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Abstract: Online auction websites use a simple reputation system to help their users to evaluate
the trustworthiness of sellers and buyers. However, to improve their reputation in the reputation
system, fraudulent users can easily deceive the reputation system by creating fake transactions.
This inflated-reputation fraud poses a major problem for online auction websites because it can lead
legitimate users into scams. Numerous approaches have been proposed in the literature to address
this problem, most of which involve using social network analysis (SNA) to derive critical features
(e.g., k-core, center weight, and neighbor diversity) for distinguishing fraudsters from legitimate
users. This paper discusses the limitations of these SNA features and proposes a class of SNA features
referred to as neighbor-driven attributes (NDAs). The NDAs of users are calculated from the features
of their neighbors. Because fraudsters require collusive neighbors to provide them with positive
ratings in the reputation system, using NDAs can be helpful for detecting fraudsters. Although the
idea of NDAs is not entirely new, experimental results on a real-world dataset showed that using
NDAs improves classification accuracy compared with state-of-the-art methods that use the k-core,
center weight, and neighbor diversity.
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1. Introduction

Online shopping has recently become a major part of people’s lifestyles. It allows people to
directly buy or sell goods or services over the Internet by using a web browser. Additionally, it offers
various methods for buying and selling goods or services. For example, on shopping websites such as
Amazon.com and Tmall, sellers can list goods for sale only at a fixed price, whereas on other shopping
websites such as eBay, Ruten, and Taobao, sellers can list goods for sale either at a fixed price or
through an auction.

In online shopping, a consumer typically lacks the first-hand experience with both the
merchandise and the seller that is expected in a physical store. To compensate for this, most
online shopping websites employ a reputation system or a review system to collect users’ feedback
regarding their shopping experience to assist potential buyers for selecting suitable merchandise
and trustworthy sellers. For example, Amazon.com and Rakuten (www.rakuten.co.jp) employ a
unidirectional reputation system in which only buyers can rate both sellers and merchandise, but not
vice versa. By contrast, some shopping websites, such as eBay, Ruten (www.ruten.com.tw), Taobao
(www.taobao.com), and Tmall (www.tmall.com), use a bidirectional reputation system in which the
buyer and the seller in a transaction can rate each other. The reputation system allots a high reputation

Entropy 2016, 18, 11; doi:10.3390/e18010011 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com


Entropy 2016, 18, 11 2 of 14

score to users who have received many positive ratings and few or no negative ratings. Houser and
Wooders [1] indicated that seller reputation has an economically and statistically significant effect
on the price of merchandise in an online auction. For example, a buyer is often willing to purchase
the same merchandise at a higher price from a more reputable seller than from a less reputable seller.
Therefore, maintaining a high reputation score is crucial for an online seller to attract sales and gain a
price advantage.

Due to the lucrative opportunity associated with reputation scores, many fraudulent users attempt
to tamper with the reputation system to obtain a high reputation score. Typically, a group of collusive
users create fake transactions within the group for low-price merchandise and give each other positive
ratings [2]. Such a fraudulent scheme, referred as “inflated-reputation fraud” [3], has become common,
and can damage the trustworthiness of the reputation system if appropriate measures are not taken.

Numerous approaches have been proposed in the literature to detect inflated-reputation
fraud [3–9]. Most approaches build a social network of users based on their transaction history,
in which nodes and links represent users and transactions, respectively. Social network analysis (SNA)
is then applied to derive effective features for fraudster detection. Fraudsters improve their reputation
scores by relying on collusive users creating many fake transactions and thus forming a cohesive
group in the social network. Therefore, several studies have focused on detecting cohesive groups
in social networks [3–6]. By contrast, a recent study [7] suggested that the neighbors of a fraudster
in a social network exhibit similar behavior leading to low neighbor diversity. Thus, the concept of
neighbor diversity was proposed for fraudster detection. Although neighbor diversity has been shown
to outperform previous approaches, it often falsely identifies legitimate users with considerably low
neighbor diversity as fraudsters.

To improve the neighbor diversity approach, this paper proposes the concept of neighbor-driven
attributes (NDAs) for fraudster detection. In brief, an NDA is an attribute of a node that is calculated
using a user-selected feature of the neighbors of the node. We present several NDAs that are calculated
as maximum or mean of neighbors’ feature values, based on features such as the k-core, the number
of received ratings, and the number of canceled transactions [3,5,7]. The objective of this study is
to extend the neighbor diversity to NDAs such that the shortcomings of the neighbor diversity are
avoided and the performance of fraudster detection is improved. Experimental results on a real-world
dataset show that these NDAs improve classification accuracy compared with state-of-the-art methods
that use SNA features such as k-core, center weight, and neighbor diversity.

The remainder of this paper is organized as follows: Section 2 reviews SNA features for fraudster
detection mentioned in the literature. Section 3 proposes the concept of NDAs. Section 4 describes the
data collection process. Section 5 presents the performance study and discusses the results. Finally,
Section 6 concludes the paper and provides directions for future studies.

2. SNA for Fraudster Detection

This section reviews essential SNA features that are particularly effective for fraudster detection
in online auctions. However, not all fraudster detection approaches are SNA-based approaches.
For example, user-level features such as the median, sum, mean, or standard deviation of the prices of
merchandise that a user bought or sold within a certain period were used in [8,9]; transaction-related
features (including price, frequency, comment, and connectedness in the transaction network) and
user-level features (including reputation and age) were used in [10]. For a brief review of recent
fraudster detection approaches, please refer to [7]. For surveys on online auction frauds in general,
please refer to [11,12].

2.1. Construction of a Social Network

Before applying the SNA for fraudster detection, a social network of users must be created.
One option is to use a transaction network, where each node represents a user and each link represents
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a transaction between a buyer and a seller. Another option is to use a rating network, where each node
represents a user and each link represents a rating given by a user to another user after a transaction.

After a transaction on an auction website, such as eBay or Ruten, the buyer and the seller can give
each other a positive, neutral, or negative rating to reflect their experience in the transaction. Thus,
each link in the rating network has a corresponding link in the transaction network; however, because
a user is not required to give a rating after a transaction, not all links in the transaction network have a
corresponding link in the rating network.

In auction websites such as eBays, Taobao, Ruten and Yahoo!Kimo, the rating history used
to construct the rating network is accessible to the public. However, the transaction history
used to construct the transaction network is not available, unless with the permission of the
auction websites [10]. As a result, most previous studies used the rating network [4–6,13]. Since
inflated-reputation fraud relies on the accumulation of positive ratings, this study also used the
rating network.

2.2. SNA Features

As described in Section 1, numerous SNA-based approaches for fraudster detection have focused
on detecting cohesive groups in a social network [3–6]. In SNA, various measurements for cohesive
groups are available, such as component, clique, community, k-core, and k-plex. Among them, k-core
is the most effective for fraudster detection because fraudsters tend to appear in k-core subgraphs
with k = 2 [4]. A k-core of a graph G is a maximal connected subgraph of G in which all nodes have a
degree of at least k. A node may be present in several k-core subgraphs, each with a different k value.
The maximum of these k values is referred to as the k-core value of the node. To calculate the k-core
value of each node in a graph, Batagelj and Zaversnik proposed an O(m)-time algorithm (Figure 1),
where m is the number of links in the graph [14]. The algorithm repeatedly prunes the least connected
nodes and, thus, disentangles the hierarchical structure of the graph. Although k-core is widely used
for detecting fraudsters [3–6], it often results in low precision.
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Figure 1. Algorithm for calculating k-core [14].

Wang and Chiu [4] suggested using the “center weight” feature included in the SNA program
Pajek [15] to improve precision. A “robbery” algorithm (Figure 2) was used to calculate the center
weight of each node in a graph [15]. Initially, the algorithm sets the center weight of each node as
the degree of the node. The nodes with larger weights then repeatedly steal weights from adjacent
nodes with smaller weights. Finally, only a small number of nodes have a center weight greater than
zero, and all of the adjacent nodes have a center weight equal to zero. Essentially, nodes with non-zero
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center weight are the centers of the network and are classified as fraudsters. Although the center
weight improves the precision of fraudster detection, it reduces the recall [4].Entropy 2016, 18, 11 
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Lin and Khomnotai [7] suggested that the neighbors of fraudsters in social networks exhibit
similar patterns because fraudsters need their collusive neighbors to give them positive ratings in
the reputation system. Thus, the concept of neighbor diversity was proposed for fraudster detection,
where nodes with low neighbor diversity are likely to be fraudsters. Before calculating neighbor
diversity, a node’s feature (e.g., the number of received ratings, the number of canceled transactions,
the k-core value, and the join date) is selected. All nodes in the network are then divided into several
groups, based on their values on the selected feature. Finally, the neighbor diversity on the selected
feature of a node is calculated as the Shannon entropy [16] of the group distribution of the node’s
neighbors, as follows:

Dattr pxq “ ´
n

ÿ

i“1

pi pxq log2 ppi pxqq (1)

where Dattr(x) denotes the neighbor diversity on the selected feature attr of the node x, n is the number
of groups, and pi(x) is the number of x’s neighbors in group i divided by the number of x’s neighbors.
Although neighbor diversity has been shown to outperform the k-core value and the center weight for
fraudster detection [7], it has three limitations. First, the use of neighbor diversity tends to misclassify
nodes with few neighbors as fraudsters. For example, consider the extreme case of a user with
only one neighbor. Since the user does not have many collusive neighbors with whom to engage in
inflated-reputation fraud, the user is not likely to be a fraudster. However, the neighbor diversity of a
one-neighbor user is minimal. Consequently, such users are falsely classified as fraudsters because of
their low neighbor diversity. Second, if all neighboring nodes of a node x belong to the same group
(i.e., n = 1 and p1 = 1 in Equation (1)), then x’s neighbor diversity also reaches the minimum regardless
of the number of x’s neighboring nodes. This observation suggests that neighbor diversity cannot
distinguish between a node with only one neighboring node and a node with numerous neighboring
nodes that belong to the same group. Third, the method used in this study to divide the nodes into
groups based on a selected feature was ad hoc, and requires adjustments for different features.

Some approaches defined their features in a recursive manner, similar to the Authority and
Popularity scores in HITS and Google’s PageRank [17]. Therefore, the values of these features were
also calculated recursively. For example, Chau et al. [9] constructed a Markov Random Field (MRF)
model from the transaction history among all traders, and applied the belief propagation algorithm to
calculate the probabilities of fraudster, accomplice and normal user for each node. The same approach
was also used in [18] except that the observed values of the nodes in the MRF model were instantiated
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to a constant. Additionally, Bin and Faloutsos [19] used the loopy belief propagation algorithm instead
of the belief propagation algorithm to derive the features’ values.

3. Neighbor-Driven Attributes

Although the k-core value, center weight, and neighbor diversity all have limitations, the concept
of neighbors is crucial in calculating these features. This motivates the idea of NDAs; in other words,
deriving a new attribute of a node by using a feature of the node’s neighbors. For deriving an NDA,
first, an existing feature of a node is selected. An NDA based on the selected feature of the node can
then be defined as the mean or maximum of the feature values of the node’s neighbors. Unlike neighbor
diversity, the neighbors are not required to be divided into groups according to the selected feature.
This simplifies the calculation and avoids the ad hoc nature of neighbor diversity.

In this study, we chose one of the three features (i.e., the k-core value, number of received ratings,
and number of canceled transactions) for calculating NDAs, because these three features have been
shown to be related to inflated-reputation fraud in online auctions [3,5,7]. Six NDAs were defined, as
shown in Table 1.

Our proposed method is to use each of these NDAs alone and in conjunction with the k-core
value, center weight, and neighbor diversity to build a classifier for fraudster detection. The algorithm
used to construct a classifier is decision tree or support vector machine. The experimental results in
Section 5 show that the use of some of these NDAs significantly improves the classification accuracy
for detecting fraudsters.

Table 1. Neighbor-Driven Attributes.

NDA Description

Nk pxq the mean of the k-core values of node x’s neighbors
Nk̂ pxq the max of the k-core values of node x’s neighbors
Nr pxq the mean of the numbers of received ratings of node x’s neighbors
Nr̂ pxq the max of the numbers of received ratings of node x’s neighbors
Nc pxq the mean of the numbers of canceled transactions of node x’s neighbors
Nĉ pxq the max of the numbers of canceled transactions of node x’s neighbors

Notably, the idea of deriving features of a node from the node’s neighbors is not new.
Neighbor diversity is an example. Features, such as k-core and center weight, depend on all the
nodes in a connected graph, not just the neighboring nodes. In comparison, they all are more complex
than the NDAs in Table 1 because the NDAs in Table 1 only require a mean or max operation. However,
the proposed NDAs can be viewed as a simple extension of an existing feature. For example, Nk pxq
and Nk̂ pxq in Table 1 are the extensions of k-core. The same process can be applied to other existing
features to derive new NDAs. Furthermore, the choice of the aggregation function for an NDA is likely
to be application-dependent. In this study, mean and max are chosen due to the intensive interaction
between the members in a collusive group.

4. Datasets for Experiment

Ruten (www.ruten.com.tw) is one of the largest auction websites in Taiwan, funded by eBay and
PChome Online [13]. In this performance study, we used a dataset collected from Ruten’s website.
This dataset was also used in [7] and was collected in a level-wise manner, as in [4–6,10,13]. The data
collection process started with 932 accounts (denoted as the first level accounts) that were posted
in the suspended list by Ruten during July 2013. Then, it extended to the next level of accounts,
including those accounts that had given ratings to or received ratings from the accounts on the first
level. The same process was then repeated for the next level. Finally, the dataset, denoted as Dall,
contained 4407 accounts.
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If an account in Dall was suspended by Ruten due to fraudulent behaviors (e.g., fake biddings,
evaluation hype, selling counterfeit products, or fail to deliver product), then the account was classified
as a fraudster; otherwise, the account was classified as a non-fraudster. As a result, the Dall dataset
contained 1080 fraudsters and 3327 non-fraudsters.

To calculate the neighbor diversity and NDAs for each account in Dall, we needed to build a social
network containing all the accounts in Dall and their neighboring accounts. Thus, we repeated the
same data collection process to one more level down so that all neighbors of the accounts in Dall were
identified. This step identified 233,169 new accounts. Finally, a social network with 237,576 nodes
(i.e., 4407 accounts of Dall plus the 233,169 new accounts) and 348,259 undirected links was built, where
each node represented an account, and each undirected link represented a positive rating from one
account to another account. Notably, the social network was an undirected, unweighted graph, where
duplicate links between any two nodes were removed. Furthermore, because our list of suspended
accounts was collected during July 2013, the social network did not include those links for the ratings
that occurred after 31 July, 2013.

For each node in the social network, the following features were first calculated: the k-core value
(Figure 1), center weight (Figure 2), the number of received ratings, and the number of canceled
transactions. Then, the following features were calculated only for those nodes representing the
4407 accounts in Dall: neighbor diversity on the number of received ratings [7] and the six NDAs
in Table 1. Notably, we did not calculate the neighbor diversity and the NDAs for the 233,169 new
accounts because the social network was only a part of the complete rating network and it did not
include all neighbors of the 233,169 new accounts. The Dall dataset with 4407 records and nine
features (i.e., k-core value, center weight, neighbor diversity on the number of received ratings, and
six NDAs) was used for the experiment in Section 5.

As described in Section 2, using neighbor diversity often classifies a node with all of its neighboring
nodes having similar numbers of received ratings as a fraudster. Misclassification could occur when
the number of its neighboring nodes is small. To verify this statement, we constructed two sub-datasets,
Done and Dmore, of Dall for the experiment in Sections 5.2 and 5.3. The Done dataset contained
those nodes whose neighboring nodes having similar numbers of received ratings, and the Dmore

dataset contained those nodes whose neighboring nodes having diverse numbers of received ratings.
Specifically, this was achieved by first dividing all nodes into several groups based on their number of
received ratings, where the first group contained nodes with a number of received ratings between
0 and 49, and the ith group contained nodes with a number of received ratings between 25 ˆ 2i´1

and 25 ˆ 2i, for i > 1, as did in [7]. Subsequently, the Done dataset included those nodes whose
neighboring nodes were all in the same group, and by Equation (1), those nodes had low neighbor
diversity. The Dmore dataset included those nodes whose neighboring nodes appeared in more than
one group, and by Equation (1), those nodes had higher neighbor diversity than the nodes in Done.

To check whether a classifier learned from one dataset could effectively apply to another unrelated
dataset, we constructed two sub-datasets, Dtrain and Dtest, of Dall for the experiment in Section 5.4.
Specifically, this was achieved by randomly dividing the social network into two disjoint subgraphs
of approximately equal size, and then each subgraph corresponded to a sub-dataset. Notably, no
link existed between an account in Dtrain and an account in Dtest. Thus, if a classifier learned from
Dtrain could detect the fraudsters in Dtest with high accuracy, then the features and the classification
algorithm used to construct the classifier were effective. Table 2 summarizes the number of fraudsters
and the number of non-fraudsters in these datasets.
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Table 2. Datasets.

Dataset # of Fraudsters # of Non-Fraudsters # of Accounts

Dall 1080 3327 4407
Done 716 430 1146

Dmore 364 2897 3261
Dtrain 524 1681 2205
Dtest 556 1646 2202

5. Experimental Settings and Results

The experimental study contained four classification tests. In Tests 1–3, datasets Dall, Done, and
Dmore were used to conduct 10-fold cross validation, respectively. In Test 4, dataset Dtrain was used to
train a classifier, and then the classifier was used to detect the fraudsters in Dtest.

In each test, the following experiments were conducted. First, to study the effectiveness of the
NDAs, we used only one NDA at a time as an input in a classification algorithm. Then, to compare
the performance of the existing approaches with that of our approach, we used the following three
attribute combinations as inputs in a classification algorithm: Dr; k-core and CW; k-core, CW, and Dr,
where Dr, k-core, and CW refer to the neighbor diversity on the number of received ratings [7], k-core
value, and center weight [4], respectively. Finally, we repeated the same experiment with the addition
of an NDA to study how the NDA could help to improve the performance of the existing approaches.

Two classification algorithms (J48 decision tree and support vector machine (SVM)) from Weka [20]
were used in this study. Default parameter settings of both algorithms in Weka were adopted.
Since previous work [7] also used the same classification algorithms and parameter settings, our
performance results reflected the impact of using the NDA as input to the classification algorithms.

5.1. Test 1: Dall Dataset

Table 3 shows the performance of using only one NDA to classify all accounts in the Dall dataset.
As shown in Table 2, the Dall dataset contained 3327 non-fraudsters in 4407 accounts and, thus, 75.5%
(3327/4407 = 75.5%) was considered as the baseline for the classification accuracy. The two NDAs based
on k-core (i.e., Nk and Nk̂) underperformed in the experiment. Thus, for the rest of the experiment, we
retained only the four NDAs (i.e., Nr, Nr̂, Nc, and Nĉ), the classification accuracy of which (Table 3)
was above 83%. Among them, Nr and Nr̂ performed the most effectively. Boldface type indicates the
best performance in each column of Tables 3–18.

Table 3. Performance of an NDA on the Dall dataset.

NDA
J48 SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Nk 0.76197 0.2028 0.5381 0.2946 0.75402 0.0806 0.4888 0.1383
Nk̂ 0.76900 0.3981 0.5388 0.4579 0.76378 0.3639 0.5261 0.4302
Nr 0.88223 0.8167 0.7332 0.7727 0.89448 0.8324 0.7599 0.7945
Nr̂ 0.88314 0.8389 0.7265 0.7787 0.88835 0.7565 0.7811 0.7686
Nc 0.83140 0.6741 0.6506 0.6621 0.83662 0.7676 0.6387 0.6972
Nĉ 0.84343 0.8694 0.6310 0.7313 0.84887 0.8636 0.6393 0.7347

Table 4. Performance of Dr with or without an NDA on the Dall dataset.

NDA
J48 SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

w/o NDA 0.84184 0.8019 0.6420 0.7131 0.83140 0.7306 0.6358 0.6799
Nr 0.88994 0.8593 0.7359 0.7928 0.89584 0.8333 0.7634 0.7968
Nr̂ 0.89312 0.8741 0.7381 0.8003 0.89221 0.7741 0.7835 0.7788
Nc 0.87678 0.8343 0.7123 0.7684 0.87633 0.8333 0.7115 0.7676
Nĉ 0.87338 0.8611 0.6951 0.7692 0.86839 0.8565 0.6852 0.7613
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Table 5. Performance of k-core and CW with or without an NDA on the Dall dataset.

NDA
J48 SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

w/o NDA 0.82981 0.5000 0.7200 0.5902 0.82936 0.4917 0.7234 0.5854
Nr 0.90537 0.8769 0.7693 0.8196 0.86748 0.6361 0.7825 0.7017
Nr̂ 0.90764 0.8713 0.7783 0.8222 0.85749 0.5750 0.7861 0.6642
Nc 0.87020 0.8185 0.7016 0.7556 0.85772 0.7176 0.7065 0.7120
Nĉ 0.86566 0.7815 0.7033 0.7404 0.85455 0.6852 0.7109 0.6978

Table 6. Performance of k-core, CW, and Dr with or without an NDA on the Dall dataset.

NDA
J48 SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

w/o NDA 0.85818 0.8731 0.6590 0.7511 0.84411 0.7685 0.6551 0.7073
Nr 0.90447 0.8843 0.7634 0.8194 0.87656 0.6750 0.7907 0.7283
Nr̂ 0.90628 0.8676 0.7763 0.8194 0.86135 0.6028 0.7815 0.6806
Nc 0.88518 0.8213 0.7392 0.7781 0.87315 0.7880 0.7206 0.7528
Nĉ 0.87928 0.8407 0.7161 0.7734 0.87156 0.7472 0.7336 0.7404

Table 7. Performance of an NDA on the Done dataset.

NDA
J48 SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Nr 0.76439 0.9204 0.7557 0.8300 0.76701 0.8911 0.7715 0.8270
Nr̂ 0.78010 0.9302 0.7673 0.8409 0.77836 0.8953 0.7817 0.8346

Table 8. Performance of Dr with or without an NDA on the Done dataset.

NDA
J48 SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

w/o NDA 0.62478 1.0000 0.6248 0.7691 0.52530 0.6006 0.6250 0.6125
Nr 0.76439 0.9204 0.7557 0.8300 0.76701 0.8911 0.7715 0.8270
Nr̂ 0.78010 0.9302 0.7673 0.8409 0.77836 0.8953 0.7817 0.8346

Table 9. Performance of k-core and CW with or without an NDA on the Done dataset.

NDA
J48 SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

w/o NDA 0.63612 0.9888 0.6338 0.7725 0.63961 1.0000 0.6342 0.7762
Nr 0.78446 0.9441 0.7656 0.8455 0.76352 0.8659 0.7799 0.8206
Nr̂ 0.79057 0.9441 0.7717 0.8492 0.76003 0.8534 0.7823 0.8163

Table 10. Performance of k-core, CW, and Dr with or without an NDA on the Done dataset.

NDA
J48 SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

w/o NDA 0.63612 0.9888 0.6338 0.7725 0.63961 1.0000 0.6342 0.7762
Nr 0.78446 0.9441 0.7656 0.8455 0.76352 0.8659 0.7799 0.8206
Nr̂ 0.79057 0.9441 0.7717 0.8492 0.76003 0.8534 0.7823 0.8163

Table 11. Performance of an NDA on the Dmore dataset.

NDA
J48 SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Nr 0.93529 0.7060 0.7119 0.7090 0.93345 0.6209 0.7410 0.6756
Nr̂ 0.93958 0.8104 0.6974 0.7497 0.92763 0.4615 0.8077 0.5874
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Table 12. Performance of Dr with or without an NDA on the Dmore dataset.

NDA
J48 SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

w/o NDA 0.91935 0.4258 0.7416 0.5410 0.90371 0.1978 0.7660 0.3144
Nr 0.93560 0.6896 0.7213 0.7051 0.93897 0.6538 0.7653 0.7052
Nr̂ 0.93836 0.7363 0.7185 0.7273 0.92763 0.4780 0.7909 0.5959

Table 13. Performance of k-core and CW with or without an NDA on the Dmore dataset.

NDA
J48 SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

w/o NDA 0.90616 0.4423 0.6098 0.5127 0.90585 0.3516 0.6432 0.4547
Nr 0.94694 0.7143 0.7903 0.7504 0.90493 0.1896 0.8214 0.3080
Nr̂ 0.94694 0.7198 0.7868 0.7518 0.90647 0.1896 0.8734 0.3115

Table 14. Performance of k-core, CW, and Dr with or without an NDA on the Dmore dataset.

NDA
J48 SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

w/o NDA 0.93805 0.6236 0.7774 0.6921 0.92364 0.4368 0.7833 0.5608
Nr 0.94541 0.7198 0.7751 0.7464 0.90831 0.2280 0.8218 0.3570
Nr̂ 0.94940 0.7390 0.7935 0.7653 0.90953 0.2143 0.8966 0.3459

Table 15. Performance of an NDA on the Dtest dataset.

NDA
J48 SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Nr 0.87057 0.6890 0.8885 0.7761 0.86603 0.7017 0.8165 0.7548
Nr̂ 0.84650 0.6373 0.9101 0.7496 0.86875 0.7314 0.7590 0.7449

Table 16. Performance of Dr with or without an NDA on the Dtest dataset.

NDA
J48 SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

w/o NDA 0.81426 0.6031 0.7734 0.6777 0.81062 0.5994 0.7536 0.6677
Nr 0.87284 0.7029 0.8597 0.7735 0.87238 0.7093 0.8381 0.7683
Nr̂ 0.84650 0.6373 0.9101 0.7496 0.87284 0.7308 0.7860 0.7574

Table 17. Performance of k-core and CW with or without an NDA on the Dtest dataset.

NDA
J48 SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

w/o NDA 0.78519 0.6640 0.3022 0.4153 0.78110 0.6595 0.2752 0.3883
Nr 0.84650 0.7011 0.6835 0.6922 0.81335 0.7526 0.3885 0.5125
Nr̂ 0.83787 0.6562 0.7518 0.7008 0.80881 0.7273 0.3885 0.5064

Table 18. Performance of k-core, CW, and Dr with or without an NDA on the Dtest dataset.

NDA
J48 SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

w/o NDA 0.80426 0.6299 0.5450 0.5844 0.79518 0.7126 0.3165 0.4384
Nr 0.84650 0.7011 0.6835 0.6922 0.82288 0.7546 0.4424 0.5578
Nr̂ 0.82515 0.6673 0.6133 0.6392 0.81244 0.7200 0.4209 0.5312

Table 4 shows the performance of using Dr with or without an NDA. Compared with the
use of only Dr (Row 1 in Table 4), the addition of Nr, Nr̂, Nc, or Nĉ invariably improved
the accuracy, precision, and recall. Overall, the addition of Nr or Nr̂ achieves the strongest
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improvement. In Tables 4–6, 8–10, 12–14 and 16–18 italics show the performance values with an NDA
that were lower than the corresponding values in Row 1 (i.e., the case without any NDA).

Table 5 shows the performance of using k-core and CW with or without an NDA. Compared with
the use of only k-core and CW (Row 1 in Table 5), the addition of Nr or Nr̂ improved the classification
accuracy of J48 from 82.9816% to >90%, and the classification accuracy of SVM from 82.9362% to >85%.
Thus, J48 was a more suitable algorithm for this problem than SVM. The addition of Nc or Nĉ often
improved the accuracy and precision, but reduced the recall.

Table 6 shows the performance of using k-core, CW, and Dr with or without an NDA. Compared
with the use of only k-core, CW, and Dr (Row 1 in Table 6), the addition of Nr or Nr̂ considerably
improved the performance, and J48 achieved superior results than SVM did.

Overall, the existing approaches (i.e., without NDAs) by using Dr (Row 1 in Table 4), k-core and CW
(Row 1 in Table 5), or k-core, CW and Dr (Row 1 in Table 6) all achieved a classification accuracy above
75.5% (the baseline for the Dall dataset), indicating the effectiveness of these approaches. However,
with the addition of NDAs (particularly Nr or Nr̂), the performance can be further improved.

5.2. Test 2: Done Dataset

According to the results in Section 5.1, Nr and Nr̂ achieved the best performance. Thus, for the
rest of the performance study, we focused on these two NDAs. As shown in Table 2, the Done dataset
contained 716 fraudsters in 1146 accounts, and thus, 62.5% (716/1146 = 62.5%) was considered as
the baseline for the classification accuracy. Table 7 shows the performance of using only one NDA.
The accuracy of using Nr (i.e., above 76%) or Nr̂ (i.e., above 77%) was significantly higher than the
baseline performance of 62.5%.

The first row of Tables 8–10 shows the performance of the existing approaches by using Dr, or
k-core and CW, or k-core, CW, and Dr, respectively. Using these three combinations resulted in poor
classification accuracy near the baseline value of 62.5%. The Done dataset contained accounts for which
the neighbors were from the same group (Section 4), and the existing approaches that used Dr, or
k-core and CW, or k-core, CW, and Dr were not effective on such datasets (Section 2). However, with
the addition of Nr or Nr̂, the performance was significantly improved (Rows 2 and 3 in Tables 8–10).
When using Nr or Nr̂ alone (Table 7), we observed that the classification accuracy exceeded 76% for
Nr and 77% for Nr̂. When Nr or Nr̂ was used with Dr, or k-core and CW, or k-core, CW, and Dr, the
classification accuracy improved up to 79%, according to Tables 8–10. Therefore, the addition of Nr or
Nr̂ was essential for detecting fraudsters in the Done dataset.

5.3. Test 3: Dmore Dataset

The Dmore dataset contained 2897 non-fraudsters in 3261 accounts (Table 2) and, thus, 88.83%
(2897/3261 = 88.83%) was considered the baseline for the classification accuracy. Table 11 shows the
performance of using Nr or Nr̂. By using Nr or Nr̂ we achieved the classification accuracy of >92.7%,
which was more satisfactory than the baseline value of 88.83%. However, for the Dmore dataset, the
improvement was not as significant as that observed for the Done dataset, in which the classification
accuracy improved from the baseline of 62.5% to >76% (Table 7). Therefore, Nr and Nr̂ performed
more effectively in the Done dataset than in the Dmore dataset.

The first row of Tables 12–14 shows the performance of the existing approaches by using Dr,
or k-core and CW, or k-core, CW, and Dr, respectively. Using these three combinations achieved
the classification accuracy to greater than 90%. Compared with the baseline value of 88.83% for the
Dmore dataset, the results indicate the effectiveness of the existing approaches on the Dmore dataset.
As described in Section 4, the Dmore dataset contained accounts where the neighbors were from various
groups, whereas the Done dataset contained accounts where the neighbors were from the same group.
The existing approaches (i.e., without using NDAs) performed more satisfactorily on the Dmore dataset
than on the Done dataset. Finally, the addition of Nr or Nr̂ can further improve the performance of the
existing approaches (Rows 2 and 3 in Tables 12–14) with J48 classifiers.
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5.4. Test 4: Dtrain and Dtest Datasets

In Test 4, Dtrain was used to train a classifier, and then the classifier was used to detect fraudsters
in Dtest. Tables 15–18 show the performance results on Dtest. The Dtest dataset contained 1646
non-fraudsters in 2202 accounts (Table 2), and thus, 74.75% (1646/2202 = 74.75%) was considered the
baseline for the classification accuracy. Table 15 shows the performance of using Nr or Nr̂. By using Nr
or Nr̂, we achieved the classification accuracy of >84%, which was more satisfactory than the baseline
value of 74.75%.

The first row of Tables 16–18 shows the performance of the existing approaches by using Dr,
or k-core and CW, or k-core, CW, and Dr, respectively. Using these three combinations achieved the
classification accuracy to greater than 78%. However, with the addition of Nr or Nr̂, the performance
can be further improved in accuracy, precision, recall, and F1 (Rows 2 and 3 in Tables 16–18). The
results are consistent with the 10-fold cross validation results in Test 1 on the dataset Dall.

Because Dall was the union of its two disjoint subsets Done and Dmore, and Dtest was a subset of
Dall, every account in Dtest was in either Done or Dmore. Thus, we could study the performance results
in Tables 16–18 in more details by examining the classification accuracy on the two disjoint subsets of
Dtest: Dtest X Done and Dtest X Dmore. Table 19 shows how the 2202 accounts of Dtest were distributed
in Dtest X Done and Dtest X Dmore. Table 20 shows the percentage of correctly classified accounts in
Dtest X Done or Dtest X Dmore. The addition of either Nr or Nr̂ did not make a significant difference on
the percentage of correctly classified accounts in Dtest X Dmore, but it did significantly improve the
percentage of correctly classified accounts in Dtest X Done. The results are consistent with the 10-fold
cross validation results in Tests 2 and 3.

Table 19. Distribution of accounts in the Dtest dataset.

# of Fraudsters # of Non-Fraudsters Total

Dtest X Done 364 260 624
Dtest X Dmore 192 1386 1578

Table 20. Percentage of correctly classified accounts in Dtest X Done or Dtest X Dmore.

Features Used to J48 SVM

Build a Classifier Dtest X Done Dtest X Dmore Dtest X Done Dtest X Dmore

Dr 58.3333 90.5577 58.3333 90.0507
Dr & Nr 73.3974 92.7757 76.4423 91.5082
Dr & Nr̂ 69.2308 90.7478 75.8013 91.8251

k-core & CW 52.7244 88.7199 52.8846 88.0862
k-core & CW & Nr 70.3526 90.3042 63.1410 88.5298
k-core & CW & Nr̂ 66.6667 90.5577 62.8205 88.0228
k-core & CW & Dr 54.8077 90.5577 54.4872 89.4170

k-core & CW & Dr &
Nr

70.3526 90.3042 66.0256 88.7199

k-core & CW & Dr &
Nr̂

63.7821 89.9240 64.2628 87.9594

5.5. Discussion

There are four main findings in the above performance study. First, the existing approaches using
Dr, or k-core and CW, or k-core, CW, and Dr performed well on the Dmore dataset, but poorly on the
Done dataset (Row 1 of Tables 8–10 and 12–14). As mentioned in Section 4, the Done dataset contained
accounts where the neighbors were from the same group with a similar number of received ratings,
and thus neighbor diversity of any account in the Done dataset was minimal. This result showed the
ineffectiveness of the existing approaches for accounts with low neighbor diversity.
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Second, using Nr or Nr̂ alone (Tables 3, 7, 11 and 15) helped to achieve considerable improvement
over the baseline performance on all four datasets, Dall, Done, Dmore, and Dtest. Thus, Nr or Nr̂ has a
high potential to improve the existing approaches.

Third, the addition of either Nr or Nr̂ to the existing approaches improved the classification
performance (Tables 4–6, 8–10, 12–14 and 16–18). The Wilcoxon signed-rank test was used to compare
the classification accuracy between the cases without using any NDA and the cases of adding either
Nr or Nr̂. The results were in the expected direction and were significant (Z = ´4.172, p < 0.005 for
the addition of Nr, and Z = ´4.2, p < 0.005 for the addition of Nr̂). The Wilcoxon signed rank test also
shows that no significant difference on classification accuracy between the cases of adding Nr and
the cases of adding Nr̂ (Z = ´0.973, p = 0.330). Specifically, the accuracy and recall were significantly
improved, although the precision was occasionally reduced when using the SVM classifier. However,
the J48 decision tree classifier, rather than the SVM classifier, seems more suitable for the problem of
fraudster detection. Moreover, the decision tree classifier was adopted as the classification algorithm
in previous studies [5,8,21].

Fourth, according to Table 3, using the NDAs based on the k-core (i.e., Nk or Nk̂) did not achieve
satisfactory results. Since the k-core value of an account depends on the number of neighbors in the
social network, it fails to capture the repeated ratings between two accounts. A possible remedy to
this problem is to use a weighted graph for the social network where the weight of a link reflects
the number of ratings between the two connected nodes. The algorithm for calculating the k-core in
Figure 1 also needs to be adjusted to work in a weighted graph.

6. Conclusions

Most recent approaches use SNA to derive essential features (e.g., k-core, center weight, neighbor
diversity) for distinguishing between fraudsters and normal users. In this study, we proposed
the concept of NDAs, and found two NDAs (i.e., the mean and the maximum of the number of
received ratings of a user’s neighbors) that improved the performance of fraudster detection. Previous
approaches performed poorly when users with low neighbor diversity were included (Section 5.2).
Our results suggested these two NDAs can help in such situations.

In this study, a user’s neighbors in both NDAs and neighbor diversity refer to immediate
neighbors; in other words, those with whom the user directly interacts. However, it is possible
to extend the same concept to indirect neighbors within a predefined distance. As the relationship
between fraudsters and their collusive groups becomes sophisticated, it will be necessary to search
beyond the immediate neighbors to reveal their network. The extension of NDAs and neighbor
diversity warrants further study.

Three possible extensions to our data collection process are worthy of further investigation. First,
the dataset for the experimental study was collected using breadth-first search. Since the number of the
collected nodes grew rapidly in breadth-first search, we only proceeded to three levels. Other network
sampling methods, such as depth-first search or random walk, can be applied to provide different
aspects of the rating behavior in online auctions.

Second, because the dataset was crawled from Ruten’s website and not acquired directly from
Ruten, its content is limited to what was on the website. Consequently, some important features related
to fraudster detection (e.g., account creation time) are not available in our dataset. Extending the
dataset to include those features could help unveil fraudsters’ activities.

Third, because the dataset was collected during July 2013, it only covers fraudsters’ activities
during that period. Since fraudsters constantly change their fraudulent techniques, collecting datasets
from different periods along the timeline will allow us to investigate how their fraudulent techniques
evolve and validate the effectiveness of fraudster detection approaches.
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