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Abstract: We present a brief overview of some key concepts in the theory of generalized
complex manifolds. This new geometry interpolates, so to speak, between symplectic
geometry and complex geometry. As such it provides an ideal framework to analyze
thermodynamical fluctuation theory in the presence of gravitational fields. To illustrate the
usefulness of generalized complex geometry, we examine a simplified version of the Unruh
effect: the thermalising effect of gravitational fields on the Schroedinger wavefunction.
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1. Introduction

The theory of thermodynamical fluctuations provides a solid link between macroscopic and
microscopic physics. Classical fluctuation theory [1] often sheds light on counterintuitive
quantum-mechanical phenomena, thus helping to bridge the gap between the classical world and the
quantum world. For example, Heisenberg’s uncertainty principle can be nicely illustrated resorting to
the theory of Gaussian fluctuations around thermal equilibrium [2].

On the other hand, the theory of thermodynamical fluctuations can be recast using the geometric
language of differential manifolds [3–9]. This reexpression of a physical discipline in more abstract
mathematical language goes a long way beyond a mere rewriting of the concepts involved. It renders
the theory more versatile, enlarging its scope. Moreover, since the advent of Einstein’s general relativity
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a century ago, (pseudo) Riemannian geometry belongs to the technical skills that any physicist has to
master (at least at a working level). This places (pseudo) Riemannian geometry at a vantage point.
In the opposite direction (i.e., thermodynamics as applied to geometry) one should mention at least two
developments. The first one is a whole body of knowledge on the thermodynamics of black holes [10,11].
More recently, the reexpression of Einstein’s relativity as a thermodynamics [12,13] has had far-reaching
consequences for our understanding of spacetime.

Here we would like to report on another recent development in geometry with implications on the
thermodynamics of fluctuations: the theory of generalized complex manifolds [14,15].

In trying to understand the thorny relationship between gravity and the quantum [16–19] it has
been argued that gravity acts dissipatively on quantum systems [20]. Specifically, in the presence of
a gravitational field, thermal fluctuations become indistinguishable from quantum fluctuations [21–23].
This raises the fundamental question: How is one to treat thermal and quantum fluctuations on the
same footing? Is it altogether possible? We will see here that generalized complex manifolds provide
one viable answer to this question, one that appears not to have been explored yet in the geometrical
approach to thermodynamics.

2. Geometry and Fluctuations

2.1. Riemannian Geometry

As a very elementary example, consider a thermodynamical system in an equilibrium state described
by the following variables: temperature T , pressure P and volume V . In the Gaussian approximation,
choosing T and V as independent variables, the probability W of a fluctuation ∆T , ∆V around
equilibrium is given by [24]

W = W0 exp

[
− CV

2kBT 2
∆T 2 +

1

2kBT

(
∂P

∂V

)
T

∆V 2

]
(1)

The thermodynamic inequalities CV > 0 and (∂P/∂V )T < 0 ensure that the argument of the above
exponential is negative definite. This suggests considering the following (positive definite) Riemannian
metric on the 2-dimensional manifold coordinatised by T, V :

ds2 :=
CV

2kBT 2
dT 2 − 1

2kBT

(
∂P

∂V

)
T

dV 2 =: gijdx
idxj (2)

The metric coefficients gij are of course (T, V )-dependent functions. This Riemannian structure encodes
all the relevant information. For example, the average value 〈f(T, V )〉 of an arbitrary function f =

f(T, V ),

〈f(T, V )〉 = Z−1
∫
f(T, V ) exp

(
−gTTT

2 − gV V V
2
)√

g dTdV (3)

where Z :=
∫ √

g exp (−gTTT
2 − gV V V

2) dTdV , naturally involves the metric. The role of
Riemannian geometry in fluctuation theory is well known and has been reviewed at length in [8].
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2.2. Symplectic Geometry

As our starting point here we will consider a certain thermodynamical system in equilibrium, in order
to arrive at a corresponding symplectic structure.

Again in the Gaussian approximation, the probability W of a fluctuation ∆P , ∆V , ∆T , ∆S is given
by [24]

W = W0 exp

[
− 1

2kBT
(−∆P∆V + ∆T∆S)

]
(4)

Assume an equation of state F (P, V, T ) = 0 that can be solved for the temperature to obtain
T = g(P, V ). For simplicity let us consider an ideal gas, PV = S0T :

W = W0 exp

[
− 1

2kB

(
−S0

∆P∆V

PV
+

∆T∆S

T

)]
(5)

It is convenient to define the dimensionless variables

p1 := − ln

(
P

P0

)
, q1 := ln

(
V

V0

)
, p2 := ln

(
T

T0

)
, q2 :=

S

S0

(6)

where P0, V0 and T0 are reference values. Then Equation (5) becomes

W = W0 exp

[
− S0

2kB
(∆p1∆q1 + ∆p2∆q2)

]
(7)

We can regard q1 and q2 as coordinates on a thermodynamical configuration space S, with p1 and p2 as
their conjugate momenta. Thus the q1, p1, q2, p2 are Darboux coordinates for the symplectic form

ω = dp1 ∧ dq1 + dp2 ∧ dq2 (8)

In this way we identify ∆p1∆q1 + ∆p2∆q2 in Equation (7) as the symplectic area of a 2-dimensional
surface F induced by the fluctuation:

∆p1∆q1 + ∆p2∆q2 =

∫
F

(dp1 ∧ dq1 + dp2 ∧ dq2) (9)

Finally substituting Equation (9) into Equation (7) we find

W = W0 exp

(
− S0

2kB

∫
F

ω

)
(10)

i.e., the probability of this thermal fluctuation is proportional to the exponential of the symplectic area
of the fluctuation surface F.

The importance of symplectic structures in classical mechanics is widely recognized and need hardly
be recalled [25]. In fact not just Riemannian geometry, but also symplectic geometry, pertains to the
realm of thermal fluctuations: the first law of thermodynamics endows the thermodynamic phase space
with a contact structure, which includes symplectic geometry as a sub-case [3,4,6,7].

A real 2n-dimensional manifold M is symplectic if there exists a closed, non-degenerate, rank 2
antisymmetric tensor field ωij defined everywhere on M. Let xi be local coordinates around x ∈M, so
ω = 1

2
ωijdx

i ∧ dxj with ωji = −ωij . Since the matrix ωij is nonsingular, an inverse πjk exists such that
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ωijπ
jk = δki . The Poisson brackets of two functions f, g are defined as {f, g} := πjk∂jf∂kg, and the

integrability condition dω = 0 turns out to be equivalent to the Jacobi identity for these Poisson brackets.
In this way the following symplectic analogue of Equation (3) allows one to compute the average

value 〈f〉 of the function f on M:

〈f〉 = Z−1
∫
M

f exp (−ω) (11)

Above, the exponential e−ω is defined by Taylor expansion, powers being taken with respect to the
wedge product. Then the 2n-dimensionality of the symplectic manifold picks out just one differential
form that can be integrated against M, namely the 2n-form (−1)nωn/n!; all other terms in the Taylor
expansion give a vanishing contribution when integrated. The factor (−1)n/n! has been included in
the normalization Z. As had to be the case, this average involves the data concerning the symplectic
structure on M.

One can also regard a symplectic structure as providing an isomorphism from the tangent space
TxM into the cotangent space T ∗xM at each x ∈ M. Specifically, the tangent vector X = X i∂i is
mapped into the 1-form ω(X) = ξ = ξidx

i, with ξi = ωijX
j . This viewpoint motivates the following

definition (equivalent to the above, but more useful for later applications): a symplectic structure over
a 2n-dimensional manifold M is an isomorphism ωx between the tangent and the cotangent fibers over
each point x ∈M,

ωx : TxM −→ T ∗xM (12)

such that, under the operation of taking the linear dual (denoted by an asterisk),

ω∗x = −ωx, ∀x ∈M (13)

Moreover, the integrability condition dω = 0 must be satisfied.

2.3. Complex Geometry and Kähler Geometry

Informally one could say that the imaginary unit is the hallmark of quantum mechanics. That
i =
√
−1 pertains to the quantum world has been very interestingly argued recently in [26,27]. More

standard arguments have been known for long; such are the heat equation in imaginary time it, or the
fact that quantum commutators [· , ·] formally equal

√
−1 times classical Poisson brackets {· , ·}. Here

we will briefly recall the role played by complex structures in the theory of coherent states [28,29].
Let M be a real 2n-dimensional phase space endowed with the symplectic form ω. For simplicity

let us also assume that M admits a holomorphic atlas compatible with the symplectic structure (this
compatibility condition is called the Kähler property). In plain words, the real and imaginary parts of the
holomorphic coordinates zj are Darboux coordinates for ω (here assumed dimensionless for simplicity):

zj =
1√
2

(
qj + ipj

)
, j = 1, . . . , n (14)

Upon quantisation, the Darboux coordinates qj and pj become operators Qj and Pj on Hilbert space
satisfying the Heisenberg algebra [Qj, Pk] = iδjk. Creation and annihilation operators are defined in the
standard fashion: A†j := (Qj − iPj)/

√
2, Aj := (Qj + iPj)/

√
2, and quantum excitations are measured
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with respect to a vacuum state |0〉 satisfying Aj|0〉 = 0, for all j = 1, . . . , n. Coherent states |zj〉 are
eigenvectors of Aj , the eigenvalues being the holomorphic coordinates (14):

Aj|zj〉 = zj|zj〉, j = 1, . . . , n (15)

(No sum over j implied). In order to illustrate our point let us consider a 1-dimensional harmonic
oscillator. The expectation value of the Hamiltonian operator H = A†A + 1/2 in the state |z〉 equals
〈z|H|z〉 = |z|2 + 1/2. Since the energy fluctuation in the state |z〉 equals

(∆H)z = |z|, z ∈ C (16)

the relative fluctuation goes, for large enough |z|, like

(∆H)z
〈z|H|z〉

' 1

|z|
, |z| → ∞ (17)

But 1/|z| is the inverse of the square root of the Kähler potential K(z, z̄) := |z|2 for the Euclidean
metric on the complex plane C. This simple example illustrates the important role played by complex
manifolds in the quantum theory.

Every complex manifold M admits a (positive definite) Hermitian metric hijdz̄idzj that is compatible
with the complex structure [30]. Then an analogue of Equations (3) and (11) gives us the average value
〈f〉 of a function f on M:

〈f〉 = Z−1
∫
M

f exp
(
−hij z̄izj

)√
h

n∏
k=1

dz̄k ∧ dzk (18)

The normalization Z includes all factors of i =
√
−1 coming from the volume element, and h :=

| dethij|. As had to be the case, this average involves the data concerning the complex structure on M.
Formally, a complex structure J over a real 2n-dimensional manifold M is an endomorphism of the

tangent fibre over each point x ∈M

Jx : TxM −→ TxM (19)

satisfying
J2
x = −1, ∀x ∈M (20)

as well as the integrability condition that the Nijenhuis tensor N vanish identically. (We will
not write down the Nijenhuis tensor explicitly; see reference [30] for details). Roughly speaking,
Equation (20) expresses the existence of the imaginary unit i =

√
−1 locally around the point x ∈ M.

The integrability condition N = 0 ensures that the complex coordinates thus constructed locally truly
transform holomorphically across different coordinate patches on the manifold M. (The Kähler property
assumed in Equation (14) above is an additional hypothesis, that an arbitrary complex manifold may, but
need not, satisfy in general).
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2.4. Generalized Complex Geometry

Our original motivation was the statement [21–23] that, in the presence of a gravitational field,
quantum fluctuations become indistinguishable from thermal fluctuations. We have argued that thermal
fluctuations are associated with symplectic structures, while quantum fluctuations come along with
complex structures. How, then, is one to treat thermal and quantum fluctuations on the same footing?
This is trivially achieved by those phase spaces M that qualify as Kähler manifolds. However, the Kähler
condition is very restrictive: not only does M have to be simultaneously complex and symplectic; these
two independent structures also have to be compatible.

In references. [3,4] the geometry of the thermodynamic phase space (including fluctuations) results in
a para-Sasakian manifold, which is the contact-geometry equivalent of a Kähler manifold in symplectic
geometry. This means that if one restricts to a proper even-dimensional subspace, the geometry is indeed
that of a Kähler manifold. This geometry achieves the goal of treating thermal and quantum fluctuations
on the same footing.

Generalized complex structures (GCS) also achieve the goal of providing a unified framework for
thermal and quantum fluctuations. The following is a brief summary of GCS extracted from [14], duly
tailored to meet our needs. For simplicity we prefer to work locally around a point x ∈ M. Global
issues can be taken care of by the corresponding integrability conditions, to be mentioned along the way
whenever necessary. For our purposes the 2n-dimensional manifold M is assumed to be a phase space,
that is, M = T ∗S, for a certain n-dimensional configuration space S.

Rather than considering the fibres TxM or T ∗xM separately, in generalized complex geometry one
considers their direct sum: over each point x ∈M one erects the fibre TxM⊕ T ∗xM. The total space of
the bundle so constructed is 6n-dimensional: 2n dimensions for the base M, 4n dimensions for the fibre.

An inner product is defined on the fibre TxM⊕ T ∗xM:

〈X + ξ, Y + η〉 :=
1

2
(ξ(Y ) + η(X)) (21)

Above,X, Y ∈ TxM are tangent vectors, while ξ, η ∈ T ∗xM are 1-forms, all evaluated at x ∈M. It turns
out that this inner product is pseudo-Riemann with signature (2n, 2n). Hence the Lie group SO(2n, 2n)

acts on TxM ⊕ T ∗xM by isometries. It is convenient to block-decompose the Lie algebra so(2n, 2n) as
follows: (

A β

B −A∗

)
(22)

The diagonal blocks A and A∗ are endomorphisms of their respective (sub)fibers, A ∈ End(TxM) and
A∗ ∈ End(T ∗xM), while the offdiagonal blocks B and β connect these two (sub)fibers as per

B : TxM −→ T ∗xM, β : T ∗xM −→ TxM (23)

Moreover, upon taking the dual we have B∗ = −B, β∗ = −β. This antisymmetry allows us to regard
the block B as a 2-form in Λ2T ∗xM if we set

B(X) = iXB (24)

For illustrative purposes let us express Equation (24) in local coordinates xi around a point x ∈ M, so
B becomes the matrix Bij . Given the vector X = Xj∂j ∈ TxM, the object iXB is defined to be the
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covector whose components are BijX
j ∈ T ∗xM. We see that this is exactly the way a symplectic form ω

behaves. Since ω can be regarded as an element of Λ2T ∗xM, so can B. (Contrary to ω, however, B need
neither be closed nor non-degenerate).

The particular isometries of the fibre TxM ⊕ T ∗xM obtained by setting A = 0 = β in Equation (22)
and exponentiating,

exp

(
0 0

B 0

)
=

(
1 0

B 1

)
(25)

are the pseudo-orthogonal transformations

X + ξ −→ X + ξ + iXB (26)

The isometries (26), called B-transformations, will play an important role.
A generalized complex structure over M, denoted J , is an endomorphism of the fibre over each

x ∈M,
Jx : TxM⊕ T ∗xM −→ TxM⊕ T ∗xM (27)

such that the following two conditions hold. First,

J 2
x = −1, ∀x ∈M (28)

Second,
J ∗x = −Jx, ∀x ∈M (29)

The above two conditions are formulated locally around any x ∈ M; as usual they need not be
compatible with changes of coordinate charts on M. The Courant integrability condition, whose validity
we will henceforth assume without stating its contents explicitly, ensures this compatibility; see [14,15]
for details.

Comparing now Equations (29) and (13), we are led to the particular case when J at x ∈ M is
given by

Jωx =

(
0 −ω−1x

ωx 0

)
(30)

where ω is a symplectic form. One says that this Jω defines a GCS of symplectic type.
Similarly, the comparison of Equations (28) and (20) suggests the particular case of a GCS given by

JJx =

(
−Jx 0

0 J∗x

)
(31)

where J is a complex structure. We say that the above JJ defines a GCS of complex type.
Furthermore, GCS succeed at interpolating between the above opposite types, the symplectic type and

the complex type; let us explain this more carefully. A point x ∈M is said to be regular if it possesses
a neighborhoodNx on which there exists a Poisson structure ω−1 with constant rank. In a neighborhood
Nx of any regular point x ∈M one can define a diffeomorphism and a B-transformation, the combined
action of which maps Nx into the product Cx ×Rx ⊂ Ck ×R2n−2k. Here Cx is an open set within the
standard complex manifold Ck, and Rx is an open set within the standard symplectic manifold R2n−2k.
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The nonnegative integer k is called the type of the GCS J , the limiting cases of Equations (30) and (31)
respectively corresponding to k = 0 and k = n. As described in [14,15], the type k need not be constant
across M: it may vary from one point to another in M.

In plain words, any generalized complex manifold factorizes locally as the product of a complex
manifold times a symplectic manifold.

Finally assume that M is a linear space. Then any generalized complex structure of type k = 0 is the
B-transform of a symplectic structure. This means that any generalized complex structure of type k = 0

can be written as

e−BJωeB =

(
−ω−1B −ω−1

ω +Bω−1B Bω−1

)
(32)

for a certain 2-formB; use has been made of Equations (25) and (30). Similarly any generalized complex
structure of type k = n over a linear manifold M is the B-transform of a complex structure,

e−BJJeB =

(
−J 0

BJ + J∗B J∗

)
(33)

after using Equations (25) and (31). When M is an arbitrary smooth manifold, not necessarily a linear
space, statements (32) and (33) remain basically true, with some minor modifications required; see
references [14,15] for details.

The consequences of the above become immediately apparent. Let us for simplicity assume that the
type k is constant across M. Then any GCS with an extremal value of k, i.e., either k = 0 or k = n, can
always be reduced to the corresponding canonical form (30) or (31) by means of a B-transformation.
Thus k = 0 corresponds to a thermal description of phenomena, while k = n corresponds to a quantum
description of phenomena, no interpolation existing between the two descriptions. Nonextremal values
of the type, i.e., such that 0 6= k 6= n, contain both thermal and quantum descriptions simultaneously.

Average values 〈f〉 of functions f on generalized complex manifolds are defined by an obvious
modification of the product of the right-hand sides of Equations (11) and (18).

3. When “Quantum” Becomes “Thermal”

Any gravitational field is locally equivalent to an accelerated frame. In an accelerated frame, quantum
becomes thermal; this is basically the content of the Unruh effect [31] (in an admittedly lax formulation
that is however precise enough for our purposes). Without using the full apparatus of relativistic
quantum field theory, let us see how quantum can become thermal in the simplified setup of the quantum
mechanics of a nonrelativistic particle. This understood, we will analyse the role played by the GCS on
phase space under the passage from an inertial frame to an accelerated frame. We will conclude that the
transformation law for the Schroedinger wavefunction under the passage to a noninertial frame (as in the
Unruh effect) is governed by a B-transformation of the GCS on phase space.

A remark is in order. The gravitational field considered here must be weak in order to rule out effects
such as, e.g., relativistic speeds, or the likely breakdown of standard quantum mechanics in the presence
of very strong gravitational fields [20]. Such phenomena lie beyond our scope.
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3.1. Inclusion of a Gravitational Field

In flat Euclidean space R3, let K denote an inertial frame with origin O and axes Ox, Oy and Oz.
Let K ′ denote a uniformly accelerated frame, with origin O′ and axes O′x′, O′y′ and O′z′ respectively
parallel to Ox, Oy and Oz. For simplicity we will assume that, at t = 0, the two origins O and O′

coincide, their relative velocity also vanishing at t = 0. Let the acceleration ~α of K ′ with respect to
K be (α, 0, 0), with α a constant. Coordinates (x, y, z) with respect to K are related to coordinates
(x′, y′, z′) with respect to K ′ as per

x = x′ +
1

2
αt2, y = y′, z = z′, t = t′ (34)

We consider a point particle of massm fixed to the originO′, thus at rest with respect toK ′. IfH denotes
the Hamiltonian of the particle as seen from the inertial frame K, then the Hamiltonian H ′ in K ′ reads

H ′ = H − pxαt+
m

2
α2t2 (35)

with the momenta px and p′x related as per p′x = px−mαt. In the inertial frameK we have a Schroedinger
equation ih̄∂ψ/∂t = Hψ. Our aim is to derive a transformation law for the wavefunction ψ such that, in
the accelerated frame K ′, the Schroedinger equation will read ih̄∂ψ′/∂t = H ′ψ′. For this purpose let us
make the Ansatz

ψ′ = ψ exp [f(t)] (36)

f(t) being an undetermined function of the time variable. In this way we arrive at the following
differential equation for the unknown function f :

ih̄
df

dt
= −pxαt+

1

2
mα2t2 (37)

Dropping an irrelevant integration constant and substituting the result into Equation (36) leads to

ψ′ = exp

[
− i

h̄

(
1

6
mα2t3 − 1

2
pxαt

2

)]
ψ (38)

Clasically, the particle is at rest in the frame K ′, so p′x = 0 implies px = mαt. Quantum-mechanically
we can only state that the centre of mass remains at rest at x′ = 0, the wavepacket spreading around
this average position. With this understanding we can also set 〈px〉 = px = mαt in Equation (38). We
conclude that, taking the wavefunction in the accelerated frame to be

ψ′ = exp

(
i

h̄

1

3
mα2t3

)
ψ (39)

ensures the form invariance of the Schroedinger equation under the transformation from an inertial
frame to an accelerated frame. For time lapses that are short enough, and/or for accelerations that are
weak enough, the speeds attained will never become relativistic. Within this limited range, Newtonian
mechanics (and its quantum counterpart, the Schroedinger equation) can be trusted.



Entropy 2015, 17 5897

3.2. The Unruh Effect

The next step is to invoke de Broglie [32] in order to write an inverse proportionality between time t
and temperature T :

− i

t
=
kB
h̄
T (40)

Thus substituting Equation (40) into Equation (39) we find

ψ′ = exp

(
−1

3

mα2h̄2

k3BT
3

)
ψ. (41)

Moreover, from the above we can read off what power law must relate the acceleration to the temperature
of the accelerated frame: αmust be proportional to T , while dimensional analysis provides the necessary
conversion factors. Specifically,

α = 2π
ckB
h̄
T (42)

The dimensionless normalization factor 2π, that cannot be derived using our simplified treatment, comes
from a full quantum-field-theoretical analysis [31]. Finally substituting Equation (42) into Equation (41)
we arrive at

ψ′ = exp

(
−4π2

3

mc2

kBT

)
ψ (43)

Equations (43) and (39) are equivalent, the equivalence between the two being guaranteed by the de
Broglie relation Equation (40) and the Unruh relation Equation (42).

The Boltzmann-like factor present in Equation (43) bears out the fact that the effect of the gravitational
field on the Schroedinger wavefunction is of thermal nature. Due to the assumptions made in our
derivation, Equation (43) is valid only for intermediate temperatures. The limit T → ∞ is excluded
(because this would require strong gravitational fields); so is the limit T → 0 (because of the inverse
proportionality Equation (40) between time and temperature).

3.3. Transformation to an Accelerated Frame as a B-Transformation

Classical phase space is spanned by the coordinates x, y, z and their conjugate momenta px, py, pz.
For the rest of the discussion, the dimensions y, py, z, pz can be ignored, as they are unaffected by the
change of frame Equation (34). Thus, for our purposes, the manifold M of Section 2.4 can be taken to
be that subspace of classical phase space spanned by x and px, i.e., R2.

Now the manifold R2 can be endowed with a GCS. This can be done in two equivalent ways. One
can consider the GCS of complex type defined on R2 = C by the complex coordinates Equation (14).
Alternatively, one can consider the GCS of symplectic type defined on R2 by the standard symplectic
form ω = dx∧dpx/h̄. Since our interest lies in considering the effect ofB-transformations, and R2 = C

is a Kähler manifold, the type of the CGS considered is immaterial.
We claim that the transformation law for the Schroedinger wavefunction under the passage to an

accelerated frame, Equation (39), follows from a B-transformation of the GCS on phase space R2,
Equation (26). In other words, the Schroedinger wavefunction keeps track of which frame is being used,
the bookkeeping device being the GCS on phase space. Verifying that such is indeed the case requires,
so to speak, translating the geometer’s language into the physicist’s language. This we do next.
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Tangent vectors X at the point (x, px) ∈ R2 are objects

X = a∂x + b∂px ∈ T(x,px)R2, a, b ∈ R (44)

Similarly, tangent covectors ξ at the point (x, px) ∈ R2 are objects

ξ = cdx+ ddpx ∈ T ∗(x,px)R
2, c, d ∈ R (45)

As the basepoint (x, px) ∈ R2 is moved around, we obtain a vector field X and a field of differentia
l-forms ξ on R2. This amounts to promoting the numbers a, b, c, d to real-valued functions a(x, px),
b(x, px), c(x, px), d(x, px) on R2. Finally, an object such as X+ ξ in Equation (26) is the direct sum of a
vector field and a field of differential 1-forms on R2—a section of the direct sum bundle TR2 ⊕ T ∗R2.

Next we reexpress the B-transformation (26) as the variation

δ(X + ξ) = δX + δξ = δξ = iXB (46)

Above we have used the fact that, under a B-transformation, X remains unchanged. The B-field is a
2-form on R2,

B = B(x, px)dx ∧ dpx (47)

with a certain coefficient function B(x, px). Now

δξ = iXB = a(x, px)B(x, px)dpx + b(x, px)B(x, px)dx (48)

The above is a 1-form field, so it can be added to X + ξ as required by Equation (26). Let us now make
the following specific choice for the vector field X:

a(x, px) = x, b(x, px) = px (49)

In the physicist’s language, this X is just the position vector on phase space R2. Substituted into
Equation (48), this choice for X yields

δξ = iXB = xB(x, px)dpx + pxB(x, px)dx (50)

Along the motion of the particle located at O′ we can write, using Equation (34),

dpx = mαdt, dx = αtdt (51)

Substitution of Equations (34) and (51) into (50) leads to

δξ = iXB =
3

2
B(x(t), px(t))mα2t2dt (52)

The above is a 1-form, that can be integrated along the trajectory followed by the particle between τ = 0

and τ = t. We denote by ∆ξ(t) the number so obtained:

∆ξ(t) :=

∫ t

0

δξ =
3

2
mα2

∫ t

0

B(x(τ), px(τ))τ 2dτ (53)
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When B is a constant, the integral can be evaluated explicitly:

∆ξ(t) =
1

2
Bmα2t3 (54)

That the function B(x(t), px(t)) is actually constant on R2 implies that the 2-form B in Equation (47)
becomes a mere scalar multiple of the canonical symplectic form on phase space. Specifically, picking
B = 2/3 we find in Equation (54)

∆ξ(t) =
1

3
mα2t3 (55)

The right-hand side of the above equals (−ih̄ times) the argument of the exponential in the Unruh
transformation law Equation (39). Therefore the latter can be reexpressed as

ψ′ = exp

(
i

h̄
∆ξ(t)

)
ψ (56)

Summarising, we may say that the Unruh effect acts on the wavefunction by multiplication with the
exponential of (i/h̄ times) the integral of a B-field along the particle’s trajectory on phase space. The
vector field X involved in this B-transformation is just the position vector on phase space, while the
B-field considered is a mere scalar multiple of the canonical symplectic form on phase space.

3.4. A Nonuniform Gravitational Field

The relation just derived between the Unruh effect and the B-transformation of the GCS on phase
space was based on the assumption that the gravitational field was static and spatially constant. In turn,
this assumption made it possible to choose a constantB-field on phase space (actually a scalar multiple of
the symplectic form). A nonstatic and/or nonuniform gravitational field can be mimicked by a nonstatic
and/or nonuniform acceleration vector ~α. This lends plausibility to the following hypothesis:

Hypothesis 1. Regard classical phase space as a generalized complex manifold. In the presence of a
nonstatic and/or nonuniform, but nevertheless weak, gravitational field, the inertial-frame Schroedinger
wavefunction ψ remains form-invariant under a transformation to a locally accelerated frame, where its
value is ψ′, provided that ψ and ψ′ are related according to the law

ψ′ = exp

(
i

h̄
∆ξ(t)

)
ψ (57)

Above,

∆ξ(t) :=

∫ t

0

iXB(x(τ), px(τ))dτ (58)

is a line integral along the particle’s trajectory in phase space, while X is the position vector of
the particle along the said trajectory. Moreover, whenever the generalised complex structure on
classical phase phase is of symplectic type, the 2-form B is an appropriate scalar multiple of the
symplectic form ω.

We defer analysis of the above hypothesis for further study.
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4. Conclusions

We have presented a brief review of some recent developments in differential geometry with
applications to thermodynamical fluctuation theory. Standard wisdom draws a clear frontier between
thermal fluctuations and quantum fluctuations. While this separation is perfectly consistent in the
absence of gravitational fields, this border becomes fuzzy in the presence of gravity [20–23]. A
well-known example of this mixing is the Unruh effect [31,33,34]. Another instance of a gravitational
incursion into the thermal realm is the Ehrenfest-Tolman effect [35]. One can expect an eventual theory
of quantum gravity to enhance, rather than diminish, this mixing of thermal and quantum phenomena.

In this article we have examined the thermalising effect of weak, classical gravitational fields on
the Schroedinger wavefunction from the point of view of generalised complex geometry on classical
phase space. Using the transformation law for the Schroedinger wavefunction under the passage to an
accelerated frame, we have derived the nonrelativistic Unruh effect. As expected, the latter establishes
a linear dependence law between the acceleration of the noninertial frame and the temperature thereby
generated. Within the scope of the techniques presented here lie other interesting physical systems, to
be treated in an upcoming publication. Such are quantum-classical hybrids [36,37] and the thermalising
properties of nonuniform (but still weak and classical) gravitational fields.

Altogether, we conclude that generalised complex geometry provides a powerful tool to analyse
fluctuation theory and thermal phenomena in the presence of gravity.
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