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Abstract: This work introduces for the first time the application of wavelet entropy
(WE) to detect episodes of the most common cardiac arrhythmia, atrial fibrillation (AF),
automatically from the electrocardiogram (ECG). Given that AF is often asymptomatic and
usually presents very brief initial episodes, its early automatic detection is clinically relevant
to improve AF treatment and prevent risks for the patients. After discarding noisy TQ
intervals from the ECG, the WE has been computed over the median TQ segment obtained
from the 10 previous noise-free beats under study. In this way, the P-waves or the fibrillatory
waves present in the recording were highlighted or attenuated, respectively, thus enabling
the patient’s rhythm identification (sinus rhythm or AF). Results provided a discriminant
ability of about 95%, which is comparable to previous works. However, in contrast to
most of them, which are mainly based on quantifying RR series variability, the proposed
algorithm is able to deal with patients under rate-control therapy or with a reduced heart rate
variability during AF. Additionally, it also presents interesting properties, such as the lowest
delay in detecting AF or sinus rhythm, the ability to detect episodes as brief as five beats
in length or its integration facilities under real-time beat-by-beat ECG monitoring systems.
Consequently, this tool may help clinicians in the automatic detection of a wide variety of AF
episodes, thus gaining further knowledge about the mechanisms initiating this arrhythmia.
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1. Introduction

Entropy, defined as a measure of the amount of information within a random process, has been
playing an important role in biomedical signal and image analysis during the last few years. Indeed,
numerous entropy-based metrics have recently provided a significant ability to reveal useful information
from diseases that still represent a clinical challenge, such as Alzheimer’s [1], schizophrenia [2],
myocardial infarction [3] or atrial fibrillation (AF) [4], among others. The information provided by
these metrics is mainly related to underlying mechanisms that cannot be quantified directly by clinicians
in an exploratory examination, thus providing a significant knowledge increase of those diseases, as
well as improving their diagnosis and treatment [5,6]. Within this context, wavelet entropy (WE) has
demonstrated very interesting results because it combines entropy and wavelet decomposition to increase
its robustness to non-stationarities, noise and artifacts [7]. Given that physiological signals are often
non-stationary, WE has proven to be widely successful in quantifying clinically-relevant events from
electroencephalograms (EEG) [7,8], electrocardiograms (ECG) [9], intracranial pressure recordings [10]
and evoked related potentials [11]. In the present work, a new application of WE to detect automatically
the onset of the most common cardiac arrhythmia will be introduced.

Atrial fibrillation (AF) has been described by physicians as the commonest cardiac arrhythmia in
clinical routine, with an estimated prevalence of 1.5%–2% of the general population in the developed
world [12]. More than six million people in Europe and three million people in the USA suffer currently
from this arrhythmia [12]. It is also expected that its prevalence will double in the next 50 years [13].
Today, three different types of AF are clinically stratified depending on the episode duration. The
arrhythmia can then be classified into paroxysmal AF (PAF), persistent or long-standing persistent AF
and, finally, permanent AF [14]. In the first stage, PAF terminates spontaneously, at most within seven
days of onset. In general, paroxysmal episodes usually increase in frequency and duration over time.
On the other hand, persistent AF duration is longer than seven days, evolving to its long-standing form
if it lasts more than 12 months. An external intervention, such as electrical cardioversion or catheter
ablation, is normally required to revert the arrhythmia [12]. Finally, in the more evolved stage of AF and
with the aim of avoiding the risks of further unsuccessful attempts of restoring sinus rhythm (SR), both
the patient and the clinician make a joint decision considering the arrhythmia as permanent AF. In this
case, only interventions to control the heart rate are pursued [14].

Although AF itself does not represent a life-threatening condition, it adversely affects the blood
flow dynamics and predisposes to thrombus formation within the atrium [12]. In fact, the presence
of AF is associated with a five-fold risk of stroke and a three-fold incidence of congestive heart failure,
thus provoking that AF patients have twice the risk of death than healthy people of the same age [12].
Within this context, an early detection of AF may help with reducing that risk by restoring normal heart
rhythm or by improving the blood flow with antithrombotic therapy [14,15]. This early diagnosis may
also involve notable benefits for healthcare services around the world, because the high hospitalization
rates of AF, as well as its considerable burden on health resources could be significantly limited [16].
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However, early AF detection is not an easy task, because the initial PAF episodes are often extremely
brief, some of them consisting of only a few beats in length [14]. Additionally, current AF diagnosis
is mainly based on the presence of typical symptoms, such as dyspnea, chest pain, dizziness and
palpitations [17], but not every single patient always presents these signs. Indeed, previous works have
reported that up to 90% of PAF episodes may be asymptomatic [18]. Similarly, a poor correlation
between symptoms and AF occurrence have also been described by several authors [19,20]. Hence,
to avoid an ischemic stroke as the first manifestation of AF in a considerable number of patients,
the development of automatic AF detectors able to be embedded into continuous monitoring systems
constitutes a significant challenge [21].

Currently, a wide variety of methods to detect AF automatically can be found in the literature.
These algorithms are mostly based on the two main characteristics manifested by AF on the ECG.
On the one hand, AF occurs when electrical impulses provided by the sinus node are replaced by
multiple and irregular wavefronts, which continuously excite the atria [12]. As a result, the normal
P-wave during SR is replaced by fibrillatory waves that are randomly propagated (f -waves) [22]. Taking
advantage of this alteration in the atrial electrical activity, a first limited group of algorithms have been
proposed [23,24]. However, the low signal-to-noise ratio in the ECG of atrial activation waves can
sometimes hamper the proper performance of these methods. Indeed, only a modest result has been
obtained by Slocum et al.’s algorithm [23] in the presence of noise [25]. Nonetheless, it is worth noting
that the most recent P-wave-based method has reported a high accuracy even within this context [24].

On the other hand, the chaotic and fragmented atrial excitation during AF can reach activation rates
of 400 per minute and above. Such a high rate involves a massive bombardment of the atrioventricular
(AV) node, which will conduct the electrical impulses from the atria down to the ventricles. Given its
intrinsic refractory period, the AV node will only conduct some of these atrial activations, but still
provoking the fast and irregular ventricular rhythm, which is commonly observed during AF [26].
By considering ventricular response, numerous authors have proposed AF detectors based on analyzing
RR series variability [27–32]. However, although these methods have provided a high ability to identify
long AF episodes, they have also manifested their weakness when dealing with very short AF events.
Indeed, a time length of at least 30 s is required to provide reliable AF detections, such that shorter
episodes cannot be uncovered. However, this is a major limitation for these methods, because brief
episodes are very common in the first stages of PAF [14]. Moreover, recent works have provided a close
relationship between the presence of brief episodes and a high risk of thrombus formation [33].

To overcome the need of long enough episodes for reliable AF detection, several authors have recently
combined information from the RR series variability together with the P-wave absence analysis [34–39].
In this way, brief PAF episodes of only a few beats in length (≥ 5 beats) have been successfully detected.
However, these algorithms still present an important limitation, such as their inability to properly work
when regular RR intervals occur. In fact, this situation is very frequent in AF during the presence of AV
block, as well as in ventricular or AV junctional tachycardia [40]. Furthermore, the use of pacemakers,
as well as drugs to stabilize the heart rate during AF also eliminate the RR series irregularity associated
with the arrhythmia [24]. As a consequence, these algorithms would not be able to provide reliable AF
detection under these scenarios.
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In the present work, a novel algorithm with the ability to detect automatically both long and brief
PAF episodes, regardless of the patient’s heart rate regularity, is introduced. It is based on a robust
identification of the presence or absence of the P-wave in every single beat of the ECG. For that purpose,
WE, as well as the energy associated with several wavelet scales will be computed from the ECG interval
containing atrial activity, i.e., the TQ interval, corresponding to the beat under analysis. To improve its
signal-to-noise ratio, a signal-averaging approach is used. This technique has been widely considered
for P-wave characterization, thus revealing clinically useful information, such as the identification of
patients prone to PAF [41] or the prediction of AF recurrence after electrical cardioversion [42] or
catheter ablation [43].

The remainder of manuscript is organized as follows. Section 2 describes the database used, as well as
the processing applied to the recordings and the algorithm for WE computation. Section 3 summarizes
the obtained results, which are then discussed in Section 4. Finally, Section 5 presents the
concluding remarks.

2. Materials and Methods

2.1. Study Population

To evaluate the proposed algorithm performance, the MIT-BIH AF Database was used. It is freely
available from PhysioNet [44] and has been widely used to validate the automatic detection of AF in
previous works [24,28,29,31,32,36,38]. The dataset contains 23 fully-annotated 10-hour length ECG
recordings mainly from PAF patients, which were acquired with a sampling rate of 250 Hz and 12-bit
resolution over a range of ± 10 mV. More precisely, it includes 605 episodes related to four different
rhythms, from which the used R-peak detector identified 1,124,391 beats: 291 AF episodes (474,670
beats), 14 atrial flutter episodes (12,081 beats), 12 episodes of junctional rhythm (3603 beats) and 288
episodes of all other rhythms (633,317 beats). In the current study, 1,107,987 beats were analyzed from
all the episodes, apart from those related to atrial flutter and junctional rhythm. These latter episodes
were not included in the study, because discerning between AF and atrial flutter is a clinical challenge
that merits an exclusive and thorough study, such as has been addressed in [45,46]. Furthermore, the
duration of these episodes was too limited compared to the remaining ones.

On the other hand, although each ECG recording contained two leads, only the one providing
the largest P-waves was analyzed. Nonetheless, when both leads presented P-waves with a similar
amplitude, they were visually inspected, and the one presenting apparently less noise was selected,
because noise is a common nuisance artifact in long-term ambulatory recordings [39]. Moreover, to
increase the proposed algorithm’s noise immunity, beats where completely noise-masked P- or f -waves
were manually identified and annotated from the selected lead. This process was carried out by two
different experts, such that those cases of disagreement were discarded. Finally, a total number of
114,460 noisy beats was detected, i.e., 10.60% of all the beats considered for the study. For all the
patients, these noisy beats meant 9.72% ± 10.61% on average.
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2.2. Data Processing

The selected lead was first preprocessed to improve later analysis. Thus, baseline wander was
removed making use of a bidirectional high-pass filtering with a 0.5 Hz cut-off frequency [47].
Muscle noise and power-line interference were reduced by applying an eighth order, bidirectional IIR
Chebyshev low-pass filtering with a 50-Hz cut-off frequency [48]. Thereafter, a phasor transform-based
algorithm was used to detect every single R-peak [49]. This algorithm has been validated with databases
manually annotated by expert cardiologists, providing sensitivity and positive predictivity higher than
99.65% and 99.70%, respectively. Furthermore, this algorithm has the ability to deal with ectopics in
the same way as normal beats [49]. Hence, complexes originated from atrial and ventricular premature
activations were automatically detected without any additional requirement and were then considered
for the study.

After every single R-peak identification, its preceding TQ interval was computed as a variable length
segment located 60 ms before the corresponding R-peak. To make the duration of this interval as
insensitive to ectopic and errors in R-peak detection as possible, it was adaptively computed as a quarter
of the median RR interval associated with the last 10 beats. Several experiments carried out on all of the
analyzed signals proved that this TQ interval only contained atrial activity information regardless of the
heart rate and its variability.

Finally, every selected TQ interval was analyzed from the wavelet domain following two steps, such
as Figure 1 shows. First, WE was computed from the TQ interval under analysis and, then, compared
to a threshold ON to determine whether the noise level exceeded the P- or f -wave amplitude. In case
of a noisy TQ interval, it was flagged and discarded. For the remaining beats, a second step computing
the median TQ interval from the last L noise-free beats was performed for every single beat. For this
purpose, all the single TQ segments were shortened down to the shortest TQ duration. The point located
60 ms before the R-peak was considered as a reference to reach a proper alignment of the P-waves.
Hence, every single TQ interval was reduced from the closest side to the T-wave offset. As the last
step, the WE, as well as the relative energy in the analyzed wavelet scales were computed from this
median interval to discern between SR and AF. It has to be remarked that the use of this signal-averaging
approach leads to a tiny delay in AF detection. Indeed, during the transition from SR to AF or vice versa,
both P- and f -waves are jointly considered to generate the median TQ interval. Therefore, its waveform
will mainly depend on which wave (P or f ) is predominant. This delay will increase with the number
of averaged beats generating the median TQ interval, such that the larger L, the longer the induced
delay. Hence, with the aim to assess how the transition delay affects the classification’s performance, the
number of averaged beats was analyzed within a range of L = 1, 2, . . . , 20 beats.
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Figure 1. Block diagram describing the main steps of the proposed algorithm able to detect
atrial fibrillation (AF) automatically, regardless of episode duration and heart rate.

2.3. Wavelet Entropy Analysis

The wavelet transform (WT) characterizes a signal in terms of translated and dilated versions of
another signal, named the mother wavelet ψ(t) [50]. Hence, a wavelet family ψa,b(t) is the set of
functions generated by translations and dilations, using the scale and translation parameters a and b, of a
single mother wavelet, such that:

ψa,b(t) = |a|−
1
2ψ
(t− b

a

)
, (1)

where a, b ∈ <, a 6= 0 and t is time. Low a values are related to a dilated wavelet and, therefore, focused
on low frequencies. Then, the continuous wavelet transform (CWT) of a signal s(t) is defined as the
correlation between s(t) and the wavelet family ψa,b(t), such that:

CWT (a, b) = |a|−
1
2

∫ ∞
−∞

s(t)ψ∗
(t− b

a

)
dt. (2)

The sampled version of this transform is called discrete wavelet transform (DWT). In this case, s(t) is
sampled, and dyadic translations and scales are only allowed. Hence, the mother wavelet is only shifted
and scaled by powers of two, such that:

ψj,k(n) = 2−
j
2ψ(2−jn− k), (3)

where n is the discrete time and j and k are the new scale and shift parameters, respectively. The result
of this transformation is a series of wavelet coefficients, C(j, k), which depend on the value of scale and
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translation. More precisely, these coefficients can be interpreted as a measure of correlation between the
analyzed signal s(n) and the wavelet function ψj,k(n), such that:

C(j, k) =
M∑
n=1

s(n)ψj,k(n). (4)

M being the length of s(n). These wavelet coefficients do not contain redundant information, thus
making complete reconstruction of the original signal possible whenever an orthogonal function is used
as the mother wavelet [50]. Moreover, it should also be noted that coefficients C(j, k) provide a direct
estimation of the signal energy at each analyzed scale [7]. Thus, the relative energy associated with the
scale j can be computed as:

Ej =

∑Pj

k=1C(j, k)2∑N
j=1

∑Pj

k=1 C(j, k)2
, (5)

N and Pj being the number of wavelet decomposition levels and the length of C(j,k), respectively.
Obviously,

∑N
j=1Ej = 1 and the distribution {Ej} can be considered as a time-scale density, which

is a suitable tool for detecting and characterizing specific phenomena both in time and frequency
domains [7]. Therefore, by computing Shannon’s entropy from this distribution, the WE can be defined,
such that:

WE = −
N∑
j=1

Ej log(Ej), (6)

thus providing useful information about the underlying time-frequency dynamical processes associated
with the signal [7]. More precisely, WE yields a measure of the degree of order/disorder of the signal.
Thus, for a very organized signal, such as a periodic mono-frequency event, WE will provide a very low
value close to zero. In fact, its wavelet decomposition will show a relative wavelet energy close to one
for the level containing the representative frequency and a very limited relative energy for the remaining
wavelet levels. In contrast, a very disorganized signal, such as those generated by totally random
processes, will have a wavelet representation with significant contributions from all the frequency bands,
thus providing a high WE value near its maximum.

In the present work, with the aim to compute WE from the median TQ interval, a four-level wavelet
decomposition was chosen (N = 4). Bearing in mind that the P-wave spectral content is usually
considered as a low-frequency (below 10–15 Hz) [48] and recordings were acquired with a sampling
rate of 250 Hz, the P-wave relative wavelet energy will be mainly concentrated on the fourth scale.
With regard to the mother wavelet selection, there are no available guidelines for this purpose; thus,
an exploratory approach by testing different functions is proposed [51,52]. Indeed, all the functions
from Haar, Daubechies, Coiflet, Biorthogonal, Reverse Biorthogonal and Symlet wavelet families were
tested. Although no huge differences were noticed, the best outcomes were provided by the sixth-order
Daubechies function. Hence, this wavelet function was selected, and its main results will be presented
later in Section 3.

2.4. Performance Assessment and Statistical Analysis

The optimal threshold ON to identify noisy beats was obtained by using a learning/test approach.
Thus, to avoid results being dependent on the choice for the learning/test split [53], half of the noisy
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beats manually annotated from each patient (i.e., 57,230 beats) were randomly selected to train the
method. A receiver operating characteristic (ROC) curve was then computed from this set. This plot is
the result of plotting the fraction of true positives (TP) out of positives (sensitivity) against the fraction
of false positives out of the negatives (1−specificity) at various threshold settings. Sensitivity was here
considered as the percentage of TQ intervals manually annotated as noisy that were correctly classified.
In a similar way, the rate of the remaining TQ intervals available in the studied dataset (i.e., SR and AF
beats) properly identified was considered as the specificity. The optimal threshold ON was selected as
the one providing the highest percentage of TQ intervals correctly classified (i.e., accuracy). Finally, the
remaining half of the noisy beats was used to test the method. Only classification results provided from
this set will be presented in the next section.

An ROC curve was also used to assess the diagnostic ability of WE, as well as of the relative energies
E4, E3, E2 and E1, computed from the median TQ interval, to discern between SR and AF beats. In this
case, noisy beats were discarded, and the remaining ones were divided into two equally-sized, stratified
groups. Thus, as for noisy beats, half the AF (237, 335) and SR (316, 658) beats from each patient were
randomly selected as a learning set to compute the optimal threshold from each single metric. The rate
of AF beats properly identified was considered as the true positive rate (i.e., sensitivity), whereas the
percentage of SR beats successfully classified was considered as the true negative rate (i.e., specificity).
As before, the threshold maximizing the accuracy (i.e., the number of beats correctly identified) was
selected as optimal and was used to check out the single metric over the test group. Thus, sensitivity,
specificity and accuracy were computed from this test set.

On the other hand, a stepwise discriminant analysis (SDA) was also performed with the objective of
improving AF automatic detection. For each iteration, the discriminant power provided by each selected
subset of features was assessed by the Lawley–Hotelling trace (Rao’s V). This generalized distance
measure quantifies the separation of group centroids and does not concern itself with cohesiveness within
the groups. Thus, a variable selected on the basis of this index may be decreasing within group cohesion,
while it adds to the overall separation. As for the single metrics, SDA was trained with the learning set
and validated with the test set.

Finally, all the metrics provided normal and homoscedastic distributions from Kolmogorov–Smirnov
and Levene tests, respectively. As a consequence, results were expressed as the mean ± standard
deviation for all the patients belonging to the same group, and statistical differences between SR and AF
beats were assessed by using a Student’s t-test. A two-tailed value of statistical significance p < 0.01

was considered statistically significant.

3. Results

The WE optimal threshold ON obtained to identify noisy beats was 1.096. This value provided a
sensitivity and specificity of 96.70% and 97.95%, respectively. Figure 2 shows an example where noisy
beats were properly detected by comparing WE withON . As can be observed, noisy beats provided WE
values notably higher (1.193± 0.083) than the remaining ones (0.687± 0.234), the differences between
them being statistically significant (p < 0.001). It is worth noting that no transition delay is observed in
this figure, since noisy TQ intervals were detected by computing WE in a beat-to-beat fashion.
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noisy beats

Figure 2. Example of a typical ECG segment where noisy TQ intervals are properly
identified by computing wavelet entropy (WE). In this case, the metric was obtained in a
beat-to-beat manner and compared to the optimal threshold ON to decide the presence or
absence of noise.

Once noisy beats were identified and rejected, the improvement in AF detection achieved by the
median of consecutive TQ intervals was assessed from the learning set. Thus, Figure 3a displays the
WE diagnostic accuracy for the median TQ interval computed from L = 1, 2, . . . , 20 beats. As can be
seen, the higher the value of L, the higher the accuracy. In a similar way, Figure 3b shows the delay, as
a function of L, in detecting the transition from SR to AF and vice versa. In this case, as L increases, a
greater number of beats is also required to identify a change of rhythm. By considering the increasing
delay with L together with the limited improvement in accuracy for L ≥ 10, a value of L = 10 beats
was selected as an optimal trade-off between both aspects. In fact, a reduced improvement in accuracy
lower than 1.5% was provided for L ≥ 10, as can be observed in Figure 3a. For the case of L = 10,
Figure 4 shows an example where WE is able to detect transition from AF to SR with a tiny delay
of only five beats. Furthermore, it has to be mentioned that a regular RR series can be observed in
both AF and SR. Thus, although the mean RR series is slightly higher for SR than for AF, every
algorithm based on quantifying the RR irregularity could not discern between both episodes. Finally,
note that these experiments were also repeated for the metrics E4, E3, E2 and E1, and similar results
were obtained.
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Figure 3. Variation of (a) wavelet entropy (WE) diagnostic accuracy and (b) transition delay
as a function of the number of beats L participating in the averaged TQ interval.
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Figure 4. Example of the transition from atrial fibrillation (AF) to sinus rhythm (SR) where
wavelet entropy (WE) presents a tiny delay of five beats. The median TQ interval was
computed with L = 10 beats.

Regarding the classification into SR and AF beats from the median TQ interval (being L = 10 beats),
Tables 1 and 2 show the learning and test sets results, respectively. For both sets, while WE, E3, E2

and E1 provided higher values for AF beats, E4 yielded a reverse trend. This finding is also noticeable
in Figures 5 and 6, which display boxplots for the analyzed metrics from the learning and test sets,
respectively. It should be remarked that notable statistically-significant differences were reported in
every case. In addition, all the metrics provided a high accuracy (≥ 85%) from both datasets, but WE
showed to be the most powerful single metric to detect AF, although it was closely followed by the
relative wavelet energy of the fourth scale E4.

Finally, the SDA did not improve the accuracy reported by the single metric WE, because any other
metric was able to provide extra information to the classifier. Nonetheless, it has to be mentioned that a
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statistically-significant correlation higher than 50% was observed between WE and the relative energy
in all the wavelet scales.

Table 1. Classification results provided by the analyzed single metrics for the learning group.

Metric SR beats AF beats p Threshold Accuracy (%) Sensitivity (%) Specificity (%)

WE 0.431 ± 0.135 0.952 ± 0.240 < 0.001 0.639 95.62 96.07 95.23
E4 0.881 ± 0.051 0.601 ± 0.190 < 0.001 0.804 94.89 94.61 95.19
E3 0.089 ± 0.040 0.215 ± 0.105 < 0.001 0.110 87.60 94.78 81.03
E2 0.023 ± 0.015 0.125 ± 0.096 < 0.001 0.038 91.04 90.69 91.35
E1 0.007 ± 0.006 0.060 ± 0.057 < 0.001 0.011 88.75 92.10 85.68

Table 2. Classification results provided by the analyzed single metrics for the test group.

Metric SR beats AF beats p Accuracy (%) Sensitivity (%) Specificity (%)

WE 0.420 ± 0.124 1.017 ± 0.208 < 0.001 95.28 96.47 94.19
E4 0.886 ± 0.044 0.546 ± 0.183 < 0.001 94.48 93.19 95.89
E3 0.086 ± 0.032 0.249 ± 0.118 < 0.001 85.51 81.66 89.03
E2 0.022 ± 0.017 0.141 ± 0.089 < 0.001 90.84 88.15 93.29
E1 0.007 ± 0.006 0.065 ± 0.060 < 0.001 87.69 81.80 93.03
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Figure 5. Boxplots showing the distribution of all the analyzed metrics from the learning set.
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Figure 6. Boxplots showing the distribution of all the analyzed metrics from the test set.

4. Discussion

To the best of our knowledge, the present work has introduced for the first time the application of WE
to detect the rhythm transition from SR to AF and vice versa automatically. Basically, this metric has
served to quantify the TQ interval waveform regularity, thus being able to discern among noise, P-waves
and f -waves. Although noise robustness is of paramount relevance in AF long-term monitoring, it has
not received much attention in previous works [39]. Nonetheless, every short-time method relying on the
atrial activity analysis reflected by the ECG will have to consider very carefully the presence of noise.
In fact, P- or f -waves can only be properly detected when they are not completely masked by noise.
A proper noise identification methodology also plays a key role in AF patients presenting a regular heart
rate. To this respect, given that noise does not affect the RR interval, previous algorithms have only
paid attention to heart rate variability with the aim to discern the patient’s rhythm [39]. However, these
methods will fail for those patients under pharmacologically-controlled heart rate, as well as in those
cases lacking significant heart rate variability. An example in this line is illustrated by the two ECG
segments presented in Figure 7. Both excerpts show a regular RR series, but the first interval contains an
SR episode, whereas the second one is AF. As can be observed, the proper patient’s rhythm identification
by using both RR series variability and P-wave-based algorithms is impossible in the presence of noise.

In the proposed algorithm, noisy beats were firstly detected by computing WE in a beat-to-beat
fashion (see Figure 1). This approach allowed the successful identification of about 97% of the noisy
TQ intervals manually annotated, with an error rate of misclassified non-noisy beats of about 2%. It
should also be mentioned that a very similar result was obtained when another entropy metric, such as
sample entropy (SampEn), was used instead of WE. SampEn was tested because it has proven recently
to have a high ability to identify noise in the ECG [54]. On the other hand, it is interesting to remark that
although the method has been developed for single-lead ECG recordings, detection of noisy beats could
be helpful in multi-lead ECG environments to improve the proposed method’s robustness. Thus, when
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a TQ interval is marked as noisy from the studied lead, it could be analyzed from other leads, which
eventually would have been less affected by noise [24].

Time (s)
1 2 3 4 5 6 7 8 9 10

noisy beats

noisy beats
(a)

(b)

Figure 7. ECG intervals with regular RR series and noise presence obtained from (a) sinus
rhythm (SR) and (b) atrial fibrillation (AF) episodes.

In contrast to the beat-to-beat strategy to detect noisy beats, the second stage of the proposed algorithm
allowed the discrimination between SR and AF beats by computing the median of 10 noise-free TQ
intervals. Although WE results from signal-averaged and beat-to-beat approaches should not be strictly
compared, it is interesting to note that an increasing trend in WE from SR beats to AF beats and then
to noisy beats was clearly observed. This behavior could be expected because the P-wave normally
presents a well-known Gaussian waveform [48]; the f -waves present rapid variations in time, shape and
timing [22]; and finally, the noise contains completely chaotic variations. Furthermore, results from the
relative energy for the four analyzed wavelet scales also lend support to this idea. Indeed, as can be
observed from Tables 1 and 2 and Figures 5 and 6, whereas the P-wave presented its energy mainly
concentrated on the fourth scale, AF beats provided a wider energy distribution among all the scales.

Analysis of the median TQ interval is justified from the results displayed in Figure 3a. It can be seen
that WE computed beat-to-beat (i.e., for L = 1 beat) only provided an accuracy of about 75%. However,
the classification rate directly increased as a function of L up to a value of about 97% for L = 20 beats.
A reasonable explanation for this trend is due to the improvement in the signal-to-noise ratio of a P-wave
as the number of considered TQ intervals in SR increases; thus, a clearer P-wave can be obtained [55].
Conversely, when TQ intervals only related to AF are considered to obtain their median, f -waves tend to
be attenuated because, as previously mentioned, they present random morphological variations [22].
Hence, the proposed methodology is also able to expand the contrast between TQ intervals
belonging to SR and AF beats as a function of L. Precisely, this way of working makes the method able
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to discern appropriately between very low amplitude P- and f -waves. Thus, whenever a distinguishable
P-wave can be found in the TQ interval, it will be highlighted by the signal-averaging approach. On
the contrary, if low amplitude and variable f -waves are presented, their median will result in a more
chaotic signal.

However, the median TQ interval computation also provoked a transition delay in rhythm detection
(see Figure 4), being greater as the number of considered beats increased (see Figure 3b). Thus, a proper
trade-off between accuracy and transition delay is a key aspect for the algorithm. In fact, the highest
accuracy can only be achieved at the cost of some transition delay, which may cause very short AF
episodes to remain unseen [29]. Nonetheless, the chosen value of L = 10 beats provided a high accuracy
of 95.28% with a transition delay lower than previous works. Indeed, whereas the proposed algorithm
provided a mean delay of about five beats, other methods have reported delays of seven beats [24],
12 beats [30], 18 beats [28], 70 beats [29] or greater [27]. Moreover, although Lee et al. [56] were able
to decrease the transition delay down to only six beats; an accuracy lower than 92% was reported in this
case. It is also significant to note that the transition delay for the proposed algorithm increased notably
with L > 10 beats, but its accuracy was only improved by 1%, approximately.

It should be remarked that any proposed method will be unable to detect AF episodes shorter than its
transition delay. Hence, for a value of L = 10 beats, only SR and AF episodes shorter than five beats
could remain unseen. This result improves most of the previous works where only episodes with several
tens of beats in length were appropriately identified [28,29]. Only a recent work has reported comparable
results being able to detect AF episodes as short as five beats under some special circumstances [39].
The method requires two ECG leads, one of them close to the atria, like V1, and the other one positioned
away from the atria, like V6. This requirement would involve de facto standard ECG recordings of
12 leads, in contrast to the proposed method based on a single lead. Furthermore, Petrenas et al. [39]
did not make use of the MIT-BIH database, in which two leads’ noisy problematic recordings sampled at
250 Hz and 12-bit resolution can be found. They used a 12-lead ECG database with recordings sampled
at 1 kHz and 16-bit resolution, thus preventing a direct comparison with other methods.

Regarding previous works validated on the same database used here, i.e., the MIT-BIH AF database,
Table 3 summarizes the best performing AF detectors. In general terms, the proposed method provided
comparable sensitivity, specificity and accuracy values to most of them. Indeed, it was equally sensitive,
but slightly less specific. The present algorithm also improved the accuracy reported by the two previous
methods based on analyzing the P-wave absence [23,24]. Furthermore, in contrast to Ladavich and
Ghoraani [24], it does not require an initial long-term training (at least 35 min) for every patient
under analysis.
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Table 3. Performance comparison of AF detectors that have been validated making use of
the MIT-BIH AF Database.

Algorithm Sensitivity Specificity Accuracy Delay Methodology

Slocum et al. [23] 62.80% 77.46% – –
Frequency analysis of the residual signal
after QRST cancellation.

Tateno and Glass [27] 94.40% 97.20% – –
Kolmogorov–Smirnov test from histograms
of difference between two successive
RR intervals.

Dash et al. [28] 94.40% 95.10% – 18 beats
Analysis of randomness, variability and
complexity of RR interval combined by
simple rules.

Babaeizadeh et al. [34] 92.00% 95.50% – –
Information combined by a decision tree
from RR and PR intervals variability and
the P-wave similarity.

Huang et al. [29] 96.10% 98.10% – 70 beats
Analysis of the density histogram of
delta RR intervals with several statistical
features.

Lake and Moorman [30] 91.00% 94.00% – 12 beats
Analysis of RR interval regularity by
using the coefficient of sample entropy.

Jiang et al. [36] 98.20% 97.50% – –
Analysis of RR interval density histograms
combined with the P-wave presence study.

Lee et al. [56] 98.20% 97.70% – ≈ 12 beats
Analysis of RR interval variability with
time-varying coherence functions and
Shannon entropy.

Zhou et al. [32] 96.89% 98.25% 97.67% –
Analysis of RR interval regularity by
applying nonlinear/linear integer filters,
symbolic dynamics and Shannon entropy.

Ladavich and Ghoraani [24] 98.09% 91.66% 93.22% 7 beats
Analysis of the P-wave absence by using
a Gaussian mixture model.

This work 96.47% 94.19% 95.28% 5 beats
Analysis of the median TQ interval by
using WE.

The effect of including noisy beats on the classification performance was also analyzed. Thus, for
every beat, WE was computed from the median TQ interval obtained by considering its preceding
L beats, such that normal and noisy beats could be included. In this case, sensitivity, specificity and
accuracy were 96.22%, 89.89% and 91.26%, respectively. As expected, whereas sensitivity was only
decreased by 0.25%, the decrease in specificity was greater (4.3%). Indeed, noise increases notably the
WE values computed from the TQ interval, and therefore, there is a high probability that noisy beats
are classified into the AF group. Thus, because most of the noisy beats related to AF were properly
classified, sensitivity was not significantly altered. On the contrary, specificity was decreased given that
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most of the noisy beats related to SR were inappropriately identified as AF beats. Anyway, accuracy was
only decreased by 4.02%, and therefore, it is still comparable to most of the previous works.

Moreover, although the step of rejection of noisy beats improved the classification results, rejecting
some beats that will make no contribution either to AF nor to SR detection seems reasonable. In
fact, most of the previous works also required discarding some beats for an appropriate validation of
the algorithms. In this respect, Ladavich and Ghoraani [24] did not consider three entire recordings,
because they did not contain sufficient SR data to train the method. Similarly, other methods also
discarded several full recordings, since their R-peak annotations available from PhysioNet contained
errors [28,31,32]. Finally, most of the algorithms based on quantifying RR variability required a filtering
of ectopic beats [28,29,31]. In this line, atrial and ventricular premature complexes often provoke heart
rate alterations, which can lead to numerous false AF detections [30,34]. Hence, since these ectopics
occur quite commonly in AF patients [39], these algorithms required a first step to identify and exclude
atrial and ventricular premature complexes. As another advantage of the proposed algorithm, it precludes
this requirement, because the presence of an ectopic does not significantly alter the median TQ interval,
and hence, the abnormal beat will be classified according to its L preceding normal complexes.

The transition delay from SR to AF and vice versa was also studied without rejecting noisy beats.
The obtained results showed that delay only increased slightly for every value of L (0.306 ± 0.148 beats
on average). This excellent result can be explained by the fact that the probability of finding noisy beats
around the transition of SR to AF or vice versa is quite limited. Indeed, most of the patients (15 out
of 23) presented less than eight AF episodes and only about 10% of noisy beats. This argument is also
coherent with the finding that the difference between delays with or without rejection of noisy beats
increased as a function of L. Thus, whereas the mean delay difference was 0.26 beats for L = 10, it was
0.32 beats for L = 20.

Finally, some limitations merit consideration. First, the proposed method validation was conducted
on a limited group of patients. Nonetheless, the studied MIT-BIH AF Database is the most popular
available dataset for AF detection, and therefore, its use is required to honestly compare the obtained
results with previously-published algorithms. On the other hand, only one lead was analyzed, thus
rejecting the possible information contained in the other available lead. However, it is important to
note that the method could work successfully under multi-lead scenarios, because the P-wave is present
in every ECG lead. Hence, it could be applied over the most interesting lead, from the atrial activity
point of view. Thus, the method should analyze Lead V1 or Lead II, because they present higher
P-wave amplitudes than the remaining standard ECG leads. These leads are commonly acquired by
Holter systems, even in the case of recording a limited number of leads. In this respect, the signal
selection strategy in the present work was based on getting the lead with the largest P-wave, because
no information about the acquired leads was provided from PhysioNet. Lastly, it should be mentioned
that the proposed method is computationally expensive, because WE has to be computed twice for each
beat. Nevertheless, because it only requires information from the last 10 noise-free beats to identify
the patient’s rhythm, it could be implemented to work in a real-time beat-by-beat way, thus providing
continuous ECG monitoring facilities.
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5. Conclusions

This work has proven for the first time how the application of WE is able to discern successfully
between SR and AF by only analyzing the atrial electrical activity from single-lead ECGs. The proposed
algorithm could be used in a wide range of patients, including those under rate-control therapy or with
a reduced heart rate variability during AF. Compared to previous AF detectors, the algorithm reported a
similar classification performance with the additional advantages of a shorter transition delay, as well as
the ability to detect episodes as brief as five beats in length. Furthermore, the method relies on a single
metric, which is able to provide an easily-interpretable result. Finally, it presents significant integration
facilities under real-time beat-by-beat ECG monitoring systems, thus allowing clinicians the automatic
detection of very brief AF episodes, which are very common during the initial stages of the arrhythmia.
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