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Abstract: A six-dimensional nonlinear hydropower system controlled by a nonlinear 

predictive control method is presented in this paper. In terms of the nonlinear predictive 

control method; the performance index with terminal penalty function is selected. A simple 

method to find an appropriate terminal penalty function is introduced and its effectiveness 

is proved. The input-to-state-stability of the controlled system is proved by using the 

Lyapunov function. Subsequently a six-dimensional model of the hydropower system is 

presented in the paper. Different with other hydropower system models; the above model 

includes the hydro-turbine system; the penstock system; the generator system; and the 

hydraulic servo system accurately describing the operational process of a hydropower plant. 

Furthermore, the numerical experiments show that the six-dimensional nonlinear 

hydropower system controlled by the method is stable. In addition, the numerical experiment 

also illustrates that the nonlinear predictive control method enjoys great advantages over a 

traditional control method in nonlinear systems. Finally, a strategy to combine the nonlinear 

predictive control method with other methods is proposed to further facilitate the application 

of the nonlinear predictive control method into practice. 

Keywords: nonlinear predictive control; hydropower system; Lyapunov function;  

control method; stability 
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1. Introduction 

Hydropower, as a low-cost, zero-pollution and renewable energy, has been developed since the 

twentieth century [1]. Thanks to modern technologies, hydro-turbines are becoming bigger and bigger. 

As a result, many hydropower plants with great capacity are being built around the world to generate 

electricity to resolve the serious energy problem. The system of such a powerful hydropower plant 

including penstock systems, water turbines, generators, regulators and loads, is so complex that it is 

difficult to control [2]. However, the stability of a hydropower system plays an important role in the 

stability of the whole power system and the plants themselves [3]. Thus, the issue of the control and 

stability of hydropower systems enjoys great popularity among researchers. For example, in [4], a new 

adjustment method of PID governors was proposed for hydropower plants with long penstocks to control 

the power frequency. A nonlinear hydropower plant system was controlled by a fuzzy control method 

in [2]. A micro-hydro power plant model with a smaller, lighter, more robust and more efficient  

higher-speed turbine was built in [5], and a control scheme was also proposed. In [6], an accurate new 

dynamical model for a cascaded hydropower plant, a complex nonlinear system involving interacting 

input and output nonlinear parameters, nonlinear flow rates, and nonlinear dynamical hydraulic heads 

was developed. The primary control system and stability analysis of a hydropower plant was discussed 

in [7], and controllers, including PI, PID, and PI-PD, were studied. In [8], a control method based on 

integrating the entropy and mean value of the tracking error with the constraints was proposed for  

hydro-turbine speed governors. 
The control problem relates to making the system reach the expect points or states. At present, there 

are an increasing number of control theories, and parts of them even have been applied in practice for 

many years such as PID control [8,9], adaptive control [10–13], and feedback control [14–16] and so 

on. On the contrary, many remarkable state-of-the-art control methods, which enjoy a variety of 

advantages compared to traditional control methods, are being developed. For instance, a discrete sliding 

mode controller coupled with a Kalman filter was designed in [17–19] to control the combustion phasing 

in real-time model based on the control method of Homogenous Charge Compression Ignition. However, 

the sliding model control has the chattering problem when the controllers switch to the other states, so a 

no-chattering sliding model control method was proposed in [20]. A kind of switched uncertain nonlinear 

system was controlled by an adaptive fuzzy tracking control method in [21]. In [22], multi-zone 

buildings were identified by an artificial neural network and controlled by predictive control techniques. 

The robust H  finite-time control method for a discrete system was discussed in [23]. Compared with 

the abovementioned methods, nonlinear predictive control theory is easier to apply in practice, and can 

be combined with traditional methods, which takes advantages of both traditional methods and predictive 

control as shown later in this paper. 

Predictive control is an optimization problem. Using the discrete model of a system, the system’s 

future states with the controllers are predicted. Then, based on the predicted values, appropriate 

controllers are found to minimize the performance index [24]. This control method is called Model 

Predictive Control (MPC), and if the controlled system is a nonlinear system, it will be Nonlinear Model 

Predictive Control (NMPC). The predicted distance is called the predictive length. In fact, only the first 

set of predicted controllers is selected to control the system to obtain the states of the next step. This 

relates to the reduction of the errors [24,25]. In the performance index, the terminal penalty function, the 
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distance between states and the expected states, and the distance between the controllers and the expected 

controllers, which generally are zeros, are considered [24]. The concept of predictive control was 

originated in 1967 by Lee and Markus [24,25]. However, not only the hardware but also the software 

couldn’t achieve very rapidly their computing mission in Lee’s and Markus’ paper. Thus, predictive 

control was only a concept in that time. Thanks to modern technologies, predictive control started 

enjoying popularity in the late 1970s. Later, in 1982 Chen and Shaw first brought the concept of 

nonlinear predictive control in continuous time proved by the Lyapunov function [26]. Since then the 

predictive control method has aroused attention. For example, many remarkable studies have been done 

in different fields [27–34], such as large-scale optimization problems [29], hybrid electric vehicles [30], 

and the shell heavy oil fractionator benchmark control problem [31], and so on. 

Motivated by what has been discussed above, we provide a simple method to select the performance 

index for a discrete time model proved by the Lyapunov function. The proof process is so intelligible 

that experts and technicians can understand and apply this method without too much effort.  

A six-dimensional complex nonlinear hydropower plant system is controlled based on the proposed 

method. In addition, we supply instructions for technicians in other fields or other hydropower plants to 

apply this method. Moreover, the strategy is also introduced to combine the NMPC with other traditional 

control methods. 

The remaining parts of this paper are organized as follows: in Section 2, the principal concepts 

including a simply method to select performance index and the effectiveness of the proposed method are 

presented. A nonlinear hydropower plant model is introduced in Section 3. The main results of the 

controlled hydropower system are illustrated in Section 4. In Section 5, we discuss the effectiveness of 

the NMPC and how to apply this method in the other situations, involving the combination of the NMPC 

with other control methods. 

2. Nonlinear Predictive Control 

2.1. System Model 

The continuous system can be described as: 

 x = F x,u , (1)

where ,nRx  mRu , the constraints of x  and u  are ,Xx  Uu , respectively; and  F  is a 

function in X U  and Lipschitz continuous. 
Assume that Equation (1) has an equilibrium point    0 0x ,u = 0,0 . If  F  does not follow the 

assumption, we should move the equilibrium point  0 0x ,u  to  0,0  through transformation of 

coordinates. Equation (1) can be discretized as: 

 1 ,k k k x f x u , (2)

where  f  is a function in X U , and is also Lipschitz continuous. 

Note that if the system is a discrete system, Equation (2) is able to directly describe the system. 
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2.2. Nonlinear Predictive Control Theory 

The concept of predictive control is that the system can be predicted by Equation (2). Based on the 
state vector kx  with time k , several future state vectors of the system are able to be predicted with the 

input parameters ku  as: 

   1 , , 0, ,k i k i k i i N    x f x u  , (3)

where kx  are the predicted values based on the states kx , and k iu  are the predictive controllers based 

on the states kx  calculated later, N is the predict length. 

The controllers k iu  are supposed to make the performance index kJ  be minimum. The kJ  is 

always defined as: 

   
1

0

, ,
N

k k j k j k N
j

J L V


  


  x u x  (4)

In this case, the predictive control issue is to solve the following optimization problem:  

   
1

min 0

| , ,
N

k j k k j k j k N
j

J L V


   


 u x u x  ,Xx  ,Uu  and k N  x , (5)

where  L   should follow Assumption 1,  V   is the terminal penalty function subjected to 

Assumption 2, and   is the terminal region defined later. However, after the sets of controllers k iu  

are calculated, in order to reduce the errors caused by the controllers, only the first set controllers:  

k k
 u u  (6)

are working in one step at the system, which is: 

 1 ,k k k


 x f x u . (7)

Assumption 1 

(1). (0,0) 0L  ; 

(2).  L   is Lipschitz continuous; 

(3). There exists a positive parameter   satisfying    ,L x u x,u . 

Assumption 2 

There exist a local controller vu  satisfying 

(1).       v vV V L  f x,u x x,u ; 

(2).  V   is Lipschitz continuous. 

In order to determine an appropriate terminal penalty function  V   to make the system be stable or 

asymptotic stable, the following efforts are needed. We linearize the system (1) by Jacobian method at 

the origin as: 

A B x x u , (8)
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where 
   

A



 x,u = 0,0

F

x
 and 

   
B



 x,u = 0,0

F

u
. If the system (8) can be stabilized, the linear feedback 

controllers f Ku x  can be found to stabilize the system (7). Then the system is:  

Gx x  (9)

where G A BK  . 

Theorem 1 

If the function  L   is defined as  , T TL Q R x u x x u u , where Q  and R  are positive symmetric 

matrixes, respectively. The terminal penalty function  V   will be   TV Px x x , where P  is a 

positive-definite matrix solved by the Lyapunov equation as: 

    ( ),
T TG I P P G I Q K RK         

max
G    (10)

Proof 

Defining TQ Q K RK   , the Lyapunov equation is:  

   T
G I P P G I Q       . (11)

It is easy to know that Q  is positive-definite and symmetric. As mentioned above, if the system (9) 

is asymptotic stable, the real parts of all eigenvalues of G  will be negative, i.e., 

  Re 0G  . (12)

Since  
max

G   , it is simple to know that the real parts of all eigenvalues of  G I  are 

negative. Thus, in accordance with the solvability condition of Lyapunov equation, P  solved by 

Equation (11) is positive-definite and symmetric. 

For a discrete system, the differential can be defined as the difference value between two steps for a 

per unit length. Thus: 

 1 ( ) ( ( , )) ( )T
k k v

d
P V V V f V

dt    x x x x x u x  (13)

where v Ku x  are feedback controllers. Substituting vu  for u  in the system (1), we have: 

( , ) ( , )v K x F x u F x x . (14)

Then: 

     
   

   2

T
T T

T T

T T T T T

T T T

d d d
P P P

dt dt dt

G P P G

G P PG P P

G P PG P

       
   

   

   

  

x x
x x x x

x φ x x x x φ x

x x x x φ x x x φ x

x x x φ x

, (15)

where    K Gφ x = F x, x - x . 



Entropy 2015, 17 6134 

 
The function  T Px φ x  is bounded and its bound is: 

     
2 2

min

T T

P P

p L
P P P L

P


 


    x φ x x φ x x x , (16)

where 
 

sup | ,L 

     
 

φ x
x x 0

x
, and selecting an appropriate   satisfying 10     enables:  

 
min

P
L

P

 
 . (17)

By substituting (17) into (16), one obtains: 

 T TP Px φ x x x . (18)

Then, substituting (18) into (15), we have: 

    TT Td
P G I P P G I

dt
    x x x x . (19)

Substituting the inequality (19) into Equation (11) leads to: 

 
 
 
 ,

T T

T T

T T T

T T

d
P Q

dt

Q K RK

Q K RK

Q R

L

 

  

  

  

 

x x x x

x x

x x x x

x x u u

x u

. (20)

From Equation (13) and Equation (20), it is rational and reasonable for us to obtain the equation in 

Assumption 2.1. This is the end of the proof. The terminal region   is  | T P  x x . 

Definition 1 

If there is a system as:  

 1k k x H x . (21)

If there exists a K  function  β  making kx  subject to  0k x β x , the system will be  

Input-to-State-Stability (ISS) [35]. 

Definition 2 

If there exists K  functions  1 ,χ   2 ,χ   3 χ  enabling: 

            1 2 3,     χ x x χ x Φ H x Φ x χ x . (22)

then the continuous function  Φ  is an ISS Lyapunov function of system (21). 
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Deduction 1 

If there exist an ISS Lyapunov function of system (21), the system will be an ISS system. 

Theorem 2 

If the predictive controllers are calculated in accordance with Equations (5) and (7), the system (2) 

will be an ISS system. 

Proof 

The predicted values based on 1kx  are denoted as 1k i x , the corresponding predictive controllers 

are 1k i u , and the performance index is J ; similarly, the predicted values based on kx  are ˆ k ix , the 

predictive controllers are ˆ k iu , and the performance index is Ĵ . 

Then, (in the following process, Assumption 2.1 is applied): 

 

 

 

1

0

1

1 1 1 1 1 1
0

2

0

1 1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

N
T T T
k i k i k i k i N N

i

N
T T T
k i k i k i k i N N

i

N
T T T T
k i k i k i k i k i k i k i k i

i

T T T
N N N N k k

J J J Q R P

Q R P

Q R Q R

Q R Q



   




         




       


    

     

  

   

  







x x u u x x

x x u u x x

x x u u x x u u

x x u u x x



     

   

  1 1 1

1 1

1 1 1 1

ˆ ˆ

T
k k

T T
N N N N

T T
k k k k

R

P P

Q R

  

 

   



 

  

u u

x x x x

x x u u

 
 

   

. (23)

In accordance with Assumption 1.3 and Equation (23), we have:  

   1 1 1 1, ,k k k kJ L        x u x u . (24)

From Definition 2 and Equation (24), the performance index  is the Lyapunov function of the 

controlled system (2) based on the control method in Equation (5). Therefore, according to Deduction 1, 

the system (2) with predictive controllers is an ISS system. This is the end of the proof. 

The predictive control procedures are separated into two main parts: the offline part and online part. 
In the offline part process, the model of predictive control including positive-definite matrixes ,Q  and R , 

the feedback controller K , and the positive-definite matrix P  serving for solving the terminal region 
can be calculated. Since the controller ku  relates to the latest states kx  in each step, we can sensibly 

obtain the controllers in this part: 

 k ku υ x  (25)

In terms of the online part, the states of system (2) will be iterated. Because the predictive controller 
(25) has been solved offline, we just need to substitute the numeric values kx  into Equation (25) to get 

the values of the controllers in each step. As a result, system (2) can respond rapidly. This is very 

important for two reasons. On one hand, if the controllers fail to be calculated in a short time, the states 
of the system will change to k x , where   is the time for computers to calculate the controllers. The 

previous controllers (25) cannot enable system (2) to be stable in k x  with a large  . On the other 

J
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hand, the primary mission of the controller is to maintain a stable system in some special situations. For 

example, in an electrical system, when the states of the system dramatically change caused by the cut 

out faulty lines because of the bad weather or the other reasons, the controllers are needed to stabilize 

the system with the rapid altered states; the nearby connected power plants of the lines should also be 

controlled in a short time. In these cases, the controllers are supposed to respond as fast as possible to 

make sure that the system operates stably and safely. Therefore, that is the reason why it is of significance 

for a system to enjoy rapid responsive controllers. 

3. The Model of a Hydropower Plant 

In this part, the nonlinear model of a hydropower plant is presented. The hydro-turbine, the penstock 

system, the generator system, and the hydraulic servo system are considered in this model [36]. The 

relationship between the deviation of the incremental torque and output power can be expressed as: 

m tP m   , (26)

where tm  is the deviation of the incremental torque;   is the variation of the speed of the generator. 

A typical diagram of the hydro-turbine and penstock system is shown in Figure 1 [37]. 

ex

eqx

ey

eqy

ex

eqx

Gh(s)

eqh

ex
mt

+

+

+

+ +

hq

x

y

z
 

Figure 1. The linear model of the hydro-turbine and penstock system. 

We suppose that the cross-sectional area of the penstock is constant. Thus the transfer function of the 

hydro-turbine and penstock system can be written as:  

1 ( )
( )

1 ( )
h

t y
qh h

eG s
G s e

e G s





, (27)

where qhe  is the first-order partial derivative value of flow rate with respect to water head; e is the 

intermediate variable; ye  is the first-order partial derivative value of torque with respect to wicket gate; 

( )hG s  is the water hammer transfer function, described by: 

( )
( ) 2 (0.5 )

( )
A

h w r
A

H s
G s h th T s

Q s
   , (28)
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where wh  is the characteristic coefficient of the penstock; rT  is the length of the phase of the water 

hammer wave. From [37], the transfer function of the penstock system can be rewritten as:  

3 3

3 2

1 1
48 2( ) 2

1
1

8

r r

h w

r

T s T s
G s h

T s


 


. (29)

Substituting Equation (29) into Equation (27), the transfer function between the incremental deviation 
of the guide vane opening y and the deviation of the incremental torque tm  can be rewritten as: 

3 3
2 3

3 3
2 3

3 24 24

( )
3 24 24

y w r r w r
t

qh

qh w r r qh w r

e
es s s

e h T T h T
G s

e s s s
e h T T e h T

  
 

  
. (30)

From Equation (30), the state space equations of the hydro-turbine and penstock system can be 

described as: 

1 2

2 3

3 0 1 1 2 2 3

x x

x x

x a x a x a x y


 
     





 (31)

and: 

3 0 0 3 1 1 1 3 2 2 2 3 3( ) ( ) ( )tm b y b a b x b a b x b a b x       , (32)

where 1x , 2x  and 3x  are state variables, 0 3

24

qh w r

a
e h T

 , 1 2

24

r

a
T

 , 2

3

qh w r

a
e h T

 , 0 3

24 y

qh w r

e
b

e h T
 , 

1 2

24 y

qh r

ee
b

e T
  , 2

3 y

qh w r

e
b

e h T
  and 3

y

qh

ee
b

e
  . 

A second-order mathematical model of the generator is:  

0

1
[ ]t e

ab

m m D u
T 

  

 

 

    





, (33)

where u  is predictive controller designed later. 

If the influence of the rotor speed on the torque is added to the damping factor, the torque of the 

electrical load and the terminal active power are equal to each other, i.e., 

e em P . (34)

For the generator, the terminal active power can be described as: 
' '2

' '
sin sin 2

2
q s d qs

e
d d q

E V x xV
P

x x x
  

  


   (35)

and: 
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1

' '
2

1

2

d d T L

q q T L

x x x x

x x x x





   

   


, (36)

where '
qE  is the transient internal voltage of the armature; sV  is the bus voltage at infinity; 'dx  is the 

direct axis transient reactance; qx  is the quartered axis reactance; Tx  is the short circuit reactance of 

the transformer; Lx  is the reactance of the electric transmission line. 

The dynamic characteristics of a hydraulic servo system [38] can be obtained as: 

y y

dy
T y u

dt
  , (37)

where y is the incremental deviation of the guide vane opening. 

From Equation (26) to Equation (37), combining every part of the governing system into an organic 

whole as: 

 

1 2

2 3

3 0 1 1 2 2 3

0

' '2

' '

1
[ sin sin 2 ]

2

1

q s d qs
t

ab d d q

y
y

x x

x x

x a x a x a x y

E V x xV
m D u

T x x x

y y u
T



  

    

  


 
     





     

   











, (38)

where yu  and u  are selected as predictive controllers. The parameters in this paper are 0w  = 314, 

abT  = 8.0, D = 0.5, '
qE  = 1.35, '

dx   = 1.15, '
qx   = 1.474, yT  = 0.1, sV  = 1.0, qhe  = 0.5,  

ye  = 1.0, e  = 0.7, rT  = 1.0, wh  = 2.0, 0,r   0 24,a   2 3,a   0 24,b   1 33.6,b   2 3,b  and  

3 1.4b   , respectively. 

4. Main Results 

The numerical experiments of the nonlinear predictive control of the six-dimensional hydropower 
plant are presented in this part. In Equation (38), ( , )T

yu uu  are predictive controllers designed in 

accordance with Equations (5) and (6) later. The following positive-definite matrixes are given as: 

6

1

1

11 1

12 2

1

1

Q I

 
 
 
 

   
 
 
 
 

, and 2

1

1
R I

 
   

 
. (39)

From what has been mentioned in Equation (8), we have:  
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0 1 0 0 0 0

0 0 1 0 0 0

24 24 3 0 0 1

0 0 0 0 314 0

5.95 0 0.9 0.1228 0.0625 0.175

0 0 0 0 0 10

A

 
 
 
   

  
 
   
 

 

, and 

0 0

0 0

0 0

0 0

1 0

0 10

B

 
 
 
 

  
 
 
 
 

. (40)

The feedback gain G  in Equation (9) is 4

1

2
G I  , so it is easy to get the feedback controllers K  

by solving the equation G A BK  , and K  is: 

5.95 0 0.9 0.1228 0.4375 0.175

0 0 0 0 0 0.95
K

   
  
 

. (41)

By solving the Lyapunov Equation (11) when  
max

0.45 0.5 G     , the terminal penalty matrix 

P  is: 

359 0 53.55 7.309 26.03 10.41

0 5 0 0 0 0

53.5 0 13.1 1.106 3.938 1.575

7.309 0 1.106 5.151 0.5375 0.215

26.03 0 3.938 0.5375 6.914 0.7656

10.41 0 1.575 0.215 0.7656 14.33

P

  
 
 
  

     
  
 
   

. (42)

Now, after discretizing the system (38), and calculating the predictive controllers based on the above 

parameters, Equations (5) and (6), the states of the   and   of the controlled system, shown in  

Figure 2, can be obtained by iterating Equation (7). 

 

Figure 2. The response of the system (38) with NMPC controllers. 

The predictive controllers yu  and u  are shown in Figures 3 and 4, respectively. 
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Figure 3. The NMPC controller u  of system (38). 

 

Figure 4. The NMPC controller yu  of system (38). 

From Figures 2–4, it is clear that the states of the hydropower system and the controllers are stable. 

The computational advantages of the NMPC method used in this paper are significant because the 

controllers were calculated offline. It should mention that our NMPC algorithm is separated into two parts. 

Obviously, only the elapsed CPU time of the online part relates to the fast response performance. The 

computational statistics of the offline part and online part are shown as follows. 

Table 1 shows that the elapsed CPU time of the online part involves the entire horizon. We cannot 

ignore that the CPU used in the experiment is an Intel(R) Core(TM) i5 CPU, M 520 @ 2.40 GHz  

(4 CPUs), the original mobile version of the Intel(R) Core(TM) i-series. If people use the latest CPU, 

they will obtain a better performance. 

Table 1. The computational statistics of the NMPC method. 

Elapsed CPU Time (ms) 

Offline part 5370 
Online part 11,569 
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The values of the performance index are presented as follows. In Table 2, the performance index is 

presented with gaps of 10 steps. It would be a long sheet if we were to present all the performance 

indexes here. The performance indexes have little difference when the step is bigger than 191. Thus, we 

omit the remaining indexes here. From Table 2, we can rationally and reasonably conclude that the 

performance index tends to zero as the step increases, which means the system is asymptotic stable, 

corresponding with the theoretic knowledge and the numerical experiment. 

Table 2. The performance metrics of the NMPC method. 

Number of Step Performance Index Number of Step Performance Index 

1 0.117856 101 0.0022 
11 0.039339 111 0.012638 
21 0.030683 121 0.006103 
31 0.050499 131 0.001474 
41 0.077429 141 0.000687 
51 0.119509 151 0.001066 
61 0.016413 161 0.00026 
71 0.005165 171 0.000517 
81 0.010286 181 0.001085 
91 0.002602 191 0.000607 

In accordance with the real operational conditions, the issue of the set-point tracking is discussed as 
follows. The tracking target sets in   are 0.75R  , 6t  . The results of the tracking issue are shown 

in Figure 5. From the figure, we notice that the system has successfully tracked the target and 

subsequently stabilized the target in a period under the action of the NMPC method. 

 

Figure 5. Response of   of the system controlled by NMPC method to track the set-point. 

In several situations, people cannot access the accurate values of the real plant system. In this case, 

the model-plant mismatch should be considered to verify the performance of the NMPC method in that 

situation. The results to verify the stability of the proposed method with the mismatches 0.05d  , 

0.1d   and 0.02yd   are shown in Figure 6. 
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Figure 6. Results of the hydropower station system controlled by NMPC with model-plant mismatch. 

Figure 6 shows that the system is still stable with the NMPC controller when there are mismatches 

existing in the model. The rotor angle   fails to reach its equilibrium point, whereas it still operates in 

the stable state. Therefore, although there is a tiny gap between the equilibrium point and the stability 

state, the system does operate stably. A disturbance is considered here to illustrate the effectiveness of 

the proposed method when disturbances exist in the system. The disturbance in the numerical 

experiments exists in  , which is 1  , 10 12.34t  . The response of the system in such a 

disturbance is shown in Figure 7. 

 

Figure 7. The response of the system with the disturbance   controlled by NMPC method. 

From Figure 7, after a period, the system reaches its steady state, pointing out that the NMPC method 

enjoys the capacity to make the disturbed system stable. As we know, in a real system, randomness exists 

in some parts caused by the natural features such as the unpredictable water flow and so on. These 

unpredictable parts can dramatically damage the system. In this case, the stochastic factors should not 

be ignored in a control system. The following numerical experiment shows the effectiveness of the 

NMPC method when there are stochastic factors existing in the system. The results are shown in Figure 8. 

The stochastic factor is added in the rotor angle  . 
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Figure 8. The response of the system with the stochastic factor controlled by the NMPC method. 

In Figure 8, the system reaches its steady state in the end. Although, the system spends more time 

reaching the steady state than the system with the stochastic factor, it is the NMPC method that stabilizes 

the system to the steady state. That shows the robustness of the NMPC method. 

5. Discussion and Conclusions 

5.1. Discussion 

We will further discuss NMPC theory and its applications in other engineering fields in this part. Not 

only can the NMPC method stabilize the hydropower system introduced in this paper, but it can also be 

applied in other systems described by state-space equations. More importantly, this control method 

enjoys the capacity to cooperate with other sophisticated control methods. Those control methods have 

been used in a variety of fields for many years because of its simple model and the experience. 

Cooperating with those well-developed methods, the mixed predictive control method is able to take 

advantages of both sides. 

Remark 1 

The NMPC controllers enjoy a great advantage in controlling a nonlinear system compared with other 

traditional control methods such as PID method and so on. The NMPC controllers make it possible for 

us to control a nonlinear system to the expect states in a short time with less overshoot, which cannot be 

achieved by PID controllers. In order to illustrate the effectiveness of the NMPC and PID methods,  

we introduce the PID controller in the system (38) as: 

1 2

2 3

3 0 1 1 2 2 3

0

' '2

' '

0

1
[ sin sin 2 ]

2

1
( ( ) )

q s d qs
t

ab d d q

i
p d
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x x

x x

x a x a x a x y

E V x xV
m D

T x x x

k
y k r k y
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  

   

  
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 

  


 
     

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(43)
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where ,pk  ik  and dk  are PID parameters, which are 2.0,pk   1.0,ik   and 2.0dk  , respectively [36]. 

PID controller was introduced in state  . 

In order to clearly show the difference between NMPC and PID, we define the index E  as: 

 2

0
1

n

i i
i

E y x


   (44)

The numerical experiments of NMPC and PID are shown in Figure 9. 

 

Figure 9. Errors of the NMPC and PID controllers. 

From Figure 9, the PID controller stabilizes the nonlinear system (43) slower than NMPC controllers 

do. Thus, NMPC method has the better capacity to handle a nonlinear system in a short time. It is also 

shown in Figure 9 that the errors between the expected states and the real states of PID method are larger 

than that of NMPC, meaning that NMPC method enjoys an excellent performance in control of the 

nonlinear hydropower system. 

Remark 2 

There are several power plants using a simple linear model in control system. The proposed method, 

of course, is also effective for a linear system. The state-space equations of linear system is:  

A B x x u , (45)

where u  are predictive controllers, A  is a n n  matrix and B  is n m  matrix. 

In order to apply the predictive control method, we need to substitute Equation (37) for the system (1), 

and discretize the system (45) to iterate. In the process of calculating the terminal penalty matrix P , 

there is no need to linearize the system through the Jacobian method. One can directly use the matrixes 

A and B  to solve the Equation (11). The linear predictive controller can be obtained from the 

discretized system (45). 

Remark 3 

In Section 4, we suppose the system should be controlled at the origin point, but in many other 
systems, the system is always stable in a given state 0y . In this case, the system Equation (1) is: 
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 
0

,

C

 


 

x F x u

y x y


, (46)

where 0
lRy  are the expect outputs of the system, lRy  are the outputs of the system, and C  is a 

l n  matrix. 
After discretizing the system (46), we should substitute the discretized y  for the discretized x  in 

Equation (5), Equation (25) and their sub-equations to control the system to expected states 0y . It is to 

be observed that this is also true for a linear system. Under the circumstance, Equation (46) is:  

0

A B

C

 
  

x x u

y x y


, (47)

and in accordance with Remark 1, system (47) can be controlled to the expected states 0y . 

Remark 4 

For Remark 1, we know that the NMPC method enjoys a great number of advantages compared to 

the PID method, especially in a nonlinear system. However, these traditional control methods have been 

used for a long time. People have built a great body of knowledge about those control methods. For 

example, PID controllers prevail in almost all the fields, because of their simple structure, stability, 

convenience and feasibility to set the control parameters. In this case, although NMPC has advantages 

over the traditional methods, they are not replacing those tradition control methods dramatically. Seldom 

are the advanced control methods used in practical systems because of the little experience about how 

to launch such an advanced control method in practice. In addition, the parameters in the advanced 

control method are more difficult to select than traditional methods. Therefore, we should rationally 

combine the advantages of the PID with the advantages of other state-of-the-art control methods, for 

example the NMPC method in this paper. Fortunately, it is possible for us to combine those two  

control methods. 

Take the combination of PID and NMPC methods for example. In order to provide a general method 

to combine the NMPC method with other control methods, we will generally select PID parameters as 

the predictive controllers, which means that, in each step, the predictive controller will calculate 

appropriate PID parameters for the system. We introduce the PID controllers in a nonlinear system (1) as:  

 ,

p i dK K K


   

x F x u

u ε ε ε


 

, (48)

where lRε  and 0C ε x y  are the errors of the system, respectively; ,l
pK R  l

iK R  and 
l

dK R  are PID parameters, respectively. In this case, we have:  

 0

0

0

C dt

C

C


 




 
 

ε x y

ε x y

ε x


 

. (49)

Substituting Equation (49) into Equation (48), the PID controlled system is:  
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  0

0

, p i dK C K K C

C

    


 

x F x x y ε x

ε x y

 


. (50)

Then, the PID parameters are selected as NMPC controllers calculated based on the method proposed 

in this paper. Subsequently, we can iterate the discretized Equation (50) and apply the predictive control 

method to Equation (50). Undoubtedly, as we mentioned in Remark 2, this strategy can also be applied 

in a linear system. What we should do is just to introduce a linear model in Equation (48) shown as: 

p i d

A B

K K K

 
   

x x u

u ε ε ε


  . (51)

Substituting Equation (49) into Equation (51), the PID controlled system of a linear system is: 

  0

0

p i dA B K C K K C

C

     


 

x x x y ε x

ε x y

 


. (52)

System (52) can be controlled based on the NMPC method by selecting the PID parameters as the 

predictive controllers, which means the parameters will be calculated in each step to control the system (45). 

Ae numerical experiment demonstrating the proposed combination method is presented here. The 

system of the numerical experiment is Equation (43). The results are shown in Figure 10. In the 

numerical experiment, the PID parameters were decided through NMPC method. This has a great 

advantage. As aforementioned, there are large numbers of PID-based control systems. For improving 

these systems, people just need to change the method to determine the PID parameters, which is more 

convenient and economical than replacing the whole system. 

From Figure 10, we know that the system is stable, pointing out the efficiency of the method. This is 

just an example of the combination of PID method and NMPC method or MPC method. Practically, 

people can combine any given controlled system with the NMPC method or MPC method like this, only 

if the system can be described as Equation (1) or Equation (45). 

 

Figure 10. The response of the hydropower station system with PID combined NMPC method. 
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5.2. Conclusions  

In this paper, we propose a simple method to select an appropriate performance index to control a 

system based on the nonlinear predictive control method. The method is through the use of the Lyapunov 

equation to select a terminal penalty function, and its stability is proved by the Lyapunov function. 

Subsequently, a nonlinear hydropower plant system is controlled by the method. The six-dimensional 

model is complex enough to describe a hydropower system accurately. In the hydropower system, the 

hydro-turbine system, the penstock system, the generator system, and the hydraulic servo system are 

considered. Eventually, not only do we compare NMPC method with the traditional PID method, but we 

also provide strategies to apply the NMPC method to a linear system, and to combine NMPC method 

with other traditional control methods. It is worth mentioning that the paper not just provides an example 

of the NMPC method, but offers a general way to use the NMPC method in different situations. 
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