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Abstract: Sparse system identification has received a great deal of attention due to its broad 

applicability. The proportionate normalized least mean square (PNLMS) algorithm, as a 

popular tool, achieves excellent performance for sparse system identification. In previous 

studies, most of the cost functions used in proportionate-type sparse adaptive algorithms are 

based on the mean square error (MSE) criterion, which is optimal only when the 

measurement noise is Gaussian. However, this condition does not hold in most real-world 

environments. In this work, we use the minimum error entropy (MEE) criterion, an alternative 

to the conventional MSE criterion, to develop the proportionate minimum error entropy 

(PMEE) algorithm for sparse system identification, which may achieve much better 

performance than the MSE based methods especially in heavy-tailed non-Gaussian 

situations. Moreover, we analyze the convergence of the proposed algorithm and derive a 

sufficient condition that ensures the mean square convergence. Simulation results confirm 

the excellent performance of the new algorithm. 
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1. Introduction 

Sparse system identification is an active research area at present, which finds various real-world 

applications in network echo cancelation, wireless multipath channels, underwater acoustic communications, 

and so on [1,2]. A system is qualitatively classified as a sparse system if only a small percentage of 

coefficients are active, while other coefficients are insignificant (i.e., equal or close to zero). It is worth 

noting that in compressive sensing and sparse coding, the term “sparse vector” usually means that most 

of the elements are exactly zero. In system identification and adaptive filtering, however, the term 

“sparse system (or filter)” in general means that most of the coefficients are equal or close to zero. For 

a sparse system, classic adaptive filtering algorithms like least mean square (LMS) and normalized LMS 

(NLMS) [3] may perform poorly in terms of steady state excess mean square error and convergence 

speed due to not using the a priori knowledge, especially in applications with long sparse systems. As a 

new scheme, the proportionate normalized least mean square (PNLMS) [4], which updates each filter 

coefficient in proportion to the magnitude of its estimate, has recently received a great deal of attention, 

and can perform much better than the conventional NLMS in the identification of sparse systems. Several 

improvements of the PNLMS algorithm have been proposed [5–8]. Moreover, several proportionate-type 

affine projection algorithms (APAs) were also developed [9–12]. 

Most of the existing proportionate-type adaptive algorithms (such as PNLMS) are developed based 

on the well-known mean square error (MSE) criterion. The MSE is computationally simple and 

mathematically tractable, and optimal when data are Gaussian. However, when the data are  

non-Gaussian (especially when data are disturbed by impulsive noises or containing large outliers), the 

MSE may be a poor descriptor of optimality. Man-made low frequency atmospheric noises and lighting 

spikes in natural phenomena can be described more accurately using non-Gaussian noise models [13,14]. 

From a statistical point of view, MSE only takes into account the second-order statistics, which is 

insufficient to capture all possible information from data. As a result, in non-Gaussian situations, the 

proportionate-type NLMS algorithms may perform poorly especially in the presence of impulsive noises. 

Information theoretic learning (ITL) provides an appropriate framework for dealing with  

non-Gaussian signal processing [15,16]. In ITL, the quadratic Renyi’s entropy of the error was proposed 

as an alternative to MSE. With nonparametric Parzen window approach, the entropy can be easily 

estimated from the samples. Under the minimum error entropy (MEE) criterion, an adaptive system can 

be trained such that the error entropy between the model and unknown system is minimized [17–25]. 

Since entropy can capture higher-order statistics and information content of signals rather than simply 

their energy, the MEE based adaptive algorithms may achieve significant performance improvements in 

non-Gaussian situations. In this work, we propose a novel proportionate algorithm for sparse system 

identification, called the proportionate minimum error entropy (PMEE) algorithm. Instead of using the 

MSE criterion, the new algorithm is derived based on the MEE criterion. The PMEE algorithm may 

perform much better than the PNLMS when identifying a sparse system with non-Gaussian noises. In a 

recent paper [26], we proposed three sparse adaptive filtering algorithms under MEE criterion, namely 

ZAMEE, RZAMEE, and CIMMEE, which are derived by incorporating a sparsity penalty term into the 

MEE criterion. These algorithms also perform well for sparse system identification with non-Gaussian 

noises. However, simulation results in this work show that PMEE can outperform them. 



Entropy 2015, 17 5997 
 

 

The rest of the paper is organized as follows. In Section 2, after briefly introducing the MEE criterion, 

we derive the PMEE algorithm. In Section 3, we carry out the mean square convergence analysis. In 

Section 4, we present simulation results to confirm the excellent performance of the PMEE. Finally, In 

Section 5, we give the conclusion. 

2. Proportionate Minimum Error Entropy Algorithm 

2.1. Minimum Error Entropy Criterion 

Figure 1 depicts an adaptive filtering scheme under MEE criterion. According to Figure 1,  

the adaptive filtering can be formulated as minimizing the error entropy between the filter output and 

the desired response. Since entropy quantifies the average uncertainty or dispersion of a random variable, 

its minimization makes the error concentrated. Consider a linear system where the desired signal is 

generated by: 
*( ) ( ) ( )Td n W X n v n= +  (1)

where [ ]1 1( ) , , , )
T

n M n nX n x x x− + −=   denotes the input vector at instant n , * * * *
1 2[ , , , ]T

MW w w w=   

denotes the weight (parameter) vector of an finite impulse response (FIR) channel with M  being the 
memory size, Τ  denotes the transpose operator, and ( )v n  stands for the interference or measurement 

noise. Assume that the adaptive filter is also an FIR filter with weight vector 

1 2( ) [ ( ), ( ), , ( )]T
MW n w n w n w n=  . Then the filtering error is: 

( ) ( ) ( ) ( ) ( ) ( )Te n d n y n d n W n X n= − = −  (2)

where ( )y n  is the output of the adaptive filter at instant n . Let the filtering error be a random variable 

with probability density function (PDF) (.)ep . The quadratic Renyi’s entropy of error is: 

2
2 ( ) log ( ) log ( )R eH e p d V e= − − ξ ξ=  (3)

where 2( ) ( )eV e p d=  ξ ξ  is named the quadratic information potential (QIP) [17,18]. In practical 

applications, however, an analytical expression of the error entropy is not available in general; one has 

to estimate it directly from the error samples. By the Parzen window approach, the error PDF can be 

estimated as: 

1

1
( ) ( ( ))

N

e
i

p e e e i
N

κ
=

= − σ  (4)

where N  is the samples number, κσ  denotes a kernel function with bandwidth σ , satisfying σ ( ) 0xκ ≥ , 

and σ ( ) 1x dxκ = . The most popular kernel function used in ITL is the Gaussian kernel: 

2

2

1
( ) exp( )

22

x
xκ

π
= −σ σσ  

 (5)
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Figure 1. Adaptive filtering under MEE criterion. 

In the rest of the paper, unless mentioned otherwise, we will use the Gaussian kernel. Combining 

Equations (3) and (4) yields: 

2
2 σ

1

σ σ2
1 1

2 σ 2
1 1

1
( ) log ( ( ( )))

1
           = log ( ( )) ( ( ))

1
            = log ( ( ) ( ))

N
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i

N N

i j

N N

i j

H e e e i de
N

e e i e e j de
N

e i e j
N

κ

κ κ

κ

=

= =

= =

≈ − −

− − −

− −







 (6)

One can easily obtain: 

2 σ 2
1 1

1
( ) ( ( ) ( ))

N N

i j

V e e i e j
N

κ
= =

≈ −  (7)

Obviously, minimizing the quadratic Renyi entropy is equivalent to maximizing the QIP. Thus,  

the optimal weight vector under MEE can be formulated as: 

arg max ( )opt
W

W V e=  (8)

2.2. Proportionate Minimum Error Entropy 

Before presenting the PMEE algorithm, a general form of the PNLMS-type algorithms is revisited. 

Generally, the weight update equation of the PNLMS-type algorithms can be expressed as [4,8]: 

μ ( ) ( ) ( )
( 1) ( )

( ) ( ) ( ) δT

G n e n X n
W n W n

X n G n X n
+ = +

+
 (9)

where μ  is a step size parameter, δ 0>  is a regularization parameter that prevents division by zero in 

Equation (9) and stabilizes the solution, ( )G n  is a diagonal matrix that modifies the step size of each tap 

according to a specific rule. In general, the matrix ( )G n  is given by: 

1 2( ) ( ( ), ( ), , ( ))MG n diag g n g n g n=   (10)

where: 



Entropy 2015, 17 5999 
 

 

1

( )
( )       1

( )

l
l M

i
i

n
g n l M

n

ϖ

ϖ
=

= ≤ ≤


 
(11)

{ }1 ( ) , ( ) ( )( ) max εmax , ,  M lw n w n w nl nϖ φ =    (12)

The parameter ε  prevents the coefficients from stalling when they are much smaller than the largest 
one. The parameter φ  is an initialization parameter that helps to prevent stalling of the weight updating 

at the initial stage when all the taps are initialized to zero. 

To develop the PMEE algorithm for sparse system identification, we use the error entropy instead of 

the squared error as the adaptation cost. According to Equation (8), a steepest ascent algorithm for 

estimating the weight vector can be derived as: 

( 1) ( ) μ ( ( ))W n W n V e n+ = + ∇  (13)

where ( ( ))V e n∇  denotes the gradient of the QIP with respect to the weight vector, given by: 

2 σ 2
1 1

2 2 σ 2
1 1

2 2 σ 2

( ( )) 1
( ( )) ( ( , ))

( ) ( )

1 ( ) ( )
                = ( ( , ))( ( , ))

2 σ ( ) ( )

1
                = ( ( , ))(

2 σ

n n

i n L j n L

n n

i n L j n L

V e n
V e n e i j

W n W n L

y i y j
e i j e i j

L W n W n

e i j
L

κ

κ

κ

= − + = − +

= − + = − +

 ∂ ∂∇ = = Δ ∂ ∂  
  ∂ ∂Δ Δ −  ∂ ∂  

Δ Δ

 

 

( )
1 1

( , )) ( ) ( )
n n

i n L j n L

e i j X i X j
= − + = − +

 −  

 (14)

where ( , ) ( ) ( )e i j e i e jΔ = − , and L  denotes the sliding data length. Hence, inspired by the PNLMS-type 

algorithms, we propose the following weight update equation: 

( )2 2 σ 2
1 1

( 1) ( ) μ ( ) ( ( ))          

μ
               = ( ) ( ) ( ( , ))( ( , )) ( ) ( )

2 σ

n n

i n L j n L

W n W n G n V e n

W n G n e i j e i j X i X j
L

κ
= − + = − +

+ = + ∇

 + Δ Δ −    (15)

where ( )G n  is determined by Equations (10)–(12). This algorithm is referred to as the PMEE algorithm. 

Remark 1. Obviously, one can also propose a normalized version of PMEE by dividing the term 
( ) ( ) ( ) δTX n G n X n + , just like Equation (9). However, our simulation results indicate that the 

normalized PMEE performs well only when the underlying system is extremely sparse. Thus, in this 

work, we don’t consider the normalized PMEE. Maybe other updating laws may exist that can provide 

possibly better result, but this is beyond the scope of this work. 

3. Mean Square Convergence Analysis 

3.1. Energy Conservation Relation 

We rewrite Equation (2) in a form of block data: 

( ) ( ) ( ) ( ) χ( ) ( )e n d n y n d n n W n= − = −
  

 (16)
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where ( ) [ ( 1), , ( )]Te n e n L e n= − +  , ( ) [ ( 1), , ( )]Td n d n L d n= − +


 , ( ) [ ( 1), , ( )]Ty n y n L y n= − +  , and 

χ( ) [ ( 1), ( 2), , ( )]Tn X n L X n L X n= − + − +   stands for an L M×  input matrix. Define the a priori error 

vector (n)ae


 and a posteriori error vector (n)pe


 as follows: 

( ) [ ( 1), , ( )] χ( ) ( )

( ) [ ( 1), , ( )] χ( ) ( 1)

T
a a a

T
p p p

e n e n L e n n W n

e n e n L e n n W n

 = − + =
 = − + = +

 
 

 
(17)

where *( ) ( )W n W W n= −  is the weight error vector. Then, (n)ae


 and (n)pe


 satisfies: 

( ) ( ) χ( )( ( 1) ( )) ( ) χ( )( ( 1) ( ))p a ae n e n n W n W n e n n W n W n= + + − = − + −     (18)

Now Equation (15) can be rewritten as: 

( 1) ( ) μ ( )χ ( ) ( ( ))TW n W n G n n h e n+ = +
 

 (19)

where 1 2( ( )) [ ( ( )), ( ( )), , ( ( ))]T
Lh e n h e n h e n h e n=

     , in which: 

( ( ))
( ( ))

( )
MEE

i

J e n
h e n

e n L i

∂=
∂ − +


 (20)

To simplify the analysis, below we assume L M= . Combining Equations (18) and (19), one can 

derive: 

1

1

    ( ) ( ) μχ( ) ( )χ ( ) ( ( ))

( ) ( ) μχ( ) ( )(χ( ) ( )) ( ( ))

( ) ( ) μ ( ) ( ) ( ( ))

R ( )( ( ) ( )) μ ( ( ))

( )χ ( )R ( )( ( ) ( )) ( ( 1) (

T
p a

T
p a

T
p a

p a

T
p a

e n e n n G n n h e n

e n e n n G n n G n h e n

e n e n n n h e n

n e n e n h e n

G n n n e n e n W n W

∗ ∗

−

−

= −

 − = −

 − = − Η Η

 − = −

 − = − + −

  
  

  
  

 

1

))

( )χ ( )R ( )( ( ) ( )) ( 1) ( )T
p a

n

G n n n e n e n W n W n− − = + −   

 (21)

where 1 2( ) ( ( ), ( ), , ( ))MG n diag g n g n g n∗ =  , ( ) χ( ) ( )n n G n∗Η = , and R( ) ( ) ( )Tn n n= Η Η  is an 

L L× -dimensional symmetric matrix. Assume that R( )n  is invertible. Then we obtain: 

1( 1) ( ) ( )χ ( )R ( )( ( ) ( ))T
p aW n W n G n n n e n e n−+ = + −    (22)

Squaring both sides of Equation (22), we have: 

1

1

( 1) ( 1) [ ( ) ( )χ ( )R ( )( ( ) ( ))]

                                [ ( ) ( )χ ( )R ( )( ( ) ( ))]

T T T
p a

T
p a

W n W n W n G n n n e n e n

W n G n n n e n e n

−

−

+ + = + −

× + −

   
   (23)

After some simple manipulations, we derive: 

1 1

2 2 22

( ) ( )
( 1) ( ) ( ) ( )a pn n

W n e n W n e n− −ℜ ℜ
+ + = +    (24)

where ( ) ( ) ( )Tn n nχ χℜ = , 
2

( ) ( ) ( )TW n W n W n=   , 1

2 1

( )
( ) ( ) ( ) ( )T

a a an
e n e n n e n−

−
ℜ

= ℜ   , and 

1

2 1

( )
( ) ( ) ( ) ( )T

p p pn
e n e n n e n−

−

ℜ
= ℜ   . Taking the expectations of the both sides of Equation (24) leads to the 

energy conservation relation [19,23,26]: 
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1 1

2 2 22

( ) ( )
( 1) ( ) ( ) ( )a pn n

E W n E e n E W n E e n− −ℜ ℜ
      + + = +           

    (25)

where 
2

( )E W n 
  
  is called the weight error power (WEP) at iteration n . 

3.2. Sufficient Condition for Mean Square Convergence 

Based on the energy conservation relation Equation (25), a sufficient condition that guarantees the 

mean square convergence (i.e., the monotonic decrease of the WEP) can be easily derived. Substituting 
( ) ( ) μχ( ) ( )χ ( ) ( ( ))T

p ae n e n n G n n h e n= −
  

 into Equation (25), we have: 

2 2 1

2 1

( 1)  ( ) 2μ ( ) ( )χ( ) ( )χ ( ) ( ( ))

                             μ ( ( ))χ ( ) ( )χ( ) ( )χ( ) ( )χ ( ) ( ( ))

T T
a

T T T

E W n E W n E e n n n G n n h e n

E h e n n G n n n n G n n h e n

−

−

     + = − ℜ       
 + ℜ 

  

    (26)

It follows that: 

[ ]
[ ]

2 2

2 1

1

        ( 1) ( )

   μ ( ( ))χ ( ) ( )χ( ) ( )χ( ) ( )χ ( ) ( ( ))

    2μ ( ) ( )χ( ) ( )χ ( ) ( ( ))

2
  μ

T T T

T T
a

E W n E W n

E h e n n G n n n n G n n h e n

E e n n n G n n h e n

E

E

−

−

   + ≤      
 ⇔ ℜ 
 ≤ ℜ 

ϒ
⇔ ≤

Θ

 

  

   (27)

where  

1( ) ( )χ( ) ( )χ ( ) ( ( ))T T
ae n n n G n n h e n−ϒ = ℜ

 
, 

1( ( ))χ ( ) ( )χ( ) ( )χ( ) ( )χ ( ) ( ( ))T T Th e n n G n n n n G n n h e n−Θ = ℜ
  

. 

Since μ 0≥ , a sufficient condition for the mean square convergence will be: 

[ ]
[ ]

[ ]

0

2
0 μ

E

E

E

 ϒ >
 ϒ < ≤ Θ

 (28)

The above sufficient condition ensures that the WEP will be monotonically decreasing (hence the 

algorithm will not diverge). 

4. Simulation Results 

Now we present simulation results about sparse system identification to demonstrate the performance 

of the PMEE, compared with ZAMEE, RZAMEE, CIMMEE [26] and PNLMS. The mean square 

deviation (MSD) is used as the performance index, calculated by: 

2*MSD= ( )E W W n −  
 (29)
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In order to show the performance of the algorithms in impulsive noise environments, we adopt the 

alpha-stable distribution [27,28] to generate the disturbance noise, whose characteristic function is: 

( ) exp{jδ γ | | [1 jβsgn( )S( ,α)]}f t t t t tα= − +   (30)

in which: 

απ
tan , if α 1

2S( ,α)
2

log | |, if α 1
π

t

t

 ≠= 
 =


 (31)

where α (0, 2]∈  is the characteristic factor, δ−∞ < < +∞  is the location parameter, β [ 1,1]∈ −  is the 

symmetry parameter, and γ 0>  is the dispersion parameter. This distribution is called a symmetric  

alpha-stable ( αS S ) distribution when β 0= . We define the parameter vector (α,β, γ,δ)V = . In addition, 

we consider four unknown channels with different parameter vectors: 

(a) Channel 1: 
* [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]W =  

(b) Channel 2: 
* [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1]W =  

(c) Channel 3: 
* [0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1]W =  

(d) Channel 4: 
* [1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1]W = − − − − − − − − − − − − − − − − − − − −  

Clearly, the four channels (with memory size 40) have different sparsity ratio (1/40, 1/8, 1/4, 1).  

In all the simulations below, the input signal is a white Gaussian process with zero mean and unit 
variance. The parameters ε  and φ  are set at 1/40 and 0.001, respectively. The sliding data length is 

20L = . Simulation results are averaged over 200 independent Monte Carlo runs, and each run has  

15,000 iterations. 
In the first simulation, the parameter vector V  is set at (1.2,0,0.4,0) , the kernel width σ  is 1.0, and 

the step sizes are chosen such that all the algorithms have almost the same initial convergence rate.  

Figure 2 illustrates the convergence curves for different channels. One can observe: (i) when the system 

is very sparse (e.g., channel 1 and 2), the PMEE achieves much lower steady-state MSDs than other 

algorithms; (ii) when the channel is less sparse (e.g., channel 3), the steady-state MSDs of PMEE is still 

the lowest although there is a little loss in performance; (iii) when the system is completely non-sparse  

(e.g., channel 4), the performance of PMEE is comparable with CIMMEE. Note that in all the cases, the 

PNLMS algorithm cannot work since it is very sensitive to impulsive noises. 

In the second simulation, we show the performance of the algorithms with different noise parameters 

(assume that the unknown system is the channel 1). The steady-state MSDs with different α  
(0.8,1.0,1.2,1.4,1.6,1.8,2.0) and different γ  (0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6) are shown in Figures 3 and 4, 

respectively. Evidently, the PMEE performs very well and achieves the lowest MSDs compared with 

ZAMEE, RZAMEE, and CIMMEE. The PNLMS performs well (even better than PMEE) only when α  
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is very close to 2.0. The main reason for this is that, when α  comes near to 2.0, the noise will be 

approximately Gaussian. Simulation results confirm that the PMEE can effectively identify a sparse 

system in a non-Gaussian impulsive noise environment. 

(a) (b) 

(c) (d) 

Figure 2. Convergence curves for different channels: (a) channel 1; (b) channel 2;  

(c) channel 3; (d) channel 4. 

In the third simulation, we investigate how the kernel width affects the convergence performance. 
The noise parameters are set at (1.2,0,0.4,0)V = . Simulation results are shown in Figure 5, from which 

one can see that the kernel width has significant influence on the convergence performance. When the 

kernel width is too large or too small, the performance will become poor. In a practical application, the 

kernel width can be manually selected or optimized by trial and error. 

 

Figure 3. Steady-state MSDs with different α  ( γ 0.4= ). 
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Figure 4. Steady-state MSDs with different γ  (α 1.2= ). 

 

Figure 5. Convergence curves with different kernel widths. 

5. Conclusions 

In this work, the proportionate minimum error entropy (PMEE) algorithm has been developed to 

identify a sparse system. Different from the existing proportionate-type adaptive filtering algorithms, such 

as the proportionate normalized least mean square (PNLMS), PMEE is derived by using the minimum 

error entropy (MEE) instead of the traditional mean square error (MSE) as the adaptation criterion. 

Convergence analysis based on energy conservation relation has been carried out, and a sufficient 

condition for ensuring the mean square stability is obtained. Simulation results have demonstrated the 

superior performance of the proposed algorithm especially in impulsive non-Gaussian situations. 
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