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Abstract:

 We study the asymptotically-achievable rate region of subspace codes for wireless network coding, where receivers have different link capacities due to the access ways or the faults of the intermediate links in the network. Firstly, an outer bound of the achievable rate region in a two-receiver network is derived from a combinatorial method. Subsequently, the achievability of the outer bound is proven by code construction, which is based on superposition coding. We show that the outer bound can be achieved asymptotically by using the code presented by Koetter and Kschischang, and the outer bound can be exactly attained in some points by using a q-analog Steiner structure. Finally, the asymptotically-achievable rate region is extended to the general case when the network has m receivers with different levels.
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1. Introduction

Network coding, introduced in [1,2], has attracted a substantial amount of research attention. It is a technique in which the intermediate node is allowed to make a combination of its received packets before sending the combined packet out to the network. This method can effectively improve the network throughput. However, there are still many problems to be studied, such as the collection of information about the network topology [3]. As the scale of the network grows, the complexity of network code construction increases accordingly. To address this issue, random network coding was proposed by Ho et al. [4] without considering network topology, where the intermediate nodes select coding coefficients at random from a finite field. It becomes an effective and robust tool when the network topology changes dynamically, especially in the case of a wireless network. Furthermore, since the characteristics of the wireless channel are time-varying in general, packets lost and errors are important factors affecting transmission performance. Therefore, error control in wireless network coding is essential [5,6].

Taking the advantage of the distance property of vector space, Koetter and Kschischang proposed the subspace metric codes for random network coding [7], where a subspace is used to represent a codeword. Even if partial changes occur in the received subspace, as long as the distance between the received subspace and the transmitted subspace satisfies a certain distance relationship, the message could still be decoded successfully. Closely relevant works about the coding bounds and the packing and covering properties of subspace codes are presented in [8,9,10]. However, the existing works about subspace codes are based on the multicast network model.

In this paper, we study a real-time media distribution system based on heterogeneous wireless networks, where end users are intelligent devices, such as smart TVs, mobile phones and computers. These terminals access the networks with different link capacities. There are several factors that make the link capacities different, such as the various ways that they access the networks (e.g., WLAN or mobile network), the packets lost and errors (due to the fault of the intermediate nodes or link failure) [11,12]. In this case, the terminals with high link capacity can receive more useful data, which means that some receivers are “stronger” than the others. For example, because they access the networks in a more stable way, they can always receive more than the “weaker” ones. Each end user wants to maximize the utilization of his link capacity to provide his best service. To meet the diverse requirements of the users, it is complex and a waste of resources to design the transmission approach for each user. A better solution is coding at the source node; then, the source node broadcasts the same encoded packets to the receivers, and each user collects as many packets as possible and then decodes to meet his requirement. A trivial coding method is to design a code corresponding to the “weaker” receiver. However, in this way, the “stronger” node cannot get his best service.

We assume that the media can be divided into several different priority levels according to their importance. The higher priority can ensure the basic demand of users. Meanwhile, the lower priority can guarantee the additional needs of users. To simplify the problem, we take the simplest case that there are only two receivers in the network. First, we derive an outer bound for the asymptotically-achievable rate region by a combinatorial method. Then, we prove the achievability of the outer bound by code construction with the codes that were proposed by Koetter and Kschischang (K-K codes) [7]. However, K-K codes require the dimension of ground space to be sufficiently large. We observe that the q-analog Steiner structure can be used in our construction. Our outer bound could be exactly attained in some points using a q-analog Steiner structure. We further extend our result to the general case of m receivers with different link capacities.

The rest of this paper is organized as follows. In Section 2.1, we briefly review the subspace code. Then, we observe that deletion correcting is equivalent to deletion and insertion error correcting in constant dimension codes. In Section 2.2, we extend the model to broadcast, which leads us to the definition of broadcast error correction network codes (BECNC). We state the asymptotically-achievable rate region of BECNC in Section 3. The main results are proven in Section 4. In Section 5, we present that the outer bound can be exactly attained in some points using the q-analog Steiner structure. In Section 6, we generalize the rate region to the network with more than two receivers.



2. Preliminaries and Our Model


2.1. Previous Results: Subspace Metric Codes

We begin with previous results about subspace metric codes, which were proposed by Koetter and Kschischang [7]. It is necessary to introduce the previous results of subspace metric codes, since our works are based on them.

In the “noncoherent” model, the transmitter and receiver are assumed to have no knowledge of the channel transfer matrix. Let [image: there is no content] be a finite field with q elements. We use [image: there is no content] to denote the set of all [image: there is no content] matrices over [image: there is no content]. In the error free case, the transmission model can be characterized as [image: there is no content], where [image: there is no content]∈[image: there is no content] is a full rank random matrix (the channel transfer matrix), [image: there is no content] is the transmitted matrix whose rows can be considered as source packets [11] and [image: there is no content] is the received matrix whose rows can be considered as received packets.

Since the receiver does not know [image: there is no content], he only knows that the rows of [image: there is no content] and [image: there is no content] span the same subspace. Then, he can correctly recover the transmitted space when no error occurs, if we regard space spanned by the rows of [image: there is no content] as a codeword.

However, the transmitted space will be a subspace of the received space by the receiver when an insertion error occurs, whereas the receiver will receive a subspace of the transmitted space when a deletion occurs [7].

[image: there is no content] can be regarded as an n-dimensional vector space over [image: there is no content]. Let [image: there is no content] denote the set of all subspaces of [image: there is no content], forming the n-order projective space over [image: there is no content] [17]. A subspace metric code [image: there is no content] is a nonempty set of subspaces of [image: there is no content], where each codeword is a vector space spanned by the rows of a message matrix. Let [image: there is no content] be two subspaces; the subspace distance between them is defined as [image: there is no content], where [image: there is no content] is the dimension of U. The minimum distance of code [image: there is no content] is defined as D([image: there is no content])=minU,V∈[image: there is no content]:U≠Vd(U,V). If:



D([image: there is no content])>2(t+ρ),



(1)




then a minimum distance decoder will produce the transmitted space from the received space, where t and ρ denote the maximum number of deletion and insertion errors induced by the channel, respectively. Deletion is actually the packets lost, and insertion error is equivalent to malicious attack.
In this paper, we only consider the constant dimension codes, where the dimensions of all codewords in [image: there is no content] are the same. Let [image: there is no content] denote the set of all k-dimensional subspaces [image: there is no content] of the n-dimensional vector space [image: there is no content]. This means that constant dimension code [image: there is no content] is a subset of [image: there is no content]. The normalized weight is defined as [image: there is no content], where k is the dimension of codewords. The rate of the code is defined as R=logq|[image: there is no content]|nk.

In [7], Koetter and Kschischang obtained the Singleton-type bound of the subspace codes and constructed a Singleton bound-achieving code using the linearized polynomial. We refer to this code as the K-K code in the following. The Singleton-type bound is shown in the following lemma.

Lemma 1 (Corollary 10 of [7]). Let [image: there is no content]be a collection of subspaces in [image: there is no content], with normalized minimum distance δ=D([image: there is no content])2k. The rate of [image: there is no content]is bounded by:



[image: there is no content]



(2)




where [image: there is no content]is the normalized weight and [image: there is no content]approaches zero as n grows.
They also mentioned that, for the decoder, the effects of insertion and deletion are equivalent in constant dimension codes. Furthermore, there may be an intersection between the insertion subspace and the transmitted subspace, which would possibly decrease the number of deletions seen by the receiver. In other words, the negative impact brought by simple deletion is not less than the negative impact caused by deletion and insertion simultaneously. Next, we will discuss the case of only deletions.

Observe that a subspace [image: there is no content] is received at the receiver; the minimum distance decoder will decode [image: there is no content] to [image: there is no content], if the distance between [image: there is no content] and [image: there is no content] is minimal among all of the codewords in [image: there is no content], i.e.,



d([image: there is no content],[image: there is no content])=minV∈[image: there is no content]d([image: there is no content],V).



(3)




We define the operation of deletions as mapping [image: there is no content]. For a given k-dimensional subspace V, [image: there is no content](V) produces a random [image: there is no content]-dimensional subspace of V, where [image: there is no content]. We say that a code is capable of correcting τ deletions, if it can correct τ deletions using the decoding criterion in (3). We refer to such a code as a τ-deletion-correcting code, and its minimum distance must satisfy:



D([image: there is no content])>2τ.



(4)




Let [image: there is no content]=[image: there is no content](V) be the received subspace and [image: there is no content] be any other codeword in [image: there is no content], then D([image: there is no content])≤d(V′,V)≤d(V′,[image: there is no content])+d([image: there is no content],V); it follows that d(V′,[image: there is no content])≥D([image: there is no content])-d([image: there is no content],V). If the condition (4) could be satisfied, then d(V′,[image: there is no content])>d([image: there is no content],V), the minimum distance decoder will produce the transmitted subspace V from the received subspace.

Remark 1. Since Condition (4) coincides with Condition (1), a τ-deletion-correcting code can correct t deletions and ρ insertions, if [image: there is no content]. Thus, it is sufficient for us to focus on deletion-correcting codes, because for this reason, all our results below for deletion hold for deletion and insertion, as well.

An [image: there is no content]-deletion-correcting code [image: there is no content] over [image: there is no content] is a k-dimensional subspace code over [image: there is no content] with M codewords whose maximum deletion-correcting capability is τ. The rate of code [image: there is no content] is [image: there is no content].

Definition 1. A rate R is said to be [image: there is no content]-asymptotically achievable if, for all [image: there is no content]and sufficiently large n, there exists an [image: there is no content]-deletion-correcting code, such that [image: there is no content], where [image: there is no content]and [image: there is no content].

The network model of [7] is multicast, which is actually a point-to-point communication channel with just one sender and one receiver. In next subsection, we will extend the model to broadcast, which consists of one sender and m receivers.



2.2. Network Model

We are motivated by a real-time media distribution system based on heterogeneous wireless networks, where end users are individual intelligent terminals, such as tablets, smart phones and computers. These intelligent terminals access the network with heterogeneous link capacities. The difference of link capacities may be caused by different access ways (e.g., WLAN and mobile network) or the instability of their links.

We assume that the media can be divided into different priority levels corresponding to the link capacity of receivers. The higher priority level guarantees the basic media quality, and the lower priority level corresponds to detailed information about media. Let [image: there is no content] be a collection of m message sets with ordered priority, where the index [image: there is no content] indicates the priority level, and the smaller index corresponds to the higher-priority level. Without loss of generality, we assume there are m receivers in the network, each of which has a different level of link capacity. Let [image: there is no content] be the ordered set of receivers, where the index [image: there is no content] indicates the link capacity; the smaller index corresponds to the higher link capacity.

The media is encoded into packets that can be sent to the network. For arbitrary [image: there is no content], the receiver [image: there is no content] downloads the packets with its link capacity constraint. Although there exist some packets lost and errors in its link, [image: there is no content] can recover the messages with priority levels [image: there is no content]. Therefore, with respect to the receiver with lower link capacity, the receiver with higher link capacity can obtain more detailed information, and it can get clearer vision effects by decoding its received packets.

For simplicity of presentation, we focus the discussion on the network with two receivers nodes [image: there is no content]. The extension to an arbitrary number of receivers is straightforward. This model can be regarded as a combinatorial version of the asymmetric two-output broadcast channel [18] in projective space. We show it in Figure 1. The media is divided into two priority level message sets [image: there is no content] and [image: there is no content]. The receiver [image: there is no content] has a higher link capacity than [image: there is no content]. This means that the receiver [image: there is no content] can recover both messages i∈[image: there is no content] and j∈[image: there is no content]; meanwhile, the receiver [image: there is no content] can only decode the message i∈[image: there is no content] during the transmission. We assume that a message pair [image: there is no content] is encoded into a codeword with k packets. Let [image: there is no content] and [image: there is no content] be the numbers of errors occurring at the link of receiver [image: there is no content] and [image: there is no content], respectively. Receiver [image: there is no content] and [image: there is no content] can collect (k-[image: there is no content]) and (k-[image: there is no content]) independent packets with no error, respectively. We assume that [image: there is no content]>[image: there is no content], i.e., the receiver [image: there is no content] can receive more correct packets than [image: there is no content].

Figure 1. Asymmetric two-output broadcast channel.
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Our aim is to design a code [image: there is no content] with which the receivers can decode their messages correctly as long as they received (k-[image: there is no content]) and (k-[image: there is no content]) independent packets with no error, respectively. Meanwhile, we are interested in the achievable rate region of the code. Although both deletion and insertion errors should be considered, it is sufficient to consider deletion error according to Remark 1.

Let [image: there is no content]={1,2,⋯,[image: there is no content]} and [image: there is no content]={1,2,⋯,[image: there is no content]} be two message sets, where [image: there is no content] has higher level priority. The message pair [image: there is no content]∈([image: there is no content],[image: there is no content]) is encoded into codeword [image: there is no content] of [image: there is no content] by encoding mapping. Then, the codeword will be transmitted to the network. Due to the packets lost, the receiver [image: there is no content] can receive a (k-[image: there is no content])-dimensional subspace [image: there is no content], and the receiver [image: there is no content] can receive a (k-[image: there is no content])-dimensional subspace [image: there is no content]. If the codewords satisfy some conditions, the messages [image: there is no content] and i can be decoded correctly at [image: there is no content] and [image: there is no content], respectively. The conditions will be discussed at the end of Section 4.1. In this case, the receiver [image: there is no content] can recover messages i and j. Meanwhile, the receiver [image: there is no content] can only recover message i. Next, we formally state the definition of such code.

Definition 2. Let [image: there is no content]and [image: there is no content]be the two receiver nodes of an acyclic single source network; the corresponding numbers of errors occurring at the link of receiver [image: there is no content]and [image: there is no content]are [image: there is no content]and [image: there is no content], respectively, [image: there is no content]>[image: there is no content]. A constant dimension code [image: there is no content]⊆Pq(n,k)is called an [n,k,([image: there is no content],[image: there is no content]),([image: there is no content],[image: there is no content])]-BECNC (broadcast error-correcting network code), if it satisfies that the two receivers can correct errors of [image: there is no content]and [image: there is no content], respectively. The cardinalities of the two corresponding message sets are [image: there is no content]and [image: there is no content].

We are interested in the maximum number of message set pairs ([image: there is no content],[image: there is no content]), when the dimension and the maximum numbers of correctable errors are given. Sometimes, the asymptotic rate pairs are also interesting.

The asymptotic rate pair is defined as [image: there is no content], where [image: there is no content].

Definition 3. A rate pair of non-negative real numbers [image: there is no content]is said to be [image: there is no content]-asymptotically achievable if, for all [image: there is no content]and sufficiently large n, there exists an [n,k,([image: there is no content],[image: there is no content]),([image: there is no content],[image: there is no content])]-BECNC, such that [image: there is no content], where [image: there is no content]/k=μ1,[image: there is no content]/k=μ2and [image: there is no content]. The asymptotically-achievable rate region is the set of all asymptotically-achievable rate pairs.




3. Main Results

We now state the asymptotically-achievable rate region of the broadcast error-correcting network codes. The proof of the theorem will be presented in next section.

Theorem 1. The asymptotically-achievable rate region of an [n,k,([image: there is no content],[image: there is no content]),([image: there is no content],[image: there is no content])]-BECNC with corresponding error-correcting capability [image: there is no content]and [image: there is no content]over field [image: there is no content]consists of pairs [image: there is no content]of non-negative numbers that satisfy the inequalities,



R1≥0,R2≥0



(5)






R1≤(1-μ1)(λx-λ),



(6)






R2≤(1-μ2)(1-λx),



(7)




where x is an auxiliary variable, such that [image: there is no content]. The normalized weights are [image: there is no content], and the normalized error-correcting capabilities are μ1=[image: there is no content]/k,μ2=[image: there is no content]/k.


4. Proofs

Before proving the theorem, we introduce some auxiliary results in combinatorial mathematics, which are used in the proof of our results.


4.1. Combinatorial Lemmas

This part, however, is rather technical. The readers who are not interested in it can just skim the conclusion without missing the essence of this section.

The number of elements in [image: there is no content] is given by the Gaussian coefficient,



[image: there is no content]=[image: there is no content]q=(qn-1)(qn-1-1)⋯(qn-k+1-1)(qk-1)(qk-1-1)⋯(q-1).



(8)




The subscript q of the Gaussian coefficient will be omitted without causing ambiguity in the following text.
The asymptotic behavior of the Gaussian coefficient is given by the following lemma.

Lemma 2 ([7]) Gaussian coefficient [image: there is no content], for [image: there is no content]satisfies:



1<q-k(n-k)[image: there is no content]<4.



(9)




We will introduce an important definition in combinatorial mathematics, which is very useful in our proof.

Let [image: there is no content] be a collection of k-subsets of an n-set S, [image: there is no content]. The collection:



∂[image: there is no content]:={K∈[image: there is no content]:K⊂J,forsomeJ∈[image: there is no content]}








is called the shadow of [image: there is no content], where [image: there is no content] denotes the set of all [image: there is no content]-subsets of S. That is, ∂[image: there is no content] consists of all subsets of S, which can be obtained by deleting an element from a set in [image: there is no content].
The lower bound of the size of a shadow is given by the Kruskal–Katona theorem [13,14]. Additionally, Lovász [15] proposed a weaker and simpler form of the original theorem. In [16], Lovász’s theorem is extended to vector spaces.

For a given n-dimensional vector space W, we define the shadow as follows.

Definition 4. Let [image: there is no content]be a collection of k-dimensional subspaces of an n-dimensional vector space W, where [image: there is no content]. The shadow of [image: there is no content]is denoted by ∂[image: there is no content],



∂[image: there is no content]:={E∈[image: there is no content]:E⊂F,forsomeF∈[image: there is no content]},








where [image: there is no content]denotes the set of all [image: there is no content]-dimensional subspaces of W.
A lower bound for the size of the shadow ∂[image: there is no content] is shown in the following lemma.

Lemma 3 ([16]) Let [image: there is no content]⊂Wk, and let [image: there is no content]be the positive integer, which satisfies [image: there is no content]=yk. Then, ∂[image: there is no content]≥yk-1. If equality holds, then [image: there is no content]and [image: there is no content]=Yk, where Y is a y-dimensional subspace of W.

We extend Lemma 3 to the case of l-level shadow. Let ∂(l)[image: there is no content] denote the l-level shadow of a collection of k-dimensional subspaces of W. Namely, similarly to the definition of ∂[image: there is no content], we define:



∂(l)[image: there is no content]:={E∈[image: there is no content]:E⊂F,forsomeF∈[image: there is no content]},








where [image: there is no content] denotes the set of all [image: there is no content]-dimensional subspaces of W. For simplicity, the l-level shadow will be referred to as the l-shadow. The following lemma gives a lower bound of the size of the l-shadow.
Lemma 4. Let [image: there is no content]⊂Wk, and let [image: there is no content]be the positive integer, which satisfies [image: there is no content]=yk. Then, ∂(l)[image: there is no content]≥yk-lfor [image: there is no content]. If equality holds, then [image: there is no content]and [image: there is no content]=Yk, where Y is a y-dimensional subspace of W.

Proof. Refer to Appendix A.1.

In Lemma 4, if the equality holds, there exists a y-dimensional subspace Y, such that ∂(l)[image: there is no content] is the set of all [image: there is no content]-dimensional subspaces of Y, for [image: there is no content].

Since the cardinality of the set [image: there is no content] is not exactly equal to a Gaussian coefficient in general, we extend Lemma 4 to a general case in the following corollary.

Corollary 1. Let [image: there is no content]⊂Wkbe a collection of k-dimensional subspaces of W and [image: there is no content]≤yk, then ∂(l)[image: there is no content]≥yk-lyk[image: there is no content].

Proof. Refer to Appendix A.2.

Corollary 1 gives the lower bound for the size of an l-shadow of a given collection of subspaces, which will be used in the proof of our result.

Using the representation of combinatorial mathematics, we discuss the conditions for correctly decoding BECNC. Due to the packets lost, the receiver [image: there is no content] can receive a (k-[image: there is no content])-dimensional subspace [image: there is no content]∈∂([image: there is no content]){[image: there is no content]}, and the receiver [image: there is no content] can receive a (k-[image: there is no content])-dimensional subspace [image: there is no content]∈∂([image: there is no content]){[image: there is no content]}. We say that the receivers can decode correctly, if for [image: there is no content]:



∂([image: there is no content]){[image: there is no content]}∩∂([image: there is no content]){Vi′,j′}=∅,if[image: there is no content]≠(i′,j′),



(10)




and for [image: there is no content]:


∂([image: there is no content]){[image: there is no content]}∩∂([image: there is no content]){Vi′,j′}=∅,ifi≠i′,∀j,j′.



(11)






4.2. Outer Bound

We prove the outer bound of the achievable rate region at first. By Remark 1, it is sufficient to consider the deletion error correcting in the proof. Inspired by the analogues between the definition of shadow and the packing sphere of deletion-correcting codes, we adopt the concept of shadow in combinatorial theory. Furthermore, there is a lower bound for the size of the shadow in vector space [16]. A small generalization of the lower bound is provided in Corollary 1, which will be used in the proof of the outer bound.

Theorem 2. (Outer bound of the achievable rate region) If [image: there is no content]is an achievable rate pair of an [n,k,([image: there is no content],[image: there is no content]),([image: there is no content],[image: there is no content])]-BECNC, [image: there is no content]⊂Pq(n,k), for an x with [image: there is no content], then the following inequalities hold,



[image: there is no content]≤nk-[image: there is no content]xk-[image: there is no content]xk-[image: there is no content]x-1k-[image: there is no content]



(12)




where x is the smallest integer, such that:


[image: there is no content]kk-[image: there is no content]≤xk-[image: there is no content]



(13)




In particular, if the equality of (13) holds, we have:


[image: there is no content]≤nk-[image: there is no content]xk-[image: there is no content]



(14)




We can obtain the asymptotic form of Theorem 2 directly.

Corollary 2. If [image: there is no content]is an achievable rate pair of an [n,k,([image: there is no content],[image: there is no content]),([image: there is no content],[image: there is no content])]-BECNC, [image: there is no content]⊂Pq(n,k), for an x with [image: there is no content], then the following inequalities hold,



R1≥0,R2≥0



(15)






R1≤(1-μ1)(λx-λ),



(16)






R2≤(1-μ2)(1-λx),



(17)




where [image: there is no content]are the normalized weights and μ1=[image: there is no content]/k,μ2=[image: there is no content]/kare the normalized deletion-correcting capabilities.
Proof of Theorem 2. Let V={[image: there is no content]:i=1,2,⋯,[image: there is no content],j=1,2,⋯,[image: there is no content]} be the codebook of an [n,k,([image: there is no content],[image: there is no content]),([image: there is no content],[image: there is no content])]-BECNC that can correct [image: there is no content] and [image: there is no content] deletions for receivers [image: there is no content] and [image: there is no content], respectively, where dim([image: there is no content])=k,[image: there is no content]<[image: there is no content]<k and δ=[image: there is no content]-[image: there is no content].

For fixed i, we denote the [image: there is no content]-shadow of the codeword [image: there is no content] as ∂([image: there is no content]){[image: there is no content]}; then, the [image: there is no content]-shadows of [image: there is no content],j=1,2,⋯,[image: there is no content] are disjoint, namely:



∂([image: there is no content]){[image: there is no content]}∩∂([image: there is no content]){Vi,j′}=∅,








and the cardinality of each shadow is |∂([image: there is no content]){[image: there is no content]}|=kk-[image: there is no content]. We denote the set of these shadows as SH(i)={∂([image: there is no content]){[image: there is no content]}:j=1,2,⋯,[image: there is no content]}; then, |SH(i)|=[image: there is no content]kk-[image: there is no content].
Figure 2 illustrates the relationship of [image: there is no content]-shadows when i is fixed. The big dotted line circle on the top level denotes the set of codewords, in which small solid circles denote the codewords. The small solid circle on the middle level denotes the [image: there is no content]-level shadow of a codeword, while the big dotted line circle on the middle level denotes the set of the [image: there is no content]-level shadow. Similarly, a small solid circle on the bottom level denotes the [image: there is no content]-level shadow of a codeword, while the big dotted line circle on the bottom level denotes the set of [image: there is no content]-level shadows.

Figure 2. The relationship of [image: there is no content]-shadows when i is fixed.
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For [image: there is no content] and any [image: there is no content],



∂(δ)∂([image: there is no content]){[image: there is no content]}∩∂(δ)∂([image: there is no content]){Vi′,j′}=∅,








because otherwise,


∂([image: there is no content]){[image: there is no content]}∩∂([image: there is no content]){Vi′,j′}≠∅,








which is contradictory to Condition (11). That is, the δ-shadows of [image: there is no content] and [image: there is no content] are disjoint for all [image: there is no content]. From Corollary 1, we can get the minimum size of the δ-shadow of [image: there is no content], which is bounded by ∂(δ)SH(i)≥xk-[image: there is no content]xk-[image: there is no content][image: there is no content], and x≥k-[image: there is no content] is the minimum integer, such that [image: there is no content]≤xk-[image: there is no content].
Then, we can get [image: there is no content]kk-[image: there is no content]≤xk-[image: there is no content], and:



[image: there is no content]≤xk-[image: there is no content]kk-[image: there is no content]<(a)4q(k-[image: there is no content])(x-k+[image: there is no content])q(k-[image: there is no content])(k-k+[image: there is no content])=4q(k-[image: there is no content])(x-k).



(18)




The inequality (a) holds according to Lemma 2.

Now, we consider the cardinality of [image: there is no content],



[image: there is no content]≥xk-[image: there is no content]xk-[image: there is no content]SHi≥(b)xk-[image: there is no content]xk-[image: there is no content]x-1k-[image: there is no content].



(19)




The inequality (b) holds since x is the minimum integer, such that [image: there is no content]≤xk-[image: there is no content], and the Gaussian coefficient [image: there is no content] is monotone increasing with n.
By packing, [image: there is no content] is bounded by:



[image: there is no content]≤nk-[image: there is no content]∂(δ)SH(i)≤nk-[image: there is no content]xk-[image: there is no content]xk-[image: there is no content]x-1k-[image: there is no content]










<(c)16q(k-[image: there is no content])(n-k+[image: there is no content])+(k-[image: there is no content])(x-k+[image: there is no content])q(k-[image: there is no content])(x-k+[image: there is no content])+(k-[image: there is no content])(x-1-k+[image: there is no content])










=16q(k-[image: there is no content])(n-x)+(k-[image: there is no content]).



(20)




The inequality (c) holds according to Lemma 2.
Then, the rate pair of [n,k,([image: there is no content],[image: there is no content]),([image: there is no content],[image: there is no content])]-BECNC, [image: there is no content]⊂Pq(n,k), satisfies:



R1=logq[image: there is no content]nk≤(k-[image: there is no content])(x-k)nk+o(1)










=(1-μ1)(λx-λ)+o(1)



(21)




and:


R2=logq[image: there is no content]nk≤(k-[image: there is no content])(n-x)+(k-[image: there is no content])nk+o(1)










=(1-μ2)(1-λx)+o(1),



(22)




where [image: there is no content] approaches zero as n grows, and x is an auxiliary variable, such that [image: there is no content]. The normalized weights are [image: there is no content], and the normalized deletion-correcting capabilities are μ1=[image: there is no content]/k,μ2=[image: there is no content]/k.
This completes the proof of the outer bound. ☐



4.3. Achievability

In this section, we propose a construction of BECNC based on superposition coding, with which the achievability of our outer bound can be proven. If the rate pair [image: there is no content] is achievable, then the code used at each level must satisfy certain properties, which are specified below.

Construction: Let [image: there is no content] be an n-dimensional vector space over [image: there is no content] and x be an integer, such that [image: there is no content]. We can construct an x-dimensional constant dimension subspace code [image: there is no content]x over [image: there is no content] for [image: there is no content] and [image: there is no content], such that it can correct deletions of x-k+[image: there is no content]. The encoding mapping is [image: there is no content], and the decoding mappings at [image: there is no content] and [image: there is no content] are [image: there is no content] and [image: there is no content], respectively.

The codeword [image: there is no content](i) can be regarded as the cloud center, which will not be actually sent. For every i∈[image: there is no content], the (x-k+[image: there is no content])-shadows of {[image: there is no content](i)} are disjoint, namely,



∂(x-k+[image: there is no content]){[image: there is no content](i)}∩∂(x-k+[image: there is no content]){[image: there is no content](i′)}=∅,fori≠i′,



(23)




which guarantees the correctness of decoding at [image: there is no content]. The rate of [image: there is no content]x is:


1nxlog|[image: there is no content]|.



(24)




Additionally, for every i∈[image: there is no content], the (x-k+[image: there is no content])-shadow of {[image: there is no content](i)} must be disjoint; otherwise, the ([image: there is no content]-[image: there is no content])-shadow of the (x-k+[image: there is no content])-shadow of {[image: there is no content](i)} will have a common subset. That is,



∂(x-k+[image: there is no content]){[image: there is no content](i)}∩∂(x-k+[image: there is no content]){[image: there is no content](i′)}=∅,fori≠i′,



(25)




which guarantees the correctness of decoding at [image: there is no content].
Let [image: there is no content] be the [image: there is no content]-shadow of a codeword [image: there is no content](i), i.e.,



A(i)=∂[image: there is no content]{[image: there is no content](i)},



(26)




the shadows A(i),i∈[image: there is no content] are disjoint by construction of code [image: there is no content]x.
To every i∈[image: there is no content], by using [image: there is no content](i) as the ground space, we can construct a k-dimensional subspace code [image: there is no content]⊆A(i) for [image: there is no content], such that it can correct deletions of [image: there is no content]. For each i, the code has the same message set [image: there is no content]. The encoding mapping is [image: there is no content], and the decoding mapping is [image: there is no content]; the rate of [image: there is no content] is:



1xklog|[image: there is no content]|.



(27)




The codewords of [image: there is no content] will be actually sent, which can be regarded as a satellite codeword. For every i∈[image: there is no content],j∈[image: there is no content], the [image: there is no content]-shadows of {[image: there is no content](j)} are disjoint, namely,


∂([image: there is no content]){[image: there is no content](j)}∩∂([image: there is no content]){fi′(j′)}=∅,for[image: there is no content]≠(i′,j′),



(28)




which guarantees the correctness of decoding at [image: there is no content].
The encoding mapping:



f:[image: there is no content]×[image: there is no content]→P(n,k),








and the decoding mapping:


φ:P(n,k-[image: there is no content])→[image: there is no content]×[image: there is no content],








and:


ψ:P(n,k-[image: there is no content])→[image: there is no content],








are as follows:


f(i,j)=[image: there is no content](j),foreveryi∈[image: there is no content],j∈[image: there is no content],










φ(Vr1)=(i,[image: there is no content](Vr1)),wherei=[image: there is no content](Vr1),










ψ(Vr2)=[image: there is no content](Vr2),








where Vr1∈P(n,k-[image: there is no content]) and Vr2∈P(n,k-[image: there is no content]) are the subspaces received by node [image: there is no content] and [image: there is no content], respectively.
We do not specify the code [image: there is no content]x and [image: there is no content] used at each level in the above construction. The achievability of our outer bound could be proven if the subspace code used at each level satisfies some properties.

Proposition 1. For an [n,k,([image: there is no content],[image: there is no content]),([image: there is no content],[image: there is no content])]-BECNC, our outer bound could be achieved at [image: there is no content]asymptotically by the above construction, if there exists an [image: there is no content]-deletion-correcting code for single-user communication, such that the code rate [image: there is no content]is asymptotically achievable.

Proof. If there exists such an asymptotically-achievable code, we can substitute this code for [image: there is no content]x and [image: there is no content] in the above construction, where the parameters are (n,x,[image: there is no content],x-k+[image: there is no content]) and (x,k,[image: there is no content],[image: there is no content]), respectively.

The rate pair is:



logq|[image: there is no content]|nk≥xk(1-μk)(1-λk)nk-ϵ










=(1-μ1)(λx-λ)-ϵ,



(29)






logq|[image: there is no content]|nk≥nx(1-μx)(1-λx)nk-ϵ










=(1-μ2)(1-λx)-ϵ,



(30)




where μk=[image: there is no content]/k,μx=x-k+[image: there is no content]x,λk=k/x,μ1=[image: there is no content]/k,μ2=[image: there is no content]/k,λ=k/n, [image: there is no content] and [image: there is no content].
That is, the rate pair [image: there is no content]:



[image: there is no content]



(31)






[image: there is no content]



(32)




is asymptotically achievable. ☐
Fortunately, K-K codes satisfy the requirement in Proposition 1. From the minimum distance decoder requirements in Condition (4), we can rewrite Equation (2) in the form of deletion-correcting capability τ,



[image: there is no content]



(33)




where [image: there is no content] is normalized deletion-correcting capability.
The achievability of outer bound can be obtained subsequently.

Theorem 3. (Achievability) If for a rate pair [image: there is no content]of nonnegative numbers, there exists an [n,k,([image: there is no content],[image: there is no content]),([image: there is no content],[image: there is no content])]-BECNC, [image: there is no content]⊂Pq(n,k), such that the following inequalities hold,



R1≥0,R2≥0



(34)






R1≤(1-μ1)(λx-λ),



(35)






R2≤(1-μ2)(1-λx),



(36)




where x is an auxiliary variable, such that [image: there is no content]. The normalized weights are [image: there is no content], and the normalized deletion-correcting capabilities are μ1=[image: there is no content]/k,μ2=[image: there is no content]/k. Then, [image: there is no content]is an achievable rate pair for the [n,k,([image: there is no content],[image: there is no content]),([image: there is no content],[image: there is no content])]-BECNC.
Proof. The theorem can be proven by specifying the K-K codes to our construction.☐




5. Exactly Attained Codes

So far, the asymptotically-achievable rate region of BECNC is obtained by using K-K codes in our construction. However, the K-K codes achieve the Singleton-type bound in Equation (33) asymptotically, which requires the dimension of ground space n sufficiently large. In this section, we study the case when our outer bound can be attained exactly.

Proposition 2. For an [n,k,([image: there is no content],[image: there is no content]),([image: there is no content],[image: there is no content])]-BECNC, our outer bound could be achieved at ([image: there is no content],[image: there is no content]), if there exists an [image: there is no content]-code for single-user communication, such that:



[image: there is no content]



(37)




The proof of this proposition will be given later.

The q-analog Steiner structure [19] could be used in the construction that was presented in Section 4.3, which does not require the size of n. We will state it in detail in the following.

A collection [image: there is no content] is called a q-analog Steiner structure [image: there is no content] if the elements of [image: there is no content] are k-dimensional subspaces (called blocks), and each element from [image: there is no content] is contained in exactly one block from [image: there is no content]. [image: there is no content][t,n,n]q and [image: there is no content][t,t,n]q exist, but these are trivial. Until recently, the only known nontrivial Steiner structures [image: there is no content][1,k,n]q exist when k divides n. The problem of the existence of a Steiner structure with various parameters is still open. We do not concentrate on the existence of the q-analog Steiner structure in this paper. The constructions and properties of the q-analog Steiner structure are further discussed in [20].

We assume that there exists a q-Steiner structure [image: there is no content]. This structure could be considered as a k-dimensional subspace code [image: there is no content] over [image: there is no content] with deletion-correcting capability [image: there is no content], where each block of [image: there is no content] is a codeword of [image: there is no content]. Since a codeword V produces a random [image: there is no content]-dimensional subspace of V by the operation [image: there is no content], the definition of the q-Steiner structure guarantees that each [image: there is no content]-dimensional subspace corresponds to exactly one k-dimensional subspace in [image: there is no content], i.e., every [image: there is no content]-dimensional subspace can be correctly decoded into a transmitted subspace. The number of codewords of a q-Steiner structure [image: there is no content] is given by the number of blocks in [image: there is no content].

Lemma 5 ([19]) The total number of blocks in an [image: there is no content]is:



[image: there is no content]








Then, the q-Steiner structure [image: there is no content][k-τ,k,n]q could be regarded as an [image: there is no content]-code, which satisfies Condition (37). Since the size of the codewords is:



M=|[image: there is no content][k-τ,k,n]q|=nk-τkk-τ.



(38)




Proof of Proposition 2. Similar to the proof of Proposition 1. We could substitute the q-Steiner structure [image: there is no content][k-[image: there is no content],x,n]q and [image: there is no content][k-[image: there is no content],k,x]q for [image: there is no content]x and [image: there is no content] in the construction in Section 4.3, respectively. The numbers of codewords are:



[image: there is no content]=|[image: there is no content][k-[image: there is no content],k,x]q|=xk-[image: there is no content]kk-[image: there is no content],



(39)






[image: there is no content]=|[image: there is no content][k-[image: there is no content],x,n]q|=nk-[image: there is no content]xk-[image: there is no content],



(40)




which coincide with Equation (13) and Equation (14) when the equalities hold. That is, the rate pair ([image: there is no content],[image: there is no content]) in Theorem 2 is exactly attained.
Note that, because of the number of the known q-Steiner structure is very limited, the exactly attained codes of BECNC cannot achieve all of the points in the rate region of Theorem 1. It will be of interest to study the existence of the q-Steiner structure.



6. Extension

In this section, we will extend the asymptotically-achievable rate region to more than two receivers. Consider the model depicted in Section 2.2; we can obtain the asymptotically-achievable rate region of the m-tuple coding rates [image: there is no content].

Theorem 4. The asymptotically-achievable rate region of an [n,k,([image: there is no content],[image: there is no content],⋯,Mm),([image: there is no content],[image: there is no content],⋯,τm)]-BECNC with corresponding error correcting-capabilities [image: there is no content],[image: there is no content],⋯,τmover field [image: there is no content]consists of rates [image: there is no content]of non-negative numbers that satisfy the inequalities,



R1≥0,R2≥0,⋯,Rm≥0



(41)






R1≤(1-μ1)(λ1-λ),



(42)






R2≤(1-μ2)(λ2-λ1),



(43)






⋯



(44)






Rm≤(1-μm)(1-λm-1),



(45)




where [image: there is no content]are auxiliary variables, such that [image: there is no content]. The normalized weights are [image: there is no content], and the normalized error-correcting capabilities are [image: there is no content].
The proof can refer to the steps from the proofs of Theorem 1, where we leave it for the readers as an exercise.



7. Conclusion

In this paper, we propose a network model based on a real-time media distribution system, where the receivers have different link capacities due to packets lost or a fault in intermediate nodes. To solve the transmission problem in our model, we provide the broadcast error-correcting network codes (BECNC), which are based on subspace metric codes. Then, we present the asymptotically-achievable rate region for BECNC. In the proof part, we show the outer bound of the achievable rate region, followed by a code construction. We prove that the outer bound is asymptotically achieved by specifying K-K codes in our construction. Meanwhile, the outer bound is exactly attained by using the q-analog Steiner structure in our construction. Since the number of the known q-analog Steiner structure is limited, the outer bound can be attained exactly in some points. The research on the existence and construction of q-analog Steiner structures may be interesting. Although K-K codes require the dimension of ground space n sufficiently large and the known q-analog Steiner structure is limited, the theoretical rate region given in this paper has certain practical significance. In the future, if we could find the “good” codes, this outer bound could be attained exactly at all points.
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A. Appendix


A.1. Proof of Lemma 4

We prove by induction on l. Let [image: there is no content] be a [image: there is no content]-dimensional subspace in the proof of the l-th level shadow.

From Lemma 3, we know the lemma holds in the case of [image: there is no content].

We assume that the lemma holds when [image: there is no content], then we can get that ∂(s)[image: there is no content]≥[image: there is no content][image: there is no content] by assumption.

Next, we consider the case of [image: there is no content]. Let ∂(s)[image: there is no content]⊂W[image: there is no content] and let [image: there is no content] be the positive integer represented by ∂(s)[image: there is no content]=[image: there is no content][image: there is no content]. By the assumption when [image: there is no content], we can get that [image: there is no content], then ∂(s)[image: there is no content]=[image: there is no content][image: there is no content] is well defined since Gaussian coefficient [image: there is no content] is monotone increasing with n. By Lemma 3, the size of the shadow of ∂(s)[image: there is no content] satisfies that ∂(s+1)[image: there is no content]≥[image: there is no content](k-s)-1=[image: there is no content]k-(s+1).

We now focus on the equality. Again the proof proceeds by induction on l.

In case of [image: there is no content], from Lemma 3, if the equality holds, then [image: there is no content] and [image: there is no content]=[image: there is no content]k, where [image: there is no content] is a [image: there is no content]-dimensional subspace of W.

We assume that the equality holds when [image: there is no content], then we can get that



∂(s)[image: there is no content]=[image: there is no content][image: there is no content],



(46)




then [image: there is no content] and [image: there is no content]=[image: there is no content]k, where [image: there is no content] is a [image: there is no content]-dimensional subspace of W.
In the case of [image: there is no content], from Lemma 3, if equality holds, ∂∂(s)[image: there is no content]=∂(s+1)[image: there is no content]=[image: there is no content]k-s-1, then [image: there is no content] and ∂(s)[image: there is no content]=[image: there is no content][image: there is no content], where [image: there is no content] is a [image: there is no content]-dimensional subspace of W. We know that ∂(s)[image: there is no content] is consisted of all ([image: there is no content])-dimensional subspaces of [image: there is no content], and ∂(s)[image: there is no content]=[image: there is no content][image: there is no content]. Comparing with Equation (46), we get [image: there is no content][image: there is no content]=[image: there is no content][image: there is no content], hence [image: there is no content]=[image: there is no content]. By induction, [image: there is no content]=⋯=[image: there is no content]=[image: there is no content]=⋯=y is constant.

This completes the proof.



A.2. Proof of Corollary 1

Let [image: there is no content]=xk, [image: there is no content]. Then by Lemma 4, ∂(l)[image: there is no content]≥xk-l=xk-lxk[image: there is no content]≥yk-lyk[image: there is no content], since



[image: there is no content]








is a decreasing function of x.
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