systems and, foremost,
the brain [17–20].

Despite its appeal, there have been relatively few studies assessing the maturation in MSE
over the course of development. EEG and magnetoencephalography (MEG) studies consistently
reported monotonic increases in MSE, starting from one month to five years [21], and progressing from
infancy into adulthood [20–22]. Time scales up to 28 ms were explored and the emerging picture is a
widespread increase of MSE estimates through development [4]. The relation to complexity—for which
no optimal value and no upper limit is postulated—allowed interpreting findings unambiguously as a
developmental improvement in information processing [18].

However, MSE offers consideration of a few interpretative issues. Particularly relevant to brain
signal analysis are the scale dependency of findings and a special case of parameter dependency, the
definition and normalization of the similarity criterion.

Initial guidelines for comparisons of MSE profiles take a unidimensional approach and suggest
considering one signal to be more complex than another if its entropy estimates are higher for the
majority of time scales [12,15]. However, scale specific findings have also been reported. For instance,
within the same scale range explored throughout development, opposite changes have been observed
at higher and lower scales in aging [18]. When a wider range was explored, scale-specific differences
have also been reported in clinical conditions [19]. It is therefore possible that scale dependency can
be missed if a narrow scale range is explored. One main goal of the present study was to explore
developmental MSE differences over a broader scale range. It should be noted that the upper range
limits are not theoretically motivated but strictly dependent on the length of the examined signal. All
above-mentioned studies investigated the EEG/MEG responses during task execution. Differently
from resting state analysis such paradigms forces the definition of relatively short time windows.
In the current study, we examined age-related changes in resting state EEG in healthy individuals
8–22 years old.

How to define the criterion determining similarity is critical for SampEn computation [23]. The
value of the similarity criterion (r) directly affects the magnitude of entropy estimates, and the very
estimation can fail for r values that are too high or too low [24]. In theory, a principled choice should
be guided by a formal definition of meaningful differences. In practice, it is convenient to normalize
the tolerance by the standard deviation of the original time series. Since signal correlation properties
contribute to entropy estimates, there is no straightforward relationship between signal distribution
and entropy [15]. Accordingly, such normalization of r allows positioning of the definition of similarity
within the amplitude distribution while allowing a complementary description. This is of critical
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importance in developmental studies, where the interaction of dramatic changes in volume conduction
and neuronal generators requires r to be tailored to age-specific EEG/MEG amplitudes [22,25]. In
MSE, the definition of boundaries is complicated by the assessment of similarity at different time
scales. In general, these are adjusted to raw signal standard deviation and kept constant under the
assumption that variance at higher scales contains information about the whole signal [15,24,26].
This reasoning is in contrast with the initial normalization procedure, where variance contribution
to entropy differences is removed, and critically neglects the time scale dependency of variability,
which, during development, is further complicated by the interaction of relative and global power
changes [25]. There is, therefore, a fundamental ambiguity in the interpretation of entropy estimates at
different scales, hindering the goal of gathering complementary information about development and
understanding MSE changes over and beyond spectral differences. Given the importance of making
the definition and normalization of similarity boundaries transparent, we gathered standard deviation
estimates and assessed its relationship to developmental MSE trajectories.

2. Experimental Section

2.1. Participants

One hundred eighty-eight participants in the 8–22 years age range were recruited from the greater
Allegheny County, Pennsylvania to participate in this study. Participants were carefully selected,
uniformly sampled in the target age range and matched for demographic and general cognitive
ability (IQ, Wechsler Abbreviated Scale of Intelligence [27]). For details about sample descriptions, see
Cho et al. [28]. Briefly, any psychiatric or neurological confounding factor was excluded at enrollment.
Seven of the enrolled participants were excluded based on participant withdrawal or technical issues.
Thus, data from 181 participants were entered into the analyses. Written informed consent was
obtained prior to testing in accordance with the Institutional Review Board at the University of
Pittsburgh. For purpose of analysis subjects were binned in demographics matched bins in increments
of three years (8–10, 11–13, 14–16, 17–19, 20–22 years). Sample full scale age-corrected IQ scores
(104.3 ˘ 13.1), were in agreement with normative data (Z181 vs. 100 ˘ 15 = 3.9, p < 0.001), and matched
across bins (Kruskal–Wallis, χ2

4,180 = 5.3, p = 0.25).

2.2. EEG Acquisition and Preprocessing

EEG sessions were conducted in an electrically shielded, sound-attenuated room lit with low-level
ambient light. EEG data were collected using a 128-channel Geodesic Sensor Net (EGI, Eugene, OR,
USA): 250 Hz sampling rate, common reference at Cz, online elliptical bandpass hardware filter
0.01- to 100-Hz, electrode impedances were maintained at or below 50 kΩ. Subjects underwent an
extensive EEG study including resting state acquisitions (70 s eyes open, 70 s eyes closed), cognitive
tasks and auditory event related studies. Here, we present analysis only from the resting state, eyes
open blocks. These were acquired at the beginning of each session.

EEG data were preprocessed using custom MATLAB scripts and exploiting the extended Infomax
independent component analysis (ICA) algorithm [29] as implemented by EEGLAB [30]. Each
participant’s EEG data were segmented into 1 s epochs. Prior to ICA, bad channels and epochs
containing unique, non-stereotyped artifacts were removed. Components capturing stereotyped
artifacts were excluded from reprojection [31]. Residual data segments containing artifacts were
eliminated. All preprocessing was implemented through unsupervised algorithms that allowed blind
and reproducible procedures and improved by exploiting EEG derived electro-oculogram traces [32].

2.3. Analysis

MSE captures predictability of time series at different time scales through calculation of Sample
Entropy (SampEn [16]). First, each time scale level of analysis is achieved by averaging data points
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within non-overlapping windows of increasing length τ (i.e., the scale factor). For a discrete time series,
x = {x1, ..., xi, ... , xN}, such successive coarse-grained time series are {Ypτq}:

Ypτqj “
1
τ

jτ
ÿ

i“pj´1qτ`1

xi, 1 ď j ď
N
τ

(1)

SampEn is then calculated for each {Ypτq}. Taking two similar sequences of a defined pattern
length m, SampEn provides an unbiased estimator of the conditional probability that they remain
similar at the next point—i.e., their distance remains smaller than a matching criterion r. Consider
m-long vectors um(i) and let n prqmi be the number of um(j) vectors whose Euclidean distance is smaller
or equal to r, then:

SampEn pm, r, Nq “ ln
řN´m

i“1 n prqmi
řN´m

i“1 n prqm`1
i

, i ‰ j, 1 ď i ď N ´m (2)

The procedure is analytically described in Costa et al. [12,15]. A popular implementation [33] was
used for consistency with other developmental studies.

Critically SampEn comparisons can only be done with identical m and r [15]. Estimates are
assumed to be robust even for short and noisy time series [16], with stable values beyond a minimum
number of time points [15,26,34]. Such minimum length is conservatively taken to be ~700 [35], but,
more precisely, it is known depends on m (~10m [36]). For instance, valid estimates for m = 2 have
been shown for as little as 50 time points [22]. In the context of the MSE algorithm, the length of each
coarse-grained time series at a given scale is N/τ (Equation (1)), where N is the length of the raw time
series. Therefore, N and m define the upper limit of scale factors that can be reliably explored (τmax).

One of the aims of the present study was to extend observations to higher scales. Accordingly,
we used a small value for pattern length—m = 2, i.e., two consecutive data points were used for
pattern matching. Such value is used in most developmental studies and allows an efficient use of
N: τmax = N/50.

We maximized N by computing MSE estimates on 4 s windows, achieved by joining each 4
consecutive 1 s epochs uninterrupted by bad quality epochs allowing an exploration of higher
scale estimates while minimizing data loss for intervening artifacts. τmax was therefore set to
1000/50 = 20. Note that the scale factor τ linearly relates to physical time as a function of the sampling
rate sr, t = τ/sr: τ = 20 corresponds to t = 80 ms. Since scales over 28 ms were not explored in prior
developmental studies, we considerably extended the explored scale range.

The normalized value of r = 0.5 was used here, i.e., a difference between data points equal or
smaller than 50% of the signal standard deviation is considered a match. This value is at the higher
end of values commonly used in EEG/MEG analysis, yet it has been largely used in developmental
studies [20–22]. Larger r values have been associated better and accuracy and confidence of the
SampEn [37]. However, as noted, an upper limit for r values exist [23]. We also verified the consistency
of results for a smaller r = 0.2.

For each subject, MSE estimates, standard deviation (STD), absolute and relative power spectral
densities were computed at each channel for all viable 4 s epochs. Given our focus on detailing the
general trend of wide scale MSE changes, and, in line with the reported widespread spatial distribution
of developmental differences [21], robust subject specific estimates were gathered by averaging mean
values across all epochs for all good channels. This approach effectively reduced the number of
comparisons and allowed a univariate approach. We therefore addressed differences across the five
age bins by fixed effects analyses of variance (ANOVA) with age bin as a factor. MSE developmental
trajectories were detailed through pairwise comparisons across age bins and curve-fitting regression
analyses using age as a continuous predictor variable. Bonferroni correction for significance testing was
applied to adjust for type-1 error inflation for comparisons across the twenty considered time scales
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and for pairwise age bin comparisons at each scale. Finally, we assessed the relation between MSE and
STD through general linear modeling (GLM) and analysis of residuals to address age-dependent lack
of fit of a simple linear model relating the two variables.

3. Results and Discussion

Individual MSE, STD and spectral analysis (PSD) were computed on an average of 13.1 (+/´2)
4 s epochs per participant across all age groups (ANOVA, F4,181 = 1.2; non-significant (n.s.) for α = 5%.
MSE estimates showed scale-dependent age differences (Figure 1). Development was accompanied
by a general increase of entropy values at lower scales (8–20 ms; ANOVA at t = 8 ms, F4,181 = 7.5,
p < 0.001, Bonferroni corrected for comparisons at multiple time scales) and a general decrease at
higher scales (68–72 ms; at t = 80 ms, F4,181 = 5.64, p < 0.001). Pairwise comparisons (t-test, α = 5%
Bonferroni corrected) revealed that, at lower scales (t = 8 ms), the two youngest age bins differed from
each other and from all other age bins; at higher scales (t = 80 ms), all pairwise comparisons were
significant aside those contrasting the two age bins within the youngest and oldest pairs. Such pattern
is consistent with scale-dependent developmental trajectories whose shape has been further addressed
by curve-fitting regression analyses. At lower scales, greater changes occur from ages eight to age
13—quadratic fitting performed better than linear fitting (R2 = 0.31, p < 0.001 vs. R2 = 0.20); conversely,
at higher scales, a faster entropy decrease was observed from ages 13 to age 17—cubic better than
linear fitting (R2 = 0.35, p < 0.001 vs. R2 = 0.21). Estimates for r = 0.2 differed in absolute values but
showed overlapping relative, age-related differences (see Figure 1 inlay; ANOVA at t = 8 ms: F4,181 7.1,
p < 0.001; at t = 80 ms: F4,181 5.5, p < 0.001).
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Figure 1. MSE profiles through development. Age-specific MSE profiles are shown in the upper
panel (* p < 0.001, ANOVA, Bonferroni corrected). These are generally consistent across the examined
matching criteria (r = 0.2 in the inlay). Averages and standard errors for extreme scale values are shown
in the bottom panels, where age bin color coding matches. Differences of opposite signs were observed
for lower scales (up to ~20 ms) and higher scales (beyond ~50 ms). These are related to adults showing
higher values in the lower scales range, with smaller growth gradient in this range and later inversion,
determining a crossing of profiles in the intermediate scale values and relatively smaller entropy at
higher scales. At lower scales, entropy estimates are in good agreement with existent studies, both in
terms of age differences and numerical values (reviewed in [4]). Note that aside generally overlapping
differences, r affects entropy magnitudes and relative gradients over scales, highlighting the potential
dramatic impact of normalization choices.
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EEG spectral properties showed typical global power differences (Figure 2). These were
accompanied by dramatic STD developmental changes (ANOVA, F4,181 = 25.3, p < 0.001). The STD
trajectory roughly followed an opposite trend to what was observed for entropy estimates at lower
scales. In fact, significant correlations between STD changes and entropy were observed up to the
64 ms scale, being maximal at the lowest scales (Figure 3). We further tested the covariance of
STD and MSE by GLM: by using STD as a covariate, age differences vanished at lower scales (at
t = 8 ms: F4,181 = 0.44, n.s.), and survived at higher scales (at 80 ms: F4,181 = 19.0, p < 0.001, Bonferroni
corrected). Accordingly, the prediction of a linear model relating MSE and STD left unaccounted for
an age-dependent distribution of values at higher scales, with residuals showing a pattern similar to
what was observed in the dependent variable (at t = 8 ms: F4,181 = 0.33, n.s.; at t = 80 ms: F4,181 = 8.9,
p < 0.001; Figure 3).
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Figure 2. PSD and STD. Power spectral profiles followed typical age-related differences. Greater
absolute power was observed in children, with development being accompanied by a decrease in total
power and increase in the contribution of energy from higher frequencies. Global power differences
are mirrored in STD changes. As the general 1/f relation observed in EEG signals remains largely
unaffected, relative power differences are highlighted by PSD on signals divided by STD.

Our observations were made on average scalp values during resting state, no-task EEG. While
source analysis studies have reported some anatomical heterogeneity in developmental trajectories,
the overall pattern has been shown to be remarkably consistent across sources [20]. Accordingly, MSE
estimates from electrode time series showed similar general agreement [22], and justified the use of
average whole scalp measure to capture the general progression [21]. In the present study, we did
observe a spatial variation of MSE profiles. However, channel profiles conserved the observed scale
dependency and trajectory across ages, mainly differing in terms of the exact value in which age curves
crossed. This is likely related to relative differences in values between higher and lower scales values
that would not hinder the interpretation of general trajectories.
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Figure 3. MSE and STD. The scale dependency of the association (correlation coefficient, R) between
entropy estimates and STD is shown in the left panel. Higher STD—as observed in children—are
related to lower entropy values particularly at lower scales. Consistently, a strong covariance of values
was observed at lower scales (e.g., scatterplot in lower left inlay), while, at higher scales, adults showed
lower entropy values even beyond the portion of variability explained by STD (e.g., scatterplot in the
upper left inlay). This was evident in the age-dependent distribution of deviations from the fitted
linear model MSE “ α ` STD ˆ β , i.e., residuals (e, shown in the right panel).

MSE patterns have been reported to be task dependent [20] and all prior developmental studies
have investigated EEG/MEG during task execution. Task effects have been shown to be far smaller
than age-related changes and interactions between age and task is also relatively small or null [18,21].
While resting-state is a poorly defined condition, it should be noted that task execution can also
introduce performance related confounds. This is particularly true in a correlative study where a
causal relation between MSE and performance cannot be conclusively established. In fact, task-related
findings appealed to a theoretical framework modelling non-linear resting state interactions at a
systems level [2–4,8]. Accordingly, the reported developmental MSE changes can be interpreted to
capture robust and widespread changes that are potentially related to stable differences in the neuronal
context that support integrated stimulus processing.

Scale dependency of MSE differences complicates their interpretation as maturation along a
unidimensional, complexity measure. At the observation level allowed by EEG, time-scale-dependent
differences have been interpreted to map into spatially distinct processes, relating lower scales to
more anatomical confined patterns and higher scales to more global patterns of activity and long
range connections [18,38]. Therefore, MSE profiles could rather capture spatiotemporal variations
in brain noise and relate to complexity in a scale-dependent way by appealing to general principles
of segregation and integration [14]. Accordingly, in the immature system brain, an increase in
noise at lower scales would optimize metastable brain dynamics [5,20] while deteriorating neuronal
communications at higher scales. Brain maturation appears to be accompanied by a reduction of
this latter variability, and, interestingly, we observed that changes are particularly marked through
adolescence, when critical neurodevelopmental events occur.

Such interpretations commonly juxtapose MSE temporal scales with the frequency domain
framework. However, the relation between spectral properties and MSE estimates is multifaceted.
While a correlation between the two measures is stably shown, they are generally intended as
complementary descriptors of brain signals [18]. We noted that an STD-based definition of the similarity
criterion—which leaves unaccounted the varying contribution of variance and signal autocorrelation
to sample entropy estimates—makes the comparison of sample entropy estimates across different
scales problematic and complicates their interpretation.

A complementary MSE account is possible if spectral properties do not directly affect its
computation. Absolute and low frequency EEG power drive STD values. Therefore, the relative
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magnitude of the similarity criterion to the amplitude of high frequency activity is related to spectral
profile differences and critically affects estimates. Given the signal smoothing that occurs during
coarse graining, the effect is confined to lower scales. The directionality of this effect is captured by the
observed correlation between STD and entropy estimates. The net result is a relative underestimation
of the high frequency contribution to lower scale entropy estimates for children.

4. Conclusions

We assessed age-related changes in maturation of MSE estimates on EEG signals in a large sample
of participants aged eight to 22 years. We replicated prior findings showing increases in MSE entropy
estimates at time scales up to ~20 ms. By extending observations to higher scales up to 80 ms, we
report for the first time a time-scale dependency of developmental changes. At scales higher than
~60 ms, entropy estimates appeared to decrease through development. This pattern was robust and
generally insensitive to normalized r changes from 0.5 to 0.2. Age-related differences in signal STD,
mainly driven by global power and low frequencies changes appeared to be associated with lower scale
differences. A substantial covariation over age between signal STD and lower scale estimates appeared
to nullify the age-related MSE changes when accounting for such changes in signal variability.

Such original findings inform a system level understanding of development by suggesting that
optimal information processing is hindered in the immature brain by noise at higher temporal scales.
This view complements current conceptualizations of maturation, which is believed to improve
metastability increases of lower scale variability.

The sensitivity to temporal variations in brain noise makes the relationship of MSE to complexity
not straightforwardly unidimensional, but more akin to the notion of segregation and integration
which neither in isolation translates into optimal information processing [14]. However, as is made
evident by applying MSE in the context of the rich spectral changes that characterize development, a
clear interpretation of MSE profiles depends on understanding how signal STD affects MSE properties
when the similarity criterion is normalized to it. This in general makes the relative contribution of
variance to entropy scale-dependent and could qualitatively alter assessments of MSE differences
across development and clinical populations.
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