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Abstract: The asymptotic procedure proposed allows to derive closed hydrodynamical
equations from the kinetic equations of carriers and phonons (treated as a partecipating
species) in a photon background. The direct generation-recombination processes are
accounted for. The fluid-dynamical equations constructed for the chemical potentials of
carriers, temperature, and drift velocity, are related to the extended thermodynamical (ET)
ones for the chemical potentials of carriers, temperature, and drift velocity. In
the drift-diffusion approximation the constitutive laws are derived and the Onsager
relation recovered.

Keywords: carriers and phonons; macroscopic equations; generation-recombination

1. Introduction

In bipolar devices an interacting population of positively charged carriers (holes) must be taken into
account, besides electrons and phonons. The hole-phonon interactions, similarly to electron-phonon, are
emission/absobption phenomena.

Several generation-recombination (GR) events occur in semiconductors. In the presence of a photon
background the most important ones are the radiative GR events. In the direct GR events a photon (pt)
interact with a valence band electron and a couple electron-hole (e-h)is created:

e + h ⇀↽ pt

If the intensity of the photon field is low we must consider the Auger effect [1], which consists of two
different processes and their inverse
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(a) electron capture: an electron fills an hole. The resulting energy is absorbed by another electron ,
and vice versa

e + e + h ⇀↽ e∗,

where ∗ means “more energetic”.
(b) hole capture: an hole combine with an electron. The resulting energy is absorbed by another hole,

and vice versa
h + h + e ⇀↽ h∗

We start with the Bloch-Boltzmann-Peierls coupled kinetic equations for the distribution functions of
carriers and phonons. A small parameter ε is introduced to account for the umklapp processes and both
the interaction kernels and the distribution functions are expanded with respect to ε. The lowest order
equations show that the drifted maxwellian approximation is justified.

A hydrodynamical model, whose equations are similar to the ET ones [2] , is then constructed for the
temperature T and the drift velocity V of the system, in addition to the chemical potentials µe, µh of
electrons and holes. Here such a model is not based on the Maximum Entropy Principle, like in ET, but
strictly on kinetic theory.

The calculation of the source terms due to GR events takes advantage from the smallness of the GR
collision frequencies

In the drift-diffusion approximation the constitutive laws are derived and the Onsager symmetry
relationships verified.

We stress that in the present model

(1) The displaced Maxwellians approximation is not an ad hoc assumption but is justified by the
expansion we apply

(2) Phonons are treated as a partecipating species , which brings energy and momentum

(3) The correct Phonon-phonon, carrier-phonon, and GR interaction kernels are utilized: we avoid the
use of the relaxation time approximation.

The most qualifying point is (2). In fact, the usual assumption that the phonon field can be treated
as a fixed background is dropped here, since “any thermal gradient give rise to transport of heat by
the phonons, whilst an electric current, thought carried by electrons, cannot fail to transfer some of its
momentum to the lattice vibrations, and drag them along with it” [3]. The present model can be seen as
a generalization of a previous one [4] (with generation-recombination, more mathematical oriented), by
means of the explicit treatment of phonons.

2. Kinetic Equations

Consider three interacting populations: electrons (e), holes (h), and phonons (pn). Moreover
a background of photons (pt) is present. Let N g

pn(k,x, t) be the distribution function of phonons
[quasi-momentum k, energy ωgpn(k)] of type g (i.e., branch g of the phonon spectrum) and nα =
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nα(p,x, t) the distribution function of carriers α = e, h (quasi-momentum p, energy Eα). The kinetic
equations for carriers and phonons read

Dene =

(
∂ne
∂t

)
epn

+

(
∂ne
∂t

)
eh

Dhnh =

(
∂nh
∂t

)
hpn

+

(
∂nh
∂t

)
he

DgpnN g
pn =

(
∂N g

pn

∂t

)
pnpn

+

(
∂N g

pn

∂t

)
pne

+

(
∂N g

pn

∂t

)
pnh

,

where

Dα =
∂

∂t
+ vα ·

∂

∂x
+ λαeE ·

∂

∂p
, α = e, h, λα = −1, 1

Dgpn =
∂

∂t
+ ugpn ·

∂

∂x

with

vα =
∂Eα
∂p

, ugpn =
∂ωgpn
∂k

.

Observe that, being Eα(−p) = Eα(p) and ωgpn(−k) = ωgpn(k), we have vα(−p) = −vα(p) and
ugpn(−k) = −ugpn(k).

At the right hand sides of the equations for phonons we have

(∂Npn/∂t)pnpn =

∫
[(1/2)

∑
g1g2

wpnpn(k1,k2 → k)(−N g
pn(1 +N g1

pn)(1 +N g2
pn)

+(1 +N g
pn)N

g1
pnN

g2
pn) +

∑
g1g3

wpnpn(k,k1 → k3)(−(1 +N g
pn)(1 +N g1

pn)N
g3
pn

+N g
pnN

g1
pn(1 +N g3

pn)]
dk1

8π3
,

where
k2 = k− k1 + b(k1,k2 → k), k3 = k+ k1 + b(k,k1 → k3)

(b is an appropriate vector belonging to the reciprocal lattice), which account for three-phonon processes:

(g,k)⇀↽ (g1,k1) + (g2,k2), (g3,k3)⇀↽ (g,k) + (g1,k1).

Moreover

(∂N g
pn/∂t)pnα = 2

∑
α

∫
wpnα(p→ p′,k)(nα(1− n′α)(1 +N g

pn)− (1− nα)n′αN g
pn)

dpγ
8π3

,

where p′ = p − k + b(p → p′,k), is the difference between the number of phonons k emitted by
electrons with any quasimomenta p and the number of phonons absorbed by electrons with any p′,
where b is a vector of the reciprocal lattice appropriate to the present interaction.

For carriers we have

(∂nα/∂t)αpn =
∑

g

∫
wαpn(p

′,k→ p)(n′α(1− nα)N g
pn − (1− n′α)nα(1 +N g

pn))

+wαpn(p
′′ → p,k)(n′′α(1− nα)(1 +N g

pn)− nα(1− n′′α)N g
pn)]

dk
8π3 ,
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where
p′ = p− k+ b(p′,k→ p), p′′ = p+ k+ b(p′′ → p,k).

The first term corresponds to to processes with emission of a phonon having quasimomentum k by
an electron having a given quasimomentum p and reverse processes. The second term corresponds to
processes with absorption of a phonon by an electron with quasimomentum p and reverse processes.

The w’s are transition probabilities which account for energy conservation and satisfy the following
symmetry relations:

wpne(p→ p′,k) = wepn(p→ p′,k) = wepn(p
′,k→ p).

Consider now the carrier-phonon system in contact with a photon medium. Let Npt be a Planck’s
distribution function at the temperature Tpt :

Npt =
1

exp(ωpt/Tpt)− 1
,

where ωpt = ckpt (c is the speed of light). The collision integrals for the GR interactions are given by(
∂nα
∂t

)
αγ

= 2

∫
wαγ(pα,pγ → kpt)[−nγnα(1 +Npt) + (1− nγ)(1− nα)Npt]

dpγ
8π3

,

where γ = h, e.
The transition probabilities account for energy conservation and satisfy the following symmetry

relations:
weh(pe,ph → kpt) = whe(pe,ph → kpt)

The Auger GR contributions can be written [1] as

(∂fe/∂t)A =

∫ ∫ ∫
GA
e (k,p1,p2 → k)dkdp1dp2

−2
∫ ∫ ∫

GA
e (k,p,p2 → p1)dkdp1dp2 −

∫ ∫ ∫
GA
h (p,k1,k2 → k)dkdk1dk2,

(∂fh/∂t)A =

∫ ∫ ∫
GA
h (p,k1,k2 → k)dpdk1dk2

−2
∫ ∫ ∫

GA
h (p,k,k2 → k1)dpdk1dk2 −

∫ ∫ ∫
GA
e (k,p1,p2 → p)dpdp1dp2,

where

GA
e (k,p1,p2 → k) = We(k,p1,p2 → k)(fh(k)fe(p1)fe(p2)(1− fe(p))

−(1− fh(k))(1− fe(p2)(1− fe(p1)fe(p))

GA
h (p,k1,k2 → k) = Uh(p,k1,k2 → k)(fe(p)fh(k1)fh(k2)(1− fh(k))

−(1− fe(p))(1− fh(k1))(1− fh(k2)fh(k)),

where We and Uh are the Waldmann kernels of Auger processes, for electrons and holes, respectively.
We consider now a system, exact but not closed, of four balance equations, to be utilized later. By
projecting the equation for particles α over 1 we have :

∂Nα
∂t

+ λα(1/e)∇ · Jα = QGR
0 ,
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where the carrier number density (Nα) and the electric currents Jα are given by

Nα = 2

∫
nα

dp

8π3
, Jα = 2λαe

∫
vαnα

dp

8π3
.

Moreover QGR
0 = Q0

R +Q0
A, where we separated the radiative (R) and Auger (A) effects. By projecting

the equations for particles α over 2p and the phonon ones on k, summation gives the following balance
equation for momentum:

∂P

∂t
+∇ · IFP = −eE(Ne −Nh) + 2

∑
α

∫ (
∂nα
∂t

)
αpn

pdp

8π3

+
∑
g

∫
[

(
∂N g

pn

∂t

)
pnpn

+
∑
α

∫ (
∂N g

pn

∂t

)
pnα

]
kdk

8π3
+ SGR,

where

P = 2
∑
α

∫
nα

pdp

8π3
+
∑
g

∫
N g
pn

kdk

8π3

IFP = 2
∑
α

∫
nαvα ⊗ p

dp

8π3
+
∑
g

∫
N g
pnu

g
pn ⊗ k

dk

8π3.

Moreover SGR = SR + SA.

Finally, by projecting the equations for particles α over 2Eα and the phonon ones over ωgpn, summation
gives the following balance equation for energy :

∂W

∂t
+∇ · FW = (Je + Jh) · E+QGR

1 ,

where the energy density W and the energy flux FW are given by

W = 2
∑
α

∫
Eαnα

dp

8π3
+
∑
g

∫
ωgpnN

g
pn

dk

8π3

and
FW = 2

∑
α

∫
vαEαnα

dp

8π3
+
∑
g

∫
ugpnω

g
pnN

g
pn

dk

8π3
,

Moreover QGR
1 = Q1

R +Q1
A

The source terms Q0
R, Q

1
R, SR due to radiative GR events are given by

Q`
R = 4

∫ ∫
weh(pe,ph → kpt)][−nhne(1 +Npt) + (1− nh)(1− ne)Npt][Ee(pe) + Eh(ph)]`

dpedph
64π6

SR = 4

∫ ∫
weh(pe,ph → kpt)][−nhne(1 +Npt) + (1− nh)(1− ne)Npt](pe + ph)

dpedph
64π6

.

Moreover, the contribution of Auger effect reads

Q`
A = QAe

` +QAh
`

where
QA
` =

∫
(∂fe/∂t)A(Ee + Eh)`dpe,

SA` =

∫
(∂fe/∂t)A(pe + ph)dpe,
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3. Asymptotic Expansion and Hydrodynamical Equations

By following ref. [5], we expand both the interaction kernels and the distribution function with respect
to a small parameter ε which accounts for umklapp (U) processes (which do not conserve momentum)
in addition to normal (N) processes (which conserve momentum).

We start with carriers (the extension to phonons is trivial). The singular expansion for wαpn reads

wαpn = (1/ε)wNαpn + wUαpn.

The sought expansions for nα and N g
pn read

nα = nNα + εnUα , N
g
pn = N gN

pt + εN gU
pn .

According to [3], at low temperatures ε decreases exponentially as exp(−CTD/T ), where T is a
characteristic temperature of the system, TD is the Debye temperature, and C is of the order of unity.
Therefore we can say that the present expansion is valid for T << TD.

We can write now (
∂nα
∂t

)
αpn

=

(
∂nα
∂t

)N
αpn

+ ε

(
∂nα
∂t

)U
αpn

where (
∂nα
∂t

)N
αpn

= (1/ε)

(
∂nα
∂t

)NN
αpn

+

(
∂ne
∂t

)NU
αpn(

∂nα
∂t

)U
αpn

= (1/ε)

(
∂nα
∂t

)UN
αpn

+

(
∂ne
∂t

)UU
αpn

By collecting all these terms we have

DαnNα −
(
∂nα
∂t

)N
GR

= (1/ε)

(
∂nα
∂t

)NN
αpn

+

(
∂nα
∂t

)NU
αpn

+

(
∂nα
∂t

)UN
αpn

,

where we neglected the terms of order ε1.
At the orders ε−1 and ε0 we get(

∂nα
∂t

)NN
αpn

= 0

Dαnα −
(
∂nα
∂t

)N
GR

=

(
∂nα
∂t

)NU
αpn

+

(
∂nα
∂t

)UN
αpn

.

Analogously, for phonons(
∂N g

pn

∂t

)NN
pnpn

+
∑
α

(
∂N g

pn

∂t

)NN
pnα

= 0

DgpnN gN
pn =

∑
α

[(
∂N g

pn

∂t

)NU
αpn

+

(
∂N g

pn

∂t

)UN
αpn

]
+

(
∂N g

pn

∂t

)NU
pnpn

.

By taking into account momentum (it is a N− process) and energy conservation, the equations of order
ε−1 are solved (see Appendix) by

nNα = F [(Eα −V · p− µα)/T ], N gN
pn = B[(ωgpn −V · k)/T ],
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where
F(ζ) = 1

eζ + 1
, B(ζ) = 1

eζ − 1
,

that is the drifted Fermi-Dirac (FD) and Bose-Einstein (BE) distribution functions.
The meaning of V is simple. Let v̂α the most probable velocity of carriers α, given by

∂

∂p
(Eα −V · p) = 0.

It is easily seen that v̂α = V. Analogously, for phonons, ûgpn = V.

The distribution functions are usually expanded as follows

nNα = F [(Eα − µα)/T ]− βV · pF ′[(Eα − µα)/T ] = n0
α + n1

α

N gN
pn = B(ωgpn/T )− βV · kB′(ωgpn/T ) = N0

g +N1
g ,

where
F ′(ζ) = −F2(ζ)eζ , B′(ζ) = −B2(ζ)eζ .

This simplification is valid when the drift energy is small compared to thermal energy. Under this
assumption, after some calculations we find

(∂N g
pn/∂t)

NU
pp = βV · {

∫
[(1/2)

∑
g1g2

(1 +N g0
pn)N

g0
pnN

g20
pn w

U
pnpn(k1,k2 → k)(k2 + k1 − k)

+
∑
g1g3

(1 +N g30
pn )N g0

pnN
g10
pn w

U
pnpn(k,k1 → k3)(k3 − k1 − k)]

dk1

8π3
}, (1)

(∂N g
pn/∂t)

NU
pnα = βV · {2

∫
(1− n′0α )n0

α(1 +N g10
pn )wUpnα(p→ p′,k)(p− k− p′)

dp

8π3
} (2)

and

(∂nα/∂t)
NU
αpn = βV ·

∑
g{
∫
(1− n0

p)n
′0
αN

g0
pnw

U
αpn(p

′,k→ p)(k+ p′ − p)

+(1− n0
α)n

′0
α (1 +N g0

pn)w
U
αpn(p

′ → p,k)(p′ − k− p)} dk
8π3 . (3)

Starting from the equations of order ε0, a hydrodynamical model can be constructed now, related to
ET one [2], for the temperature T and the drift velocity V of the system, in addition to the chemical
potentials µe, µh.

By projecting the equation for carrier α over 1, the balance equation for particles α reads

∂

∂t

∫
nαdp+∇ ·

∫
vαnαdp = 8π3QGR

0N .

Hereinafter the subscript N in the source terms means that in their definition we utilize nNα for the
integration.
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By projecting the equations for carriers over 2p and the phonon ones on k, summation gives the
following balance equation for the total momentum:

∂

∂t

(
2

∫ ∑
α

n1
αpdp+

∫ ∑
g

N1
gkdk

)
+∇ ·

(
2

∫ ∑
α

n0
αvα ⊗ pdp+

∫ ∑
g

N0
gug ⊗ kdk

)

= 2E
∑
α

λα

∫
n0
αdp+ 2

∑
α

∫ (
∂nα
∂t

)NU
αpn

pdp

+
∑
g

∫ [(
∂N g

pn

∂t

)NU
pnpn

+
∑
α

(
∂N g

pn

∂t

)NU
pnα

]
kdk+ SGRN .

where we took advantage of

2

∫ (
∂np

∂t

)UN
ep

pdp+
∑
g

∫ [(
∂N g

pn

∂t

)UN
pnpn

+
∑
α

∫ (
∂N g

pn

∂t

)UN
pnα

]
kdk = 0,

due to momentum conservation for N-processes.
Finally, by projecting the carrier equations over 2Eα and the phonon ones over ωgpn, summation gives

the following energy balance equation:

∂

∂t

(
2
∑
α

∫
Eαn0

αdp+
∑
g

ωgN
0
g dk

)
+∇ ·

(
2
∑
α

∫
vαEαn1

αdp+
∑
g

∫
ugωgN

1
g dk

)
=

∑
α

λαeE ·
∫

vαn
1
αdp+ 8π3QGR

1N .

4. Source Terms

The source terms are small quantities since the relaxation time τRG of the RG processes is much
larger than the one (ταpn) of the α − pn interactions [6]. Hence we shall utilize for their calculation an
approximation which properly accounts for this smallness.

The equations of order ε0 can be written, after a suitable adimensionalization, as follows

DαnNα −
(
∂nα
∂t

)N
GR

= (1/η)

[(
∂nα
∂t

)NU
αpn

+

(
∂nα
∂t

)UN
αpn

]
,

DgpnN gN
pn = (1/η)

{∑
α

[(
∂N g

pn

∂t

)NU
αpn

+

(
∂N g

pn

∂t

)UN
αpn

]
+

(
∂N g

pn

∂t

)NU
pnpn

+

(
∂N g

pn

∂t

)UN
pnpn

}
where η = O(ταpn/ταγ) is a small parameter. At the orders η−1 and η0 we have, respectively(

∂nα

∂t

)NU
αpn

+
(
∂nα

∂t

)UN
αpn

= 0 (4)

DαnNα =
(
∂nα

∂t

)N
GR

(5)

Analogously we have(
∂N g

pn

∂t

)NU
pnpn

+

(
∂N g

pn

∂t

)UN
pnpn

+
∑
α

[(
∂N g

pn

∂t

)NU
pnα

+

(
∂N g

pn

∂t

)UN
pnα

]
= 0 (6)

DgpnN g
pn =

(
∂N g

pn

∂t

)N
pnph

(7)
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By projecting the equations of order η−1 for carriers over 2p and the phonon ones on k, summation gives

2
∑
α

∫ (
∂nα
∂t

)NU
αp

pdp+
∑
g

∫ [(
∂N g

pn

∂t

)NU
pnpn

+
∑
α

(
∂N g

α

∂t

)NU
pnα

]
kdk = 0,

which, due to (1,2,3), shows that in the present approximation V = 0, so that QGR
0 , QGR

1 , are simply
approximated by setting nα = n0

α and N g
pn = N0

g . Moreover, symmetry arguments lead to SGR = 0.
In the low density approximation [6] (1− nα ' 1) we can write

n0
α = NαCα(T ) exp(−Eα/T ),

where Nα is the number density of particles α and

Cα(T ) =
4π3∫

exp(−Eα/T )dpα
,

so that

Q` = 4

∫ ∫
weh(pe,ph → kpt)[Ee(pe) + Eh(ph)]`{NeNhCeCh exp[ωpt(βpt − β)]− 1}Npt

dpedph
8π6

Observe that Q0 and Q1 depend linearly on NeNh, while

Q`
A = QAe

` +QAh
` ,

where

GA
e (k,p1,p2 → k) = We(k,p1,p2 → k)(ChC

2
eNhNe) exp[−Ee(p1)− Ee(p1)]

−CeNe exp(−Ee(p))
GA
h (p,k1,k2 → k) = Uh(p,k1,k2 → k)[CeNeC2

hN 2
h exp(−Ee(p)− Eh(k1)− Eh(k2)])

−ChNh exp(−Eh(k)),

are cubic with respect the number densities.

5. Revised Drift-Diffusion Approximation and Constitutive Laws

In the drift-diffusion approximation [7,8] (and, in particular for bipolar devices, [9]), we assume that
the total momentum of the mixture does not vary appreciably over the momentum relaxation time. From
the momentum balance equation we get

−2β(IR2 + IR4) · ∇T − 2eIR1 · Ee + 2eIR3 · Eh − βIR5 · ∇T = IB ·V,

which gives V, where Eα = E− λα(1/e)∇µα and

IRl =

∫
F ′[β(Eα − µα)]p⊗ vαdp, α = e, h, l = 1, 3

IRl =

∫
F ′[β(Eα − µα)](Eα − µα)p⊗ vαdp = IMl − µαIRl−1, α = e, h, l = 2, 4

IR5 =
∑
g

∫
B′(βωgpn)ωgpnk⊗ ugpndk.
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The tensor IB, can be written in the following symmetric form

IB = −
∑
g1g2g3

∫ ∫
N g20
pn N

g30
pn (1 +N g10

pn )wpp(k2,k3 → k1)(k1 − k2 − k3)⊗ (k1 − k2 − k3)
dk1dk2

16π3

−2
∑
α

∑
g

∫ ∫
n0
α(1− n′0α )(1 +N g0

pn)wαp(p→ p′,k)(p− k− p′)⊗ (p− k− p′)
dpdk

8π3
.

By utilizing the drifted FD or BE distribution functions, the electrical (Jα) and thermal (Uα,Up)
currents are given by

Jα =
λαe

4π3

∫
vαnαdp = −λαeβ

4π3

∫
vαV · pF ′[β(Eα − µα)]dp

Uα =
1

4π3

∫
vα(Eα − µα)nαdp = − β

4π3

∫
vαV · p(Eα − µα)F ′[β(Eα − µα)]dp

Upn =
1

8π3

∑
g

∫
ωgpnu

g
pnNgdk = − β

8π3

∑
g

∫
ωgpnu

g
pnV · kB′(βωg)dk

Now, by introducing V,

Je = − eβ

4π3
[2e(IK11 · Ee − IK13 · Eh) + β(2IK12 + 2IK14 + IK15) · ∇T ]

Ue =
β

4π3
[2e(IK21 · Ee − IK23 · Eh) + β(2IK22 + 2IK24 + IK25) · ∇T ]

Jh =
eβ

4π3
[2e(IK31 · Ee − IK33 · Eh) + β(2IK32 + 2IK34 + IK35) · ∇T ]

Uh =
β

4π3
[2e(IK41 · Ee − IK43 · Eh) + β(2IK42 + 2IK44 + IK45) · ∇T ]

Upn =
β

4π3
[2e(IK51 · Ee − IK53 · Eh) + β(2IK52 + 2IK54 + IK55) · ∇T ],

where IKlm = ĨRl · IB−1 · IRm (∼ means transpose). Since IB = ĨB, the following Onsager symmetry
relation is in order:

IKlm = ĨKml.

The cross effects of Eh on Je and of Ee on Jh in a drift-diffusion model are discussed in [10].
Moreover, we can calculate the energy flux by its very definition:

FW = −β{2
∑
α

∫
vα ⊗ pEαF ′[β(Eα − µα)]

dp

8π3
+
∑
g

∫
ugpn ⊗ kωgpnB′(βωgpn)

dk

8π3
} ·V

= − β

8π3
[2(ĨM2 + ĨM4) + ĨR5] ·V.

The system of the drift-diffusion equations is obtained by inserting Je and Jh into the carrier balance
equations and FW into the energy balance one.

6. Conclusions

A new fluid-dynamical model for a carrier-phonon system in a photon background is proposed, whose
equations are certainly related to ET ones, based on the maximum energy principle [11–14]. However
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here the treatment is based entirely on kinetic theory, with no need to adjust some free parameters,
based on comparisons with Monte Carlo calculations. A revised drift-diffusion approximation has been
derived, which include an energy balance equation. The fulfilment of the Onsager symmetry relations is
not trivial, since it cannot taken for granted in many macroscopic models [15].

Finally we observe that the asymptotic expansion is valid (ε << 1) when the room temperature is
much lower than the Debye one (in silicon, for example). Hence, proper candidates for applications are
silicon devices.

Appendix

Consider the equations at order ε−1: (
∂nα
∂t

)NN
ep

= 0(
∂N g

pn

∂t

)NN
pp

+

(
∂N g

pn

∂t

)NN
pe

= 0.

By following the same approach as in [5] it can be shown that these conditions are equivalent to

N gN
pn (1 +N g2N

pn )(1 +N g1N
pn ) = (1 +N gN

pn )(1 +N g1N
pn )N g2N

pn ∀k,k1 (8)

nNα (p)[1− nNα (p′)](1 +N gN
pn ) = nNα (p

′)[1− nNα (p)]N gN
pn ∀p,k. (9)

Condition (8) shows that ln[N gN
pn /(1 + N gN

pn )] is a collisional invariant for phonons. In the case of
N-processes

ln
N gN
pn

1 +N gN
pn

= (V · k− ωgpn)/T. (10)

By inserting (10) into (9), since

p = p′ + k, Eα(p) = Eα(p′) + ωgpn,

we find that

ln
nNα (p)

1− nNα (p)
+ (Eα −V · p)/T

is a collisional invariant for α-particles:

ln
nNα (p)

1− nNα (p)
= (−Eα +V · p+ µα)/T.
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