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Abstract: The selection of an appropriate wavelet is an essential issue that should be 

addressed in the wavelet-based filtering of electrocardiogram (ECG) signals. Since entropy 

can measure the features of uncertainty associated with the ECG signal, a novel 

comprehensive entropy criterion Ecom based on multiple criteria related to entropy and 

energy is proposed in this paper to search for an optimal base wavelet for a specific ECG 

signal. Taking account of the decomposition capability of wavelets and the similarity in 

information between the decomposed coefficients and the analyzed signal, the proposed 

Ecom criterion integrates eight criteria, i.e., energy, entropy, energy-to-entropy ratio, joint 

entropy, conditional entropy, mutual information, relative entropy, as well as comparison 

information entropy for optimal wavelet selection. The experimental validation is 

conducted on the basis of ECG signals of sixteen subjects selected from the MIT-BIH 

Arrhythmia Database. The Ecom is compared with each of these eight criteria through four 

filtering performance indexes, i.e., output signal to noise ratio (SNRo), root mean square 

error (RMSE), percent root mean-square difference (PRD) and correlation coefficients. 

The filtering results of ninety-six ECG signals contaminated by noise have verified that 

Ecom has outperformed the other eight criteria in the selection of best base wavelets for 

ECG signal filtering. The wavelet identified by the Ecom has achieved the best filtering 

performance than the other comparative criteria. A hypothesis test also validates that 

SNRo, RMSE, PRD and correlation coefficients of Ecom are significantly different from 

those of the shape-matched approach ( 0.05  , two-sided t- test). 
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1. Introduction 

Cardiovascular disease is one of the most causes of death in the world. With the aging trend of the 

population, people are paying more and more attention to research into telemedicine systems for the 

immediate and accurate detection of cardiac diseases [1]. As a noninvasive test for recording the 

electric activity of the heart, electrocardiogram (ECG) plays a vital role in cardiac telemedicine 

systems. The assessment of alterations in the features of ECG signals provides useful information for 

the detection, diagnosis and treatment of cardiac diseases. However, during the ECG signal acquisition 

and transmission procedures, the sampled ECG signal is inevitably corrupted by various noises, such 

as baseline wander, electrode motion, power line interference, motion artifact and so on [2]. Usually, 

some specific measures such as median filter and band-stop filter can be implemented to suppress the 

influence of baseline wander and power line interference existing in ECG signals, respectively. 

However, electromagnetic disturbances such as thermal noise existing in measurement circuits have a 

significant influence on ECG signals. Thus, the noise reduction of ECG signals is a key requirement 

prior to pathological feature analysis [3]. 

Among a variety of filtering techniques, the wavelet transform has been proven as a useful tool for 

ECG signal denoising due to its powerful analysis ability in both the time and frequency domains. 

Moreover, the abundance of the base wavelets developed over the past decades is also another 

prominent advantage for the enhancement of various ECG signals. Nevertheless, since ECG signals have 

diverse wave shapes from individual to individual, how to choose an optimal base wavelet for analyzing 

a specific signal has become a crucial problem in the wavelet transform application domain of [4]. 

In recent years, the topic of base wavelet selection has been addressed by researchers from different 

points of view. Theoretically, a good base wavelet for noise reduction should satisfy the properties of 

orthogonality, symmetry, compact support and regularity so as to ensure the smoothness of the 

denoised signal without distortion. The orthogonal wavelets are not redundant and are suitable for 

signal or image denoising and compression [5], whilst the regularity is essential for getting nice 

features, e.g., the smoothness of the reconstructed signal or image, and function estimation in 

nonlinear regression analysis [6]. In addition, shape matching is also an important issue investigated in 

the stage of base wavelet selection. Bhatia et al. [7] used both orthogonality and the property of 

complexity to guide the base wavelet choosing procedure for ECG signal analysis. Singh et al. [6] 

introduced a cross correlation coefficient between the ECG signal and a selected wavelet filter for the 

selection of an appropriate base wavelet. In their method, in terms of root mean square error (RMSE), 

root means square bias (RMSB), and L1 norm, the Daubechies mother wavelet of order 8 was validated 

as the most appropriate wavelet basis function for denoising applications. However, the basis 

properties of a wavelet only qualitatively determine its suitability for a particular application. As far as 

shape matching is concerned, it is generally difficult to accurately match the shape of a signal to that of 

a base wavelet through a visual comparison [4]. As a result, quite a few of ECG denoising schemes 

implement the choice of the best base wavelet through the noise suppression evaluation criteria, such 
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as percentage root mean square difference (PRD) [8], signal to noise ratio (SNR) [9,10] and mean 

square error (MSE) [11]. Furthermore, in order to maximize the filtering performance, a genetic 

algorithm [12] based on SNR and PRD is also applied to the wavelet transform for base selection. 

However, these filtering performance measures can only be obtained by comparing the noisy ECG 

signals and denoised ones. A great deal of filtering tests has to be done before removing the noise from 

all the signals, which inevitably increases the computational complexity of noise reduction. It is well 

known that entropy is a measure that can be used to evaluate the uncertainty associated with a random 

variable, i.e., the expected value of information in a message. Besides, Shannon entropy is one of the 

most important metrics in information theory. Regarding a sampled ECG signal as a message 

sequence, the characteristics of the ECG signal can be defined by its entropy. Therefore, in order to 

automatically find the best base wavelet in a simple and easy way, a comprehensive entropy measure 

(Ecom) based on the integration of multiple entropy criteria including the energy to entropy ratio, 

relative entropy, joint entropy, conditional entropy, mutual information and comparison information 

entropy is proposed in this paper. In terms of the proposed index Ecom, the best base wavelet is chosen 

from 22 widely used wavelets for wavelet thresholding filtering (WTF) of ECG signals. Then the 

comprehensive analysis of denoising results will also be conducted for the evaluation of the proposed 

approach through the ECG data derived from the MIT database. Meanwhile, four filtering measures, 

i.e., signal to noise ratio (SNRo), Root Mean square Error (RMSE), Percent Root Difference (PRD), as 

well as Correlation coefficient (r) are utilized for comparison so as to evaluate the performance of the 

proposed approach. 

This paper is organized as follows: the principle of wavelet thresholding filtering is briefly 

described in Section 2. Then, the proposed comprehensive entropy measure is illustrated in Section 3. 

Subsequently, the analysis and comparison of ECG signal filtering based on multiple criteria is 

presented in Section 4. Finally, concluding remarks are provided in Section 5. 

2. Discrete Wavelet Thresholding Denoising of ECG Signals 

Suppose 0 1( ) [ , ,..., ]NS n s s s     is the observed data vector of a noisy ECG signal, and is is given by: 

i i is s n  , i = 0, 1, 2, ... , N−1, where si is a signal function S to be recovered and n is the Gaussian 

white noise with independent and identical distribution (0,σ)N , which mimics the electromagnetic 

noise in measurement environment N(0,σ). The objective of wavelet filtering is to achieve enhanced 

signal by remaining useful components and removing the noise. Through discrete wavelet transform 

(DWT), a discrete signal ( )S n  can be expanded as follows:  

2 2 2 2
( ) ( ) ( 2 ) ( ) ( 2 )j j j j

j j

k Z k Z

S n a k n k d k n k 
 

      (1)

where n, k, j represent the sample number, the number of wavelet coefficients and the decomposition 
scale, respectively. The frequency spectrum of ( )S n  is divided into a high frequency sub-band and low 

frequency sub-band as the decomposition scale increases. The approximated component of ( )S n  is 

calculated by multiplying the scale function 
2

( 2 )j

jn k   by scale factors 
2

( )ja k . Similarly, the 

product of wavelet function 
2

( 2 )j

jn k   and translation factors 
2

( )jd k  represents the detailed 

component of ( )S n . 
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After wavelet decomposition, the WTF is also involved in deleting the wavelet coefficients of the 

noisy signal whose modulus is below a threshold and reconstructing the denoised signal from the 

remaining coefficients. To summarize, the conventional wavelet thresholding filtering method includes 

the following three steps [3,13]: 

(1) Choose an optimal base wavelet according to the noisy signal. Then, decompose the noisy 

signal into sub-bands by wavelet transform to yield coarse level scaling coefficients and 

wavelet coefficients. 

(2) Estimate the noise threshold T and design the threshold shrinkage function according to the 

requirements of noise reduction. Then, filter the noise by applying the shrinkage function to 

every wavelet coefficient. 

(3) Reconstruct the signal with new coefficients to obtain the estimated signal Ŝ . 

At present, soft thresholding is a commonly-used wavelet shrinkage function [14–16] which has 

better signal filtering performance than hard thresholding. It can be described as follows: 









TcTcc

Tc
cyS ||)|(|)sgn(

||0
)(  (2)

where c is the wavelet coefficient of Ŝ after wavelet decomposition. T is the Universal threshold 

proposed by Donoho and Johnstone [17]. It can be expressed as: 

ˆ 2 log( )T N  (3)

where N is the number of samples in the signal vector. σ̂  is the estimate of standard deviation of noise 

and σ̂ / 0.6745MAD , where the MAD denotes the median absolute deviation of wavelet coefficients. 

It should be noted that no matter what kind of shrinkage function is applied, the selection of an optimal 

wavelet function for a given ECG will directly affect the results of wavelet thresholding in the end. On 

account of the diversity of wavelets, how to choose a base wavelet that is best suited for analyzing a 

special signal is an important issue in the filtering procedure. Therefore, the base wavelet selection based 

on a comprehensive entropy criterion is proposed in this paper for removing noise from ECG signals. 

3. Comprehensive Entropy Criterion for Optimal Wavelet Selection 

From the viewpoint of signal filtering, the objective of noise cancellation is to estimate a function S 

with minimum mean square error (MSE), i.e., to minimize L2 risk for a given noisy function: 







1

0

21
2

1 )ˆ(ˆ),ˆ(
N

i
iiNN ssSSSSR  (4)

By considering representations of such functions in orthonormal bases such as wavelets, the 

Parseval relation establishes the equivalence between the L2 risk in the function space and the l2 risk of 

the wavelet coefficients of the functions, and consequently the related theorems can be proved in the 

sequence space of wavelet coefficients rather than the function space itself [18]. Moreover, when a 

signal to be analyzed is decomposed by the discrete wavelet transform, its characteristics are mainly 

depicted by its wavelet coefficients. Since an ECG signal is a periodic cardiac signal, the corresponding 

ECG wavelet coefficients generated by the best base wavelet should reveal a certain regularity in its 
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distribution. Simultaneously, the wavelet coefficients of the decomposed ECG signal should be closely 

related to the sample sequence of the original signal so as to recover the main variation of an ECG 

signal. Because of the diverse characteristics and applicability of base wavelets, not all wavelets are 

suitable for denoising a specific ECG signal. Hence, an optimal base wavelet for a specific ECG signal 

can be determined by the evaluation of decomposing ability of wavelets and information comparison 

between the wavelet decomposed coefficients and the sample sequence of the original ECG signal. 

3.1. Decomposing Capability Measure 

The energy of a signal is one of the measures that characterize the feature of a signal. For a noisy ECG 

signal 0 1( ) [ , ,..., ]NS n s s s    , suppose 0 1( ) [ , ,..., ]NC n c c c is its wavelet coefficient sequence at decomposing 

scale j after the DWT. The energy of C(n) can be defined by its wavelet coefficients as follows: 





N

i
energy ijccE

1

2
),()(  (5)

where ),( jic  is the ith coefficient of the jth level of decomposed ( )S n . For the same amount of energy 

within a frequency sub-band, the specific features of the signal may be significantly different. The 

spectral distribution of the energy needs to be considered to ensure the effective feature extraction. In 

information theory, Shannon entropy is a measure of uncertainty associated with random variables. 

Thus, the energy distribution of wavelet coefficients can be described by Shannon entropy as follows: 





N

i
iientropy ppcE

1
2log)(  (6)

where pi is the energy probability distribution of wavelet coefficients, expressed as: 

)(

)(
2

cE

ic
P

energy
i   (7)

and 
1

1
n

ii
p


 . If 0ip  , then 2log 0i ip p  . )(cEentropy  is bounded by NcEentropy 2log)(0  . 

Note that the ECG signal has prominent characteristics of small amplitude, usually 10 μV ~ 5 mV, 

and with frequencies of interest in the range 0.05–100 Hz. Hence, when the ECG signal is decomposed 

into scales, an appropriate base wavelet should yield large magnitude coefficients at low frequency and 

negligible magnitude coefficients at the others. Moreover, the higher the energy extracted from the 

corrupted ECG signal, the more effective the wavelet transform of the signal will be. The lower the 

entropy is, the higher the energy concentration will be. Therefore, a self-evaluation criterion for the 

wavelet decomposing coefficients can be defined by the energy-to-Shannon entropy ratio: 

( )

( )
energy

r
entropy

E c
E

E c
  (8)

By combining the energy measure with the Shannon entropy, an appropriate base wavelet should 

extract the maximum amount of energy from the signal being analyzed, while minimizing the Shannon 

entropy of the corresponding wavelet coefficients. The bigger Er is, the more suitable a base wavelet 

will be for filtering. 
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3.2. Information Comparison Measure 

The energy-to-Shannon entropy ratio only evaluates the contents of wavelet coefficients 

themselves. It is necessary to compare C(n) with ( )S n  in order to ensure the coefficients of the 

decomposed signal are inherently related to the signal. Thus, several information theoretic criteria are 

used to further evaluate the base wavelet [19], i.e.: 

(1) Joint entropy 

int ( , ) ( , ) log ( , )jo
c Cs S

E H S C p s c p s c


  


    (9)

where ( , )p s c  is the joint probability distribution of two data sequences. The joint entropy measures 

information associate with S  and C as a whole. 

(2) Conditional Entropy 

( | ) ( ) ( | )con
s S

E H C S p s H C S s


   


   ( ) ( | ) log ( | )
c Cs S

p s p c s p c s


  


    

( , )
( , ) log

( )c Cs S

p s c
p s c

p s

 





( , ) ( )H S C H S    
(10)

where ( )p s  is the probability distribution of the noisy ECG sequence S , ( | )p c s  denotes the 

conditional probability distribution of the wavelet coefficient sequence C when S  is known. The 

conditional entropy indicates the information that is particular to each corresponding data sequence itself. 

(3) Mutual Information 

( , )
( ; ) ( , ) log

( ) ( )mu
c Cs S

p s c
I I S C p s c

p s p c

 


 


 

( , ) log ( , ) ( , ) log[ ( ) ( )]
c C c Cs S s S

p s c p s c p s c p s p c
  

  
  

     

( , ) ( ) ( )H S C H S H C      

(11)

Mutual information is a measure of the information contained in one process related to another 

process. The average mutual information between the two processes can be expressed as the sum of 

two self entropies minus the entropy of the pair [19]. In the wavelet thresholding filtering, the mutual 

information represents the amount of shared information contained in both S  and C . Usually, the 

larger value of the mutual information of S  and C  indicates that the decomposed wavelet coefficients 

contain more information of the signal to be analyzed. 

(4) Relative Entropy 

( )
( || ) ( ) log

( )re
s S

p s
E D S C p s

p c

 


   (12)

with 
( )

( ) log 0
( )

p s
p s

p c


  when ( ) 0p s  , and 
( )

( ) log
( )

p s
p s

p c
 

  when ( ) 0p c  . The relative entropy 

measures the distance between probability distributions of data sequences S  and C. It is zero if and 

only if both probability distributions are equivalent to each other. 
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(5) Comparison information entropy 

To recover the main characteristics of the ECG signal, the decomposed coefficients obtained by the 

best base wavelet should have shared information with the ECG signal as much as possible and 

exclusive information as little as possible. Therefore, an appropriate wavelet should minimize the joint 

entropy, conditional entropy, and relative entropy of S  and C while maximizing their mutual 

information. Taking four measures Ejoint, Econ, Imu as well as Ere into account, a comparison information 

criterion is obtained as follows: 

int

( ; )

( , ) ( | ) ( || )
mu

c
jo con re

II S C
I

E E EH S C H C S D S C
 

 


  

 

(13)

It can be seen that the bigger Ic is, the more suitable a base wavelet will be for filtering. 

3.3. Comprehensive Entropy Criterion 

According to the decomposition capability measures and information comparison measures, by 

integrating the advantages of the aforementioned entropy criteria, a novel comprehensive entropy 

criterion for the optimal base wavelet selection is proposed, which is defined as: 

int

( )( )energy mu
com r c

entropy jo con re

E I
E E I

E E E E
   (14)

It is noticeable that the comprehensive entropy criterion not only measures the decomposition 

capability of a base wavelet, but also measures the similarity between a noisy signal and its wavelet 

decomposition coefficients. It comprehensively depicts the suitability of a base wavelet for a specific 

noisy signal. Generally, the base wavelet that produces the maximum of Ecom should be chosen as the 

most appropriate wavelet for the noise reduction of an ECG signal. 

4. Experiments and Comparison 

4.1. ECG Signals 

In order to validate the proposed criterion, ECG signals in the MIT-BIH Arrhythmia Database are 

used for the analysis. The recordings in the MIT-BIH Arrhythmia Database are sampled at 360 Hz per 

channel with an 11-bit resolution over the 10 mV range with lead II configuration [20,21]. In the noise 

filtering procedure, the ECG signals in the MIT-BIH Arrhythmia database are regarded as the original 

clean ECG signals, but the ECG signals of some subjects in the MIT-BIH Arrhythmia Database are 

still noisy. They cannot be utilized as clean ECG signals and are not suitable for filtering comparison. 

Therefore, after careful investigation, the ECG signals of sixteen subjects (Subject No. 100, 103, 105, 

106, 107, 113, 115, 116, 117, 123, 124, 217, 219, 220, 223, and 234) from the MIT-BIH Arrhythmia 

Database are selected for evaluating the performance of wavelet thresholding filtering. Moreover, for 

the same reason, only 10,000 consecutive samples of an analyzed ECG signal with less noise were 

chosen as the original clean ECG signal. Since electromagnetic noise such as thermal noise is one kind 

of noise difficult to filter from ECG signals, Gaussian white noise which can mimic the 

electromagnetic noise usually happening in measurements was added to contaminate the clean ECG 
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signals with noise level SNR of 15, 20, 25, 30, 35 and 40 dB, respectively. Thus, ninety-six noisy ECG 

signals are generated for the comparison of various criteria for the best base wavelet selection. 

4.2. Wavelet Set 

Twenty-two widely-used wavelets are chosen as the base wavelet set for signal filtering, including 

Daubechies (db) series (db1, db2, db3,db4, db5, db6, db7, db8, db9, db10), sym series (sym2, sym3, 

sym4, sym5, sym6, sym7, sym8) and coif series (coif1,coif2, coif3, coif4,coif5). To compare the 

criteria described in Section 3, each noisy ECG signal was firstly decomposed up to eight levels by 

every wavelet in the set. Then, the best wavelet for a noisy ECG signal is chosen according to nine 

criteria: energy, entropy, energy-to-entropy ratio, joint entropy, conditional entropy, mutual 

information, relative entropy, comparison information entropy as well as the comprehensive entropy 

criterion, respectively. In wavelet thresholding filtering, the universal threshold expressed as Equation (3) 

is employed to estimate the noise in the noisy ECG signal. The soft thresholding function shown as 

Equation (2) is used to realize the transformation of wavelet decomposing coefficients. The filtering 

process is conducted according to three steps described in Section 2. All the analysis of ECG signals in this 

work are carried out through software Matlab7.10.0 (R2010a) (The MathWorks, Inc., Natick, MA, USA). 

4.3. Denoising Performance Indexes 

Suppose 0 1( ) [ , ,..., ]NS n s s s is the original clean ECG signal from the MIT database, while 

0 1
ˆ ˆ ˆ ˆ( ) [ , ,..., ]NS n s s s  denotes the denoised ECG signal by using the selected optimal base wavelet and 

soft thresholding filtering. The filtering performance of different best wavelets are evaluated through 

comparing S and Ŝ based on four filtering indexes defined in the following: 

The output signal to noise ratio SNRo: 

2

1
10 2

1

( )
10log

ˆ| ( ) ( ) |

N

i
o N

i

S i
SNR

S i S i










 (15)

root mean square error RMSE: 

2

1

1 ˆ[ ( ) ( )]
N

i
RMSE S i S i

N 
   (16)

percent root mean-square difference PRD: 

2 2

1 1

ˆ100 [ ( ) ( )] / [ ( )] }
N N

n n

PRD S n S n S n
 

 
  

 
   (17)

and correlation coefficient r [22]: 

1

2 2

1 1

ˆ ˆ( )( )

ˆ ˆ( ) ( )

N

i ii

N N

i ii i

s s s s
r

s s s s



 

 


 


 

 
(18)

It is noticed that the SNRo is a measure of signal strength related to the background noise after 

wavelet thresholding denoising. Theoretically, the SNRo of a filtered ECG signal should be large in 
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amplitude in order to recover the useful signal. On the other hand, the RMSE reflects the distortion of 

the filtering result. The smaller the RMSE is, the closer the denoised signal is to the original signal and 

less distortion of the denoised signal after filtering. Moreover, the PRD gives the information about the 

percentage of distortion of the filtered signal. A small PRD value indicates the efficiency of the 

denoising procedure. In addition, the correlation coefficient r is a statistical concept that measures how 

well the denoised signals follow the actual signal. The larger value of r is, the closer the denoised 

signal is to the original signal. 

4.4. Results and Discussion 

Through the discrete wavelet decomposition, each of ninety-six noisy ECG signals is transformed 

into a wavelet coefficient sequence. There are twenty-two test wavelets in total. Hence, every noisy 

ECG signal is converted into 22 coefficient sequences in terms of 22 base wavelets. Nine criteria for 

the best base selection are calculated for every coefficient sequence of the same noisy signal. The best 

base wavelet based on the same criterion is finally selected and recorded through the comparison of 

criterion values. Because of the diversity of ECG signals of individuals, the selected best wavelet of all 

subjects reveals a great variety even through the same criterion. Moreover, for the same noisy signal, 

the selection results of the best base wavelets may also be different depending on the different criteria. 

Figure 1 shows a typical example of the best base wavelet selection for the ECG signals of all 16 

subjects with same noise level SNR 20 dB. Each line represents the best wavelets of one noisy ECG 

signal obtained respectively by nine criteria. In total, there are 16 wavelet lines in Figure 1. It can be 

seen that each line of best wavelets fluctuates dramatically. Besides, the best wavelets selected by nine 

criteria are not identical to each other for all the subjects. Therefore, it is a significant issue to find an 

appropriate criterion for the best wavelet selection in ECG signal filtering. 

Energy Entropy Er Ejoint Econ Imu Ere Ic Ecom

db1
db2
db3
db4
db5
db6
db7
db8
db9

db10
sym2
sym3
sym4
sym5
sym6
sym7
sym8
coif1
coif2
coif3
coif4
coif5

Best waves  based on different criteria for 16 subjects

Criteria  

Figure 1. Best wavelets for ECG signals with input SNR = 20 dB of all subjects. 

It can also be seen from Figure 1 that two criteria Ejoint and Econ always choose the same wavelets 

for all noisy signals of 16 subjects. The optimal base wavelets for all subjects obtained by Eentropy, 

Ejoint, Econ, Imu and Ic are scattered in the wavelet family; while those selected by Eenergy, Er, Ere and 

Ecom are relatively concentrated. In fact, for the same noisy ECG signal, obvious differences exist in 
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filtering performance based on these nine criteria. Take the ECG signal with noise level of SNR = 20 dB 

of subject No. 116 as an example. In terms of the nine criteria, the nine best base wavelets and the 

corresponding criterion values are recorded in Table 1. Then, the corresponding nine denoised ECG 

signals are shown in Figure 2 for comparison with the original ECG signal and the corrupted ECG 

signal. Since the soft thresholding inherently shrinks large wavelet coefficients with larger bias [23], 

the amplitudes of all the denoised signals are lower than those of the original ECG signal. The 

difference of denoised signals based on nine criteria of the best base wavelet selection can be seen in 

Figure 3, which is an enlarged version of the denoised one-cycle ECG signals. It is noticeable that the 

wave shapes of the filtered signals in Figures 2 and 3 based on Eentropy, Ejoint, Econ and Ere are more or 

less distorted.  

Table 1. Best base wavelets and corresponding criterion values of ECG signal with input 

SNR 20 dB of subject 116. 

Criterion Eenergy Eentropy Er Ejoint Econ Imu Ere Ic Ecom 

Wavelet coif5  coif1 coif5 coif1 coif1 db9 db1  db8 coif4 

Criterion 

value 
8.3943 × 103 4.2224 1.5282 × 103 14.5307 4.2195 1.4138 × 10−2 5.5464 3.4654 × 10−5 2.6248 × 10−2 

0 200 400 600 800 1000 1200

0

2

4
Original ECG

m
V

0 200 400 600 800 1000 1200

0

2

4
Noisy ECG

m
V

0 200 400 600 800 1000 1200

0

2

4

m
V

Energy

0 200 400 600 800 1000 1200

0

2

4

m
V

Entropy

0 200 400 600 800 1000 1200

0

2

4

m
V

Er

0 200 400 600 800 1000 1200

0

2

4

m
V

Ejoint

0 200 400 600 800 1000 1200

0

2

4

m
V

Econ

0 200 400 600 800 1000 1200

0

2

4

m
V

Imu

0 200 400 600 800 1000 1200

0

2

4

m
V

Ere

0 200 400 600 800 1000 1200

0

2

4

m
V

Ic

0 200 400 600 800 1000 1200

0

2

4

m
V

Ecom

 

Figure 2. Filtering comparison of ECG signals with noise level SNR = 20 dB of subject No. 116. 
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Figure 3. Filtering comparison of one-cycle ECG signal with noise SNR = 20 dB of 

subject No. 116. Notes: The dotted line represents the original clean ECG signal, while the 

solid line indicates the denoised ECG signal. 
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Figure 4. Frequency spectrum comparison of ECG signals with input SNR 20 dB of subject No. 116. 
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The corresponding frequency spectra shown in Figure 4 also indicate that some undesirable noise 

still remains in the filtered signals based on these four criteria. Furthermore, it is a common 

phenomenon for the most of noisy ECG signals with different noise levels. Hence, though Eentropy, 

Ejoint, Econ and Ere reflect some features of an ECG signal, they cannot be used independently for the 

selection of best base wavelet. With the optimal wavelets, the filtering results of subject No. 116 are 

recorded in Table 2. The comprehensive entropy criterion chooses the wavelet Coif4 as the optimal 

base wavelet for the noisy ECG signal with noise level of SNR 20 dB of subject No. 116. By 

excluding undesirable criteria Eentropy, Ejoint, Econ and Ere, criterion Ecom obtains the best filtering 

indexes, i.e., the highest values of SNRo and r, as well as the lowest values of RMSE and PRD. The 

same conclusion can also be made according to the filtering results shown in Table 3, which indicates 

the mean values of four denoising indexes (i.e., , ,oSNR RMSE PRD  and r ) for the ECG signals with 

noise level SNR 20 dB of all subjects. 

Furthermore, on the basis of nine best wavelet selection criteria, the mean filtering index values for 

all 96 ECG signals with six noise levels, i.e., , ,oSNR RMSE PRD  and r , are shown in Table 4. For the 

comprehensive entropy criterion, the mean values of SNRo, RMSE, PRD, and r of 96 ECG signals are 

19.4922, 0.0763, 13.9420 and 0.9758, respectively. It is noted that, except PRD , indexes 

,oSNR RMSE  and r  of Ecom are better than those of the other eight criteria. Four filtering indexes of 

Ere are the worst. Besides, though the PRD of Eentropy is 13.9304 which is the lowest value and less than 

that of Ecom, too much noise remaining in the most of denoised signals greatly attenuates the efficacy 

of Eentropy. 

In order to further validate the proposed approach, the shape-match (SM) approach based on cross 

correlation coefficient [6] is implemented since it is commonly used in the selection of optimal base 

wavelets. The procedure is described as follows: firstly, all the ECG signals are segmented into ECG 

cycle data. The cross correlation coefficients of cycle ECG segments and base wavelets are calculated. 

Then, the wavelet with highest correlation coefficient is chosen as the best base wavelet of an ECG 

signal. With the wavelet obtained by the SM, all the ECG signals are filtered by the same  

soft-thresholding method used in the former experiment. Moreover, the mean values of four filtering 

indexes of six denoised ECG signals of every subjects, i.e., SNRom, RMSEm, PRDm and rm, are 
respectively computed for the comE  and the SM. The two-sided t-hypothesis test is conducted in the 

mean values of SNRom, RMSEm, PRDm and rm of two methods. The values of statistic variables of 

these four indexes for two methods are recorded in Table 5 and the corresponding box figures are 

illustrated in Figure 5. It can be clearly seen that the values of statistic variables of four indexes of Ecom 

are better than those of the SM. Besides, the t-test results show that all the statistic values of the test 
are larger than the value of two-sided t-test standard deviation 

2
u  = 1.6973 as the significance level 

α 0.05 . Therefore, it can be concluded that the SNRom, RMSEm, PRDm and rm of Ecom is significantly 

different from those of the shape-matched approach (n1 = n2 = 16, significance level α 0.05 ,  

two-sided t- test). 

Finally, the mean value curves of SNRo, RMSE, PRD and r for all the noisy signals based on the 

comprehensive entropy criterion are depicted in Figure 6. It is noted that both SNRo and r varies 

proportionally to the increase of input SNR, while RMSE and PRD changes inversely as input SNR 
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rises. Moreover, the relation between the output SNRo and the input SNR is close to linear. It indicates 

that the proposed criterion Ecom has the stable performance in the optimal base selection. The variation 

of RMSE, PRD and r tends to be slowly as the input SNR rises merely because there is less noise in 

the contaminated ECG signals to be reduced. 

Table 2. Filtering performance comparison for ECG signal with input SNR 20 dB of subject No.116. 

Criterion SNRo (dB) RMSE (mV) PRD (%) R 

Eenergy 17.7889 0.1481 12.8990 0.9796 
Eentropy 18.3061 0.1395 12.1533 0.9823 

Er 17.7889 0.1481 12.8990 0.9796 
Ejoint 18.3061 0.1395 12.1533 0.9823 
Econ 18.3061 0.1395 12.1533 0.9823 
Imu 17.7078 0.1494 13.0199 0.9823 
Ere 16.9774 0.1626 14.1622 0.9760 
Ic 17.3693 0.1554 13.5374 0.9803 

Ecom 17.8896 0.1463 12.7502 0.9829 

Table 3. Filtering performance comparison for ECG signal with input SNR 20 dB of all subject. 

Criterion 
oSNR  (dB) RMSE  (mV) PRD (%) r  

Eenergy  14.6989 0.1093 19.9152 0.9662 
Eentropy  14.6835 0.1091 19.7216 0.9625 

Er  14.6915 0.1094 19.9244 0.9658 
Ejoint  14.6596 0.1095 19.7784 0.9623 

Econ conE  14.6596 0.1095 19.7784 0.9623 
Imu  14.5886 0.1107 20.2360 0.9628 
Ere  13.9541 0.1197 21.7119 0.9578 
Ic  14.4673 0.1122 20.4741 0.9614 

Ecom  14.7314 0.1090 19.9128 0.9670 

Table 4. Filtering performance comparison for all ECG signals of all subjects. 

Criterion SNR  (dB)  RMSE  (mV) PRD  (%) r  

Eenergy  19.4608 0.0766 13.9811 0.9757 
Eentropy  19.1159 0.0773 13.9304 0.9738 

Er  19.4916 0.0763 13.9432 0.9757 
Ejoint  19.1047 0.0774 13.9744 0.9741 
Econ  19.1047 0.0774 13.9744 0.9741 
Imu  19.4568 0.0767 14.0452 0.9745 
Ere  17.7827 * 0.0882 * 15.7884 * 0.9712 * 

Ic  19.4452 0.0770 14.0824 0.9743 
Ecom  19.4922 0.0763 13.9420 0.9758 

Note: * denotes the worst filtering result of nine criteria. 
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Table 5. Statistic variables of SNRom, RMSEm, PRDm and rm of Ecom and those of  

shape-matched approach. 

Index SNRom RMSEm PRDm rm 

Statistic Variable Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 
Mean 

Standard 

Deviation 
Mean 

Standard 

Deviation 

comE  19.4922 3.6429 0.0763 0.0107 13.9420 5.7904 0.9758 0.0163 

Shape-Matched (SM) 17.3304 3.4844 0.0865 0.0131 17.5809 6.0617 0.9632 0.0137 
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Figure 5. Box plots of SNRom, RMSEm, PRDm, and rm of comE  and shape-matched approach. 
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Figure 6. Variation of SNRo, RMSE, PRD, and r of all ECG signals with different noise 

levels based on the comprehensive entropy criterion. 
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5. Conclusions 

Wavelet transforms have become efficient analyzing tools for time-varying and non-stationary ECG 

signals due to their powerful decomposition ability of both high and low resolution signals. However, 

the selection of the best wavelet is a crucial issue in the wavelet filtering of ECG signals. Inspired by 

information entropy, a novel comprehensive entropy criterion based on the combination of multiple 

entropy measures is proposed in this paper to find an appropriate wavelet for a specific ECG signal. It 

is devised through evaluating both the decomposing ability of wavelet and the information similarity 

between decomposed coefficients and the signal to be analyzed. The ECG signals of sixteen subjects 

selected from the MIT-BIH Arrhythmia Database were used to validate the proposed criterion.  

Ninety-six noisy ECG signals were generated by artificially adding the Gaussian white noise with 

noise levels of SNR with 15, 20, 25, 30, 35 and 40 dB  to the original ECG signal, respectively. A 

detailed comparison for the optimal wavelet selection was conducted between the comprehensive 

criterion and the other eight common criteria, i.e., energy, entropy, energy-to-entropy ratio, joint 

entropy, conditional entropy, mutual information, relative entropy, and comparison information 

entropy. Four filtering indexes SNRo, RMSE, PRD and correlation coefficient were used for 

performance comparison of the nine criteria. The filtering results have verified that entropy, joint 

entropy, conditional entropy, and relative entropy cannot be used independently as the criterion for 

best base wavelet selection due to the prominent distortion and residual noise in most of the filtered 

signals. Nevertheless, the comprehensive entropy criterion can find the best base wavelet for a specific 

ECG signal and obtain better filtering performance than those of the compared eight criteria. The 

statistical analysis results also show that the four filtering indexes of denoised ECG signals of Ecom 

have significant differences from those of the shape-matched approach for base wavelet selection. By 

comparison to the shape-matched approach and other filtering-index-based methods, the 

comprehensive criterion chooses the optimal base wavelet only through decomposed wavelet 

coefficients without utilizing any other extra data or computations. Hence, the lesser complexity in 

computation of Ecom will definitely shorten the computational time for optimal base wavelet selection. 

In terms of its efficiency, the comprehensive criterion can be further applied to the wavelet noise 

reduction of other biomedical or mechanical signals. However, it should be noted that the 

comprehensive criterion is based on the entropy which reflects the regularity of an ECG signal. 

Because of the diversity of cardiac diseases, the comprehensive criterion will be less effective for 

noise filtering of irregular burst ECG signals, such as heart attack signals. Hence, our research in the 

future will focus on the improvement of comprehensive entropy criterion for different accidental 

pathological ECG signals. 
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