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Abstract: In this paper, we investigate the basic properties of binary classification with a

pseudo model based on the Itakura–Saito distance and reveal that the Itakura–Saito distance

is a unique appropriate measure for estimation with the pseudo model in the framework of

general Bregman divergence. Furthermore, we propose a novel multi-task learning algorithm

based on the pseudo model in the framework of the ensemble learning method. We focus

on a specific setting of the multi-task learning for binary classification problems. The set

of features is assumed to be common among all tasks, which are our targets of performance

improvement. We consider a situation where the shared structures among the dataset are

represented by divergence between underlying distributions associated with multiple tasks.

We discuss statistical properties of the proposed method and investigate the validity of the

proposed method with numerical experiments.

Keywords: multi-task learning; Itakura–Saito distance; pseudo model; un-normalized

model
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1. Introduction

In the framework of multi-task learning problems, we assume that there are multiple related tasks

(datasets) sharing a common structure and can utilize the shared structure to improve the generalization

performance of classifiers for multiple tasks [1,2]. This framework has been successfully employed

in various kind of applications, such as medical diagnosis. Most methods utilize the similarity among

tasks to improve the performance of classifiers by representing the shared structure as a regularization

term [3,4]. We tackle this problem using a boosting method, which makes it possible to adaptively learn

complicated problems with low computational cost. The boosting methods are notable implementations

of the ensemble learning and try to construct a better classifier by combining weak classifiers. AdaBoost

is the most popular boosting method, and many variations, including TrAdaBoost for the multi-task

learning [5], have been developed. In face recognition [6], as well as web search ranking [7], the

computational efficiency of boosting is paid attention to in the framework of multi-task learning.

In this paper, we firstly reveal that AdaBoost can be derived by a sequential minimization of the

Itakura–Saito (IS) distance between an empirical distribution and a pseudo measure model associated

with a classifier. The IS distance is a special case of the Bregman divergence [8] between two positive

measures and is frequently used for non-negative matrix factorization (NMF) in the region of signal

processing [9,10]. Secondly, we propose a novel boosting algorithm for the multi-task learning based on

the IS distance. We utilize the IS distance as a discrepancy measure between pseudo models associated

with tasks and incorporate the IS distance as a regularizer into AdaBoost. The proposed method can

capture the shared structure, i.e., the relationship between underlying distributions by considering the

IS distance between pseudo models constructed by classifiers. We discuss the statistical properties of

the proposed method and investigate the validity of the regularization by the IS distance with small

experiments using synthetic datasets and a real dataset.

This paper is organized as follows. In Section 2, basic settings are described, and a divergence

measure is introduced. In Section 3, we briefly introduce the IS distance, which is a special case of

the Bregman divergence, and investigate the relationship between a well-known ensemble algorithm,

AdaBoost and estimation with a pseudo model using the Itakura–Saito distance. In Section 4, we

propose a method for multi-task learning, which is derived from a minimization of the weighted sum

of divergence, and the performance of the proposed methods is examined in Section 5 using a synthetic

dataset and a real dataset (a short version of this article has been presented as a conference paper [11];

some theoretical results and numerical experiments are added to the current version).

2. Settings

In this study, we focus on binary classification problems. Let x be an input and y ∈ Y = {±1}
be a class label. Let us assume that J datasets Dj = {x(j)

i , y
(j)
i }nj

i=1 (j = 1, . . . , J) are given, and let

pj(y|x)rj(x) and p̃j(y|x)r̃j(x) be an underlying distribution and an empirical distribution associated

with the dataset Dj , respectively. Here, we assume that each conditional distribution of y given x is

written as:

pk(y|x) = p0(y|x) + δk(x)y (1)
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where p0(y|x) is a common conditional distribution for all datasets and δk(x) is a term that is specific

to the dataset Dk. Note that
∑

y∈Y δk(x)y = 0 holds, because pk(y|x) is a probability distribution.

While a discriminant function Fk is usually constructed using only the dataset Dk, the multi-task learning

aims to improve the performance of the discriminant function for each dataset Dk with the help of

datasets Dj (j 6= k). For this purpose, we consider a risk minimization problem defined with a pseudo

model and the Itakura–Saito (IS) distance, which is a discrepancy measure frequently used in a region

of signal processing.

Let M =

{

m(y)

∣

∣

∣

∣

0 ≤ ∑

y∈Y m(y) < ∞
}

be a space of all positive finite measures over Y . The

Itakura–Saito distance between p, q ∈ M is defined as:

IS(p, q; r) =

∫

r(x)
∑

y∈Y

{

log
q(y|x)
p(y|x) − 1 +

p(y|x)
q(y|x)

}

dx (2)

where r(x) is a marginal distribution of x shared by p, q ∈ M. Note that the IS distance is a kind

of statistical version of the Bregman divergence [12], which makes it possible to directly plug-in the

empirical distribution. We observe that IS(p, q; r) ≥ 0 and IS(p, q; r) = 0 if and only if p = q.

Banerjee et al. [13] showed that there exists a unique Bregman divergence corresponding to every regular

exponential family, and the Itakura–Saito distance is associated with the exponential distribution.

3. Itakura–Saito Distance and Pseudo Model

3.1. Parameter Estimation with the Pseudo Model

Let qF (y|x) be an (un-normalized) pseudo model associated with a function F (x),

qF (y|x) = exp(F (x)y). (3)

Note that qF (y|x) is not a probability function, i.e.,
∑

y∈Y qF (y|x) 6= 1 in general. If qF (y|x) is

normalized, the model reduces to the classical logistic model as:

q̄F (y|x) =
exp(F (x)y)

exp(F (x)) + exp(−F (x))
. (4)

When the function F is parameterized by θ, the maximum likelihood estimation (MLE)

argmaxθ
∑n

i=1 log q̄F (yi|xi) or equivalently minimization of the (extended) Kullback–Leibler (KL)

divergence is a powerful tool for the estimation of θ, and the MLE has properties such as asymptotic

consistency and efficiency under some regularity conditions. Here, we consider parameter estimation

with the pseudo model Equation (3) rather than the normalized model Equation (4).

Proposition 1. Let p(y|x) = q̄F0(y|x) be the underlying distribution. Then, we observe:

argmin
F

IS(p, qF ; r) = F0, (5)

argmin
F

IS(qF , p; r) = F0. (6)

Proof. See Appendix A
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On the other hand, when we consider an estimation based on the extended KL divergence, i.e.,

argminF KL(p, qF ; r) where:

KL(p, q; r) =

∫

r(x)
∑

y∈Y

{p(y|x) log p(y|x)
q(y|x) − p(y|x) + q(y|x)}dx, (7)

we observe the following.

Proposition 2. Let F0 be a function F0(6= 0) and p(y|x) = q̄F0(y|x) be the underlying distribution.

Then, we observe:

FKL,1 = argmin
F

KL(p, qF ; r) 6=F0, (8)

FKL,2 = argmin
F

KL(qF , p; r) 6=F0. (9)

Proof. See Appendix B.

Remark 1. Let p(y|x) = q̄F0(y|x) be the underlying distribution. Then, minimizer Equation (8) or (9)

of the extended KL divergence attains the Bayes rule, i.e.,

sgn(FKL,1(x)) = sgn(FKL,2(x)) = sgn

(

1

2
log

p(+1|x)
p(−1|x)

)

. (10)

The proposition and the remark show that the extended KL divergence is not completely appropriate

for estimation with the pseudo model.

3.2. Characterization of the Itakura–Saito Distance

In this section, we investigate the characterization of the Itakura–Saito distance for estimation with

the pseudo model, in the framework of the Bregman U-divergence. Firstly, we briefly introduce the

statistical version of Bregman U-divergence [12]. The statistical version of Bregman U-divergence is a

discrepancy measure between positive measures in M defined by a generating function U and enables

us to directly plug-in the empirical distribution for estimation. [12] proposed a general boosting-type

algorithm for classification using the Bregman U-divergence and discussed properties of the method

from the viewpoint of information geometry [14]. By changing the generating function U , the Bregman

U-divergence can have a useful property as robustness against noise. For example, the β-divergence is

a special case of the Bregman U-divergence and is frequently used for robust estimation in the context

of unsupervised learning, such as clustering or component analysis [15,16]. Another example of the

Bregman U-divergence is the η-divergence, which is employed to robustify the classification algorithm

and is closely related to probability models of mislabeling [17,18].

Let U be a monotonically-increasing convex function and ξ be an inverse function of U ′, the derivative

of U . From the convexity of the function U , the function ξ is a monotonically-increasing function.

The statistical version of Bregman U-divergence between two measures p, q ∈ M is defined as follows.

DU(p, q; r) =

∫

r(x)
∑

y∈Y

{U(ξ(q(y|x)))− U(ξ(p(y|x)))− p(y|x) (ξ(q(y|x))− ξ(p(y|x)))} dx.

(11)

Note that the function ξ should be defined at least on z > 0.
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Remark 2. The KL divergence and the Itakura–Saito distance are special cases of the Bregman

U-divergence Equation (11) with generating functions U(z) = exp(z) and U(z) = − log(c − z) + c1

(z < c), where c and c1 are constants, respectively.

Here, we introduce the concept of reflection-symmetric for characterization of the IS distance.

Definition 3. A function f(z) is reflection-symmetric if:

f(z) = f
(

z−1
)

(12)

holds for all z 6= 0.

If the function f is reflection-symmetric, we observe that:

lim
z→0

f(z) = lim
z→∞

f(z). (13)

Because of this property, the reflection-symmetric function often has a singular point at z = 0, and to

investigate the behavior of the function, we can employ the Laurent series as:

f(z) = c+

∞
∑

k=1

(

akz
k + bkz

−k
)

. (14)

Note that if the function f is holomorphic over R, bk = 0 for all k, and the Laurent series is equivalent

to the Taylor series.

Remark 3. If the function f is reflection-symmetric and holomorphic over R, ak = bk = 0 holds for all

k, and then, f is a constant function.

For the Bregman U-divergence Equation (11), we observe the following Lemma.

Lemma 4. Let F0 be an arbitrary function, p(y|x) = q̄F0(y|x) be the underlying distribution and qF (x)

be the pseudo model Equation (3). If the Bregman U-divergence associated with the function U attains:

F0 = argmin
F

DU(p, qF ; r), (15)

a function ξ′(z)z2 derived from U is reflection-symmetric. In addition, if the Bregman U-divergence

associated with the function U attains:

F0 = argmin
F

DU(qF , p; r), (16)

a function z
{

ξ(z)− ξ
(

z
z+z−1

)}

derived from U is reflection-symmetric.

Proof. See Appendix C.

Remark 4. Proposition 1 implies that the function ξ associated with the IS distance satisfies Lemma 4.
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Remark 5. Propositions imply that the function U , i.e., Bregman U-divergence, attains Equation (15)

or (16) is not unique and there exists divergences satisfying Equation (15) or (16), other than the

Itakura–Saito distance. For example, a function:

ξ(z) = −2z−
2
3 − z−

4
3 (17)

satisfies ξ′(z)z2 = 4
3
(z1/3+ z−1/3), and then, ξ′(z)z2 is reflection-symmetric. The associated generating

function U is written as:

U(z) =

∫ z

ξ−1(z′)dz′ = −4
−2 +

√
1− z

√

−1 +
√
1− z

+ C1 (18)

where C1 is a constant.

In the following theorem, we reveal the characterization of the Itakura–Saito distance for estimation

with the pseudo model Equation (3) and the Bregman U-divergence.

Theorem 5. Let p(y|x) = q̄F0(y|x) be the underlying distribution and qF (x) be the pseudo model

Equation (3). If conditions:

F0 = argmin
F

DU(p, qF ; r), (19)

F0 = argmin
F

DU(qF , p; r) (20)

simultaneously hold, then U(z) = − log(−z), i.e., DU(p, q; r) is the Itakura–Saito distance IS(p, q; r).

Proof. See Appendix D.

Remark 6. If we assume that a function ξ′(z)z2 derived from U is reflection-symmetric and holomorphic

over R, ξ′(z)z2 is a constant function from Remark 3. Then, we obtain ξ(z) = c + b1
z

where c, b1 are

constants, implying that the associated divergence is equivalent to the Itakura–Saito distance.

3.3. Relationship with AdaBoost

The IS distance between the underlying conditional distribution p(y|x) and the pseudo model qF (y|x)
is written as:

IS(p, qF ; r) = C +

∫

r(x)
∑

y∈Y

{

F (x)y +
p(y|x)
qF (y|x)

}

dx

= C +

∫

r(x)
∑

y∈Y

p(y|x)e−F (x)ydx, (21)

where C is a constant, and Equation (21) is equivalent to an expected loss of AdaBoost, except

for the constant term. Then, sequential minimization of an empirical version of Equation (21) is

equivalent to the algorithm of AdaBoost, which is the most popular boosting method for the binary

classification. Furthermore, [12,19] discussed that a gradient-based boosting algorithm can be derived

from the minimization of the KL divergence or the Bregman U-divergence between the underlying
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distribution and a pseudo model. An important difference between these frameworks and our framework

Equation (21) is the employed pseudo model. The pseudo model employed by the previous frameworks

assumes a condition called “consistent data assumption” and is defined with the empirical distribution,

implying that the pseudo model varies depending on the dataset. On the other hand, the pseudo model

Equation (3) employed in Equation (21) is fixed against the dataset as usual statistical models.

The IS distance between two pseudo models qF (y|x) and qF ′(y|x) is written as,

IS(qF , qF ′; r) =

∫

r(x)
∑

y∈Y

{F ′(x)y − F (x)y − 1 + exp(F (x)y − F ′(x)y)} dx

= 2 +

∫

r(x) {exp(F (x)− F ′(x)) + exp(F ′(x)− F (x))} dx. (22)

Note that IS(qF ′, qF ; r) = IS(qF , qF ′; r) holds for arbitrary qF and qF ′ , while the IS distance itself is

not necessarily symmetric. Furthermore, note that the symmetric property does not hold for normalized

models q̄F and q̄F ′ .

4. Application for Multi-Task Learning

There are two main types of frameworks for multi-task learning [20,21].

Case 1 : There is a target dataset Dk, and our interest is to construct a discriminant function Fk utilizing

remaining datasets Dj (j 6= k) or a priori constructed discriminant functions Fj (j 6= k).

Case 2 : Our interest is to simultaneously construct better discriminant functions F1, . . . , FJ using all J

datasets D1, . . . ,DJ by utilizing shared information among datasets.

4.1. Case 1

In this section, we focus on the above first framework. Let us assume that discriminant functions

Fj(x) (j 6= k) are given or are constructed by an arbitrary binary classification method. Then, let us

consider a risk function:

Lk(Fk) = IS(pk, qFk
; rk) +

∑

j 6=k

λk,j IS(qFk
, qFj

; rk)

=

∫

rk(x)

{

∑

y∈Y

pk(y|x)e−Fk(x)y +
∑

j 6=k

λk,j

{

eFk(x)−Fj(x) + eFj(x)−Fk(x)
}

}

dx, (23)

where λk,j ≥ 0 (j 6= k) are regularization constants. Note that the risk function depends on functions

Fj (j 6= k), and the second term becomes small when the target discriminant function Fk is similar to

functions Fj(j 6= k) in the sense of the IS distance; and the second term corresponds to a regularizer

incorporating the shared information among datasets into the target function Fk. Furthermore, note that

the marginal distribution rk is shared in the second term for the ease of implementation and the simplicity

of theoretical analysis.

An empirical version of Equation (23) is written as:

L̄k(Fk) =
1

nk

nk
∑

i=1

(

e−Fk(x
(k)
i

)y
(k)
i +

∑

j 6=k

λk,j

(

eFk(x
(k)
i

)−Fj(x
(k)
i

) + eFj(x
(k)
i

)−Fk(x
(k)
i

)
)

)

. (24)
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An algorithm is derived by sequential minimization of Equation (24) by updating Fk to Fk +αf , i.e.,

(α, f) = argminα,f L̄k(Fk + αf), where f is a weak classifier and α is a coefficient [22].

(1) Initialize the function to F 0
k , and define weights for the i-th example with a function F as:

w1(i;F ) =
e−F (x

(k)
i )y

(k)
i

Z1(F )
,

w2(i;F ) =

∑

j 6=k λk,je
f(x

(k)
i )(F (x

(k)
i )−Fj(x

(k)
i ))

Z2(F )

where:

Z1(F ) =

nk
∑

i=1

e−F (x
(k)
i

)y
(k)
i ,

Z2(F ) =

nk
∑

i=1

∑

j 6=k

λk,j

(

eF (x
(k)
i )−Fj(x

(k)
i ) + e−F (x

(k)
i )+Fj(x

(k)
i )
)

.

(2) For t = 1, . . . , T

(a) Select a weak classifier f t
k ∈ {±1}, which minimizes the following quantity:

ε(f) =
Z1(F

t−1
k )

Z1(F
t−1
k ) + Z2(F

t−1
k )

ε1(f) +
Z2(F

t−1
k )

Z1(F
t−1
k ) + Z2(F

t−1
k )

ε2(f). (25)

where ε1(f) =
∑nk

i=1w1(i;F
t−1
k ) I(f(x

(k)
i ) 6= y

(k)
i ) and ε2(f) =

∑n
i=1w2(i;F

t−1
k ).

(b) Calculate a coefficient of f t
k by αt

k =
1
2
log

1−ε(f t
k
)

ε(f t
k
)

.

(c) Update the discriminant function as F t
k = F t−1

k + αt
kf

t
k.

(3) Output F T
k (x) = F 0

k (x) +
∑T

t=1 α
t
kf

t
k(x).

In Step 1, F 0
k is typically initialized as F 0

k (x) = 0. The quantity Equation (25) is a mixture of two

terms: ε1(f) is a weighted error rate of the classifier f , and ε2(f) is the sum of weights w2(f), which

represents the degree of discrepancy between f and F − Fj . ε2(f) becomes large when F is updated by

f as departed from Fj . Note that if we set λk,j = 0 for all j, the risk function Equation (24) coincides

with that of AdaBoost, and the above derived algorithm reduces to the usual AdaBoost.

Because the empirical risk function Equation (24) is convex with respect to F or F ′, we can consider

another version of the risk function as:

L̄k(Fk) =
1

nk

nk
∑

i=1

(

e−Fk(x
(k)
i )y

(k)
i + λk

(

eFk(x
(k)
i )−F̄k(x

(k)
i ) + e−Fk(x

(k)
i )+F̄k(x

(k)
i )
))

(26)

where F̄k(x) =
∑

j 6=k
λk,j

λk
Fj(x). The risk function is upper bounded by the risk function Equation (24),

implying that the effect of regularization by the shared information is weakened. The derived algorithm

is almost the same as the one derived from Equation (24).
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4.2. Case 2

In this section, we consider simultaneous construction of discriminant functions F1, . . . , FJ by

minimizing the following risk function:

L(F1, . . . , FJ) =
J
∑

j=1

πjLj(Fj) (27)

where πj(j = 1, . . . , J) is a positive constant satisfying
∑J

j=1 πj = 1 and Lk is defined in Equation (23).

Though we can directly minimize the empirical version of Equation (27), a derived algorithm is

complicated and is computationally heavy. Then, we derive a simplified algorithm utilizing the algorithm

shown in Case 1 in which a target dataset is fixed.

(1) Initialize functions F1, . . . , FJ .

(2) For t = 1, . . . , T :

(a) Randomly choose a target index k ∈ {1, . . . , J}.

(b) Update the function Fk using the algorithm in Case 1 by S steps, with fixed functions Fj

(j 6= k).

(3) Output learned functions F1, . . . , FJ .

Note that the empirical risk function cannot be monotonically decreased because the minimization of

Lk(Fk) is a trade-off of the first term and the second regularization term, and a decrease of Lk(Fk) does

not necessarily mean a decrease of the regularization term.

4.3. Statistical Properties of the Proposed Methods

In this section, we discuss the statistical properties of the proposed methods. Firstly, we focus on

Case 1, and the minimizer F ∗
k of the risk function Equation (23) satisfies the following:

δLk(Fk)

δFk(x)

∣

∣

∣

∣

Fk=F ∗

k

∝ −pk(+1|x)e−F ∗

k
(x) + pk(−1|x)eF ∗

k
(x) +

∑

j 6=k

λk,j

{

eF
∗

k
(x)−Fj(x) − eFj(x)−F ∗

k
(x)
}

= 0,

(28)

which implies:

F ∗
k (x) =

1

2
log

pk(+1|x) +∑j 6=k λk,j exp(Fj(x))

pk(−1|x) +∑j 6=k λk,j exp(−Fj(x))
, (29)

or equivalently:

pk(y|x) = p0,k(y|x)
(

1 +
∑

j 6=k

λk,j exp(−Fj(x)y)

)

− p0,k(−y|x)
∑

j 6=k

λk,j exp(Fj(x)y), (30)

where p0,k(y|x) = exp(F ∗

k
(x)y)

exp(F ∗

k
(x))+exp(−F ∗

k
(x))

. This can be interpreted as a probabilistic model of asymmetric

mislabeling [17,18]. In Equation (29), the confidence of classification is discounted by the results of

remaining discriminant functions when the classifier sgn(F ∗
k (x)) makes a different decision from these

of sgn(Fj(x)) (j 6= k).
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Remark 7. F ∗
k (x) ≥ 0 does not mean pk(+1|x) ≥ 1

2
unless Fj(x) =

1
2
log pk(+1|x)

pk(−1|x)
holds.

Proposition 6. Let us assume that Fj(x) satisfies:

exp(Fj(x)y)

exp(Fj(x)) + exp(−Fj(x))
= p0(y|x) + ǫj(x)y, ||ǫj(x)|| ≪ 1. (31)

Then, Equation (29) can be approximated as:

F ∗
k (x) ≃

1

2
log

p0(+1|x)
p0(−1|x) +

1

2P 2

Pδk(x) +
∑

j 6=k λk,jǫj(x)

P + λk
(32)

where P =
√

p0(+1|x)p0(−1|x) and λk =
∑

j 6=k λk,j .

Proof. We obtain Equation (32) by considering the Taylor expansion of Equation (29).

We observe that a discrepancy derived by δk is moderated by the mixture of ǫj when perturbations ǫj

are independently and identically distributed.

Proposition 7. Let ηj(x) = Fj(x) − Fk(x) be a difference between two functions. Then, F ∗
k can be

approximated as:

F ∗
k (x) ≃

1

2
log

pk(+1|x)
pk(−1|x) +

1

P

∑

j 6=k

λk,jηj(x). (33)

Proof. See Appendix E.

Proposition 8. Let F̄ ∗
k be a minimizer of the risk function Equation (23) with λk,j = 0(j 6= k).

Then, we observe:

(

F̄ ∗
k (x)−

1

2
log

p0(+1|x)
p0(−1|x)

)2

≥
(

F ∗
k (x)−

1

2
log

p0(+1|x)
p0(−1|x)

)2

, (34)

i.e., the proposed method improves the performance in the sense of the squared error, when:

|δk(x)| ≥
|∑j 6=k λk,jǫj(x)|

λk
(35)

holds.

Proof. See Appendix F.

Secondly, we consider a property of the algorithm for Case 2.

Proposition 9. Let r(x) = rj(x) (j = 1, . . . , J) be a common marginal distribution shared by all tasks.

Then, the minimizer of the risk function is written as:

Fk(x) =
1

2
log

pk(+1|x) +∑j 6=k λjke
Fj(x)

pk(−1|x) +∑j 6=k λjke−Fj(x)
, (36)

where λjk = λk,j +
πj

πk
λk,j.
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Proof. See Appendix G.

The only difference from Equation (28) is that regularization is strengthened by
πj

πk
λj,k, and then, the

same propositions in Section 4.1 hold for Equation (36).

4.4. Comparison of Regularization Terms

The proposed method incorporates the regularization term defined by the IS distance into AdaBoost.

In this section, we discuss a property of the regularization term.

Proposition 10. Let ǫ(x) be a perturbation function satisfying |ǫ(x)| ≪ 1. Then, we observe:

KL(q̄F , q̄F+ǫ; r) ≃
∫

2r(x)ǫ(x)2q̄F (+1|x)q̄F (−1|x)dx, (37)

KL(qF , qF+ǫ; r) ≃
∫

r(x)

2
ǫ(x)2

1
√

q̄F (+1|x)q̄F (−1|x)
dx, (38)

IS(q̄F , q̄F+ǫ; r) ≃
∫

2r(x)ǫ(x)2
∑

y∈Y

q̄F (y|x)2dx, (39)

IS(qF , qF+ǫ; r) ≃
∫

r(x)ǫ(x)2dx. (40)

Proof. We obtain these approximations by considering the Taylor expansion up to second order.

Figure 1. Values of divergences (regularization terms) against q̄F .

Figure 1 shows values of divergences against a value of q̄F (x). Those relations implies that the KL

divergence Equation (37) emphasizes a region of input x whose conditional distribution q̄F (x) is nearly

equal to 1
2
, i.e., the classification boundary, while the IS distance Equation (39) focuses on a region of
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x whose conditional distribution is nearly equal to zero or one. The IS distance between pseudo model

Equation (40), i.e., the proposed method, considers the intermediate of Equations (37) and (39). This

implies that the regularization Equation (40) with the IS distance puts more focus on a region far from

the classification boundary compared to Equation (37), while Equation (39) tends to relatively ignore the

region near the classification boundary. Furthermore, note that the employment of Equation (40) makes

it possible to derive the simple algorithm shown in Section 4.1.

5. Experiments

In this section, we investigate the performance of the proposed multi-task algorithm with synthetic

datasets and a real dataset.

5.1. Synthetic Dataset

Firstly, we investigate the performance of the proposed method using two synthetic datasets within

the situation described in Case 2. We compared the proposed method with AdaBoost trained with an

individual dataset and AdaBoost trained with all datasets simultaneously. We employed the boosting

stump (the boosting stump is a decision tree with only one node) as the weak classifier and fixed as

πj = 1/J . A boosting-type method has a hyper-parameter T , the step number of boosting, and the

proposed method additionally has the hyper-parameter λk,j . In the experiment, we determined these

parameters T and λk,j by the validation technique. Especially, we investigated two kinds of scenarios for

the determination of λk,j .

1. We set that λk,j = λ for all j, k and determined λ.

2. We set that λk,j =
λ

IS

(

q
F̂k

,q
F̂j

;rk

) where F̂j is a discriminant function constructed by AdaBoost with

the dataset Dj and determined λ.

Scenario 2 can incorporate more detailed information about the relationship between tasks, and the

proposed method can ignore the information of tasks having less shared information. In summary, we

compared the following four methods:

A : The proposed method with λk,j determined by Scenario 1.

B : The proposed method with λk,j determined by Scenario 2.

C : AdaBoost trained with an individual dataset.

D : AdaBoost trained with all datasets simultaneously.

We utilized 80% of the training dataset for training of classifiers and the remaining 20% for the

validation. We repeated the above procedure 20 times and observed the averaged performance of the

methods.

5.1.1. Dataset 1

We set the number J of tasks to three and assume that a marginal distribution of x is a uniform

distribution on [−1, 1]2, and a discriminant function Fj (j = 1, 2, 3) associated with each dataset is



Entropy 2015, 17 5685

generated by Fj(x) = (1 + cj,2)(x1 − cj,1) − x2, where cj,1 ∼ N (0, 0.22) and cj,2 ∼ N (0, 0.12). In

addition, we randomly added a contamination noise on label y. Under these settings, we generated a

training dataset, including 400 examples, and a test dataset, including 600 examples. Generated datasets

are shown in Figure 2. We observe that each discriminant function and noise structure are different from

the other two.
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Figure 2. The three generated datasets and decision boundaries.

Figure 3 shows boxplots of the test errors of each method for datasets Dj (j = 1, 2, 3). We observe

that the proposed method consistently outperforms individually trained AdaBoost, and AdaBoost trained

with all datasets simultaneously. The figure shows that the proposed method can incorporate shared

information among datasets into classifiers.
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Figure 3. Boxplots of the test error of each method: A—proposed method with λ in

Scenario 1; B—proposed method with λ in Scenario 2; C—AdaBoost trained with the

individual dataset; D—AdaBoost trained with all datasets simultaneously; for three datasets,

over the 20 simulation trials.

5.1.2. Dataset 2

We set the number J of tasks to 6 and assume that a marginal distribution of x is a uniform distribution

on [−1, 1]2. Discriminant functions associated with each dataset are generated by:
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Fj(x) =







(1 + cj,2)(x1 − cj,1)− x2, j = 1, 2, 3,

−(1 + cj,2)(x1 − cj,1) + x2, j = 4, 5, 6,

where cj,1 ∼ N (0, 0.12) and cj,2 ∼ N (0, 0.12). In addition, we randomly added a contamination noise

on label y. Under these settings, we generated training dataset, including 400 examples, and the test

dataset, including 600 examples. Generated datasets are shown in Figure 4. We observe that Datasets 1,

2 and 3 share a structure, and Datasets 4, 5 and 6 share another structure.
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Figure 4. The six generated datasets and decision boundaries.

Figure 5 shows boxplots of the test errors of each method for datasets Dj (j = 1, . . . , 6). We

omitted the result of AdaBoost trained with all datasets simultaneously (D) from the figure, because

its performance is significantly worse than those of the other methods: the median of classification

errors is around 0.5. This is because the structures of Datasets 1, 2, 3 and Datasets 4, 5, 6 are opposite,

and the labeling of concatenated dataset seems to be random. We observe that the proposed method

with Scenario 2 (B) improves performance against individually-trained AdaBoost (C) and the proposed

method in Scenario 1 (A). This is because the structure shared among Datasets 1, 2 and 3 does not have
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information about Datasets 4, 5 and 6 (and vice versa), and Method (B) can ignore the influence of

the irrelevant information by adjusting λk,j responding to IS(qF̂j
, qF̂k

; rk). Note that the performance of

Method (A) is not so degraded, because the regularization parameter λk,j was determined, so as to be

zero, implying AdaBoost trained with the individual dataset.

Figure 6 shows examples of classification boundaries estimated by Methods A, B, C and D, for

Dataset 6.
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Figure 5. Boxplots of the test error of each method: A, Proposed method with λ in

Scenario 1; B, proposed method with λ in Scenario 2; C, AdaBoost trained with the

individual dataset ; for 6 datasets, over the 20 simulation trials.
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Figure 6. Classification boundaries by Methods A, B, C and D for Dataset 6. The blue line

is the true classification boundary, and the red line represents the estimated classification

boundary.
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5.2. Real Dataset: School Dataset

In this section, we compared the proposed method (Scenario 2) to the a binary decision tree-based

ensemble method, called extremely randomized trees (ExtraTrees) [23], applying to a real dataset,

“school data”, reported from the Inner London Education Authority [24]. The dataset consists

of examination records of 15,362 students from 139 secondary schools, i.e., we had 139 tasks.

The dimension of input x is 27, in which original variables that are categorical were transformed into

dummy variables. The original target variable y0 represents score values in the range [1, 70], and we

transformed the target variable y0 to a binary variable as:

y = sgn(y0 − 20).

We set the threshold to 20 to balance the ratio of classes (−1 : +1 = 7930 : 7432). We randomly

divided the dataset of each tasks into 80% of the training dataset and remaining 20% test dataset.

In addition, we used 20% of the divided training dataset as a validation dataset to determine the

hyper-parameter λ and step number T . We repeated the above procedure 20 times and observed the

average performance of the methods. Figure 7 shows the medians of error rates over 20 trials, by the

proposed method and the ExtraTrees for 139 tasks. The horizontal axis indicates an index of a task,

which is ranked in increasing order of the median error rate of the ExtraTrees. We observe that the

proposed method is comparable to the ExtraTrees and especially has an advantage for tasks, in which

the error rates of the ExtraTrees are large.

Figure 7. Medians of error rates by the proposed method and extremely randomized trees

(ExtraTrees) for 139 tasks. The horizontal axis represents an index of a task, and the vertical

axis indicates the median of error rates over 20 trials. Tasks are ranked in increasing order of

the median error rate of the ExtraTrees.

6. Conclusions

In this paper, we investigate the properties of binary classification with the pseudo model and reveal

that minimization of the Itakura–Saito distance between the empirical distribution and the pseudo model

is equivalent to AdaBoost and provides suitable properties for the binary classification. In addition,

we pointed out that the Itakura–Saito distance is a unique divergence, having a suitable property for

estimation with the pseudo model in the framework of the Bregman divergence. Based on the framework,
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we proposed a novel binary classification method for the multi-task learning, which incorporates shared

information among tasks into the targeted task. The risk function of the proposed method is defined

by the mixture of IS distance. The IS distance between pseudo models can be interpreted as the

regularization term, incorporating shared information among tasks into the binary classifier for the target

task. We investigated statistical properties of the risk function and derived computationally-feasible

boosting-based algorithms. Furthermore, we considered a mechanism for the adjustment of the degree

of information sharing and numerically investigated the validity of the proposed methods.
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Appendix

A. Proof of Proposition 1

By a variational calculation, a minimizer of Equation (5) satisfies:

δ IS(p, qF ; r)

δF (x)
∝ eF0(x)−F (x) − e−F0(x)+F (x)

eF0(x) + e−F0(x)
= 0, (41)

and F = F0 satisfies the above equation for an arbitrary F0, which concludes Equation (5). Furthermore,

δ IS(qF , p; r)

δF (x)
∝
(

eF0(x) + e−F0(x)
) (

eF (x)−F0(x) − e−F (x)+F0(x)
)

= 0, (42)

and F = F0 satisfies the above equation for an arbitrary F0, concluding Equation (6).

B. Proof of Proposition 2

By a straightforward variational calculation, we observe that a minimizer FKL,1 of

Equation (8) satisfies:

δKL(p, qF ; r)

δF (x)
∝ −p(+1|x) + p(−1|x) + exp(FKL,1(x))− exp(−FKL,1(x))

=
−eF0(x) + e−F0(x)

eF0(x) + e−F0(x)
+ eFKL,1(x) − e−FKL,1(x) = 0, (43)
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and FKL,1 = F0 means F0(x) = 0 (∀x), which concludes Equation (8). Furthermore, for Equation (9),

FKL,2 satisfies:

δKL(qF , p; r)

δF (x)

∝(FKL,2(x)− F0(x))(e
FKL,2(x) + e−FKL,2(x)) + (eFKL,2(x) − e−FKL,2(x)) log(eF0(x) + e−F0(x))

=0,

and FKL,2 = F0 means F0(x) = 0 (∀x), concluding Equation (9).

C. Proof of Lemma 4

If Equation (15) holds, F0 satisfies:

δDU(p, qF ; r)

δF (x)

∣

∣

∣

∣

F=F0

=

(

1− 1
∑

y∈Y qF0(y|x)

)

∑

y∈Y

yξ′(qF0(y|x))qF0(y|x)2

∝ ξ′(eF0(x))e2F0(x) − ξ′(e−2F0(x))e−2F0(x)

= 0.

By setting z = eF0(x), we have z2ξ′(z) = z−2ξ′(z−1), and the function ξ′(z)z2 is

reflection-symmetric.

If Equation (16) holds, F0 satisfies:

δDU(qF , p; r)

δF (x)

∣

∣

∣

∣

F=F0

=
∑

y∈Y

yqF0(y|x) {ξ(qF0(y|x))− ξ(q̄F0(y|x))}

=eF0(x)

{

ξ(eF0(x))− ξ

(

eF0(x)

eF0(x) + e−F0(x)

)}

− e−F0(x)

{

ξ(e−F0(x))− ξ

(

e−F0(x)

eF0(x) + e−F0(x)

)}

=0,

implying that the function z
{

ξ(z)− ξ
(

z
z+z−1

)}

is reflection-symmetric.

D. Proof of Theorem 5

For the proof of the theorem, we firstly prepare the following lemmas.

Lemma 11. Let f(z) be a reflection-symmetric and holomorphic function on z 6= 0. Then, ak = bk

holds for all k ≥ 1.

Proof. The function f can be expressed as Equation (14), and let us assume that there exists an integer

k0, such that ak0 6= bk0 . From the reflection-symmetric property, we have:

(ak0 − bk0)(z
k0 − z−k0) = 0 (44)

for all z > 0, which contradicts ak0 6= bk0 .
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Lemma 12. Let ξ(z) be a holomorphic function on z 6= 0. If two functions:

ξ′(z)z2, and z

{

ξ(z)− ξ

(

z

z + z−1

)}

(45)

are both reflection-symmetric, then ξ(z) = c1
z
+ c0.

Proof. We can express the function ξ(z) by a Laurent series as:

ξ(z) = c+

∞
∑

k=1

(

akz
k + bkz

−k
)

. (46)

Then, we have:

ξ′(z)z2 =

∞
∑

k=1

k
(

akz
k+1 − bkz

−k+1
)

= −b1 − 2b2z
−1 +

∞
∑

k=1

(

kakz
k+1 − (k + 2)bk+2z

−k−1
)

. (47)

Because of the assumption of reflection-symmetry for z2ξ′(z) and Lemma 11, we have b2 = 0 and

kak = −(k + 2)bk+2 for all k ≥ 1. Thus, we obtain:

ξ(z) =

∫

− b1
z2

+
∞
∑

k=1

ak
(

kzk−1 + kz−k−3
)

dz

= c+ b1z
−1 +

∞
∑

k=1

ak

(

zk − k

k + 2
z−k−2

)

. (48)

Then, we have:

z

{

ξ(z)− ξ

(

z

z + z−1

)}

=b1(1− (z + z−1)) +
∞
∑

k=1

ak

{

zk+1(1− (z + z−1)−k)− k

k + 2
z−k−1(1− (z + z−1)k+2)

}

. (49)

From Equation (48) and the assumption of the reflection-symmetry of the function

z
{

ξ(z)− ξ
(

z
z+z−1

)}

, we observe that for all z,

z

{

ξ(z)− ξ

(

z

z + z−1

)}

− z−1

{

ξ(z−1)− ξ

(

z−1

z + z−1

)}

=
∞
∑

k=1

akhk(z)

=0 (50)

where:

hk(z) =
(

zk+1 − z−k−1
)

{

1− (z + z−1)−k +
k

k + 2

{

1− (z + z−1)k+2
}

}

. (51)

Since {hk(z)}∞k=1 is functionally independent, we conclude that ak = 0 for all k ≥ 1 or, equivalently,

ξ(z) = c+ b1
z

.
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We now give a proof for Theorem 5 using Lemma 12.

Proof. If condition Equations (19) and (20) hold, functions ξ′(z)z2 and z
{

ξ(z)− ξ
(

z
z+z−1

)}

are both

reflection-symmetric from Lemma 4. From Lemma 12, the reflection-symmetric property of these two

functions implies ξ(z) = b1
z
+c. Since the function ξ should be defined on z > 0, the generating function

U derived from ξ is written as:

U(z) =

∫

ξ−1(z)dz = b1 log(c− z) + c1 (z < c) (52)

where c1 is a constant and b1 < 0 holds because of the convexity of function U . Then, we have

U(ξ(z))) = b1 log(−b1) − b1 log z + c1(z > 0), and the associated divergence is equivalent to the

IS distance, i.e.,

DU(p, q; r) =

∫

r(x)
∑

y∈Y

{

−b1 log
q(y|x)
p(y|x) − p(y|x)

{

b1
q(y|x) −

b1
p(y|x)

}}

dx

= −b1

∫

r(x)
∑

y∈Y

{

log
q(y|x)
p(y|x) +

p(y|x)
q(y|x) − 1

}

dx (53)

= −b1 IS(p, q; r),

up to the constant −b1.

E. Proof of Proposition 7

From Equation (28), we observe:

F ∗
k (x)

= log

√

pk(+1|x) + 1
4pk(−1|x)

(
∑

j 6=k λk,j

{

e−ηj(x) − eηj(x)
}

)2 − 1

2
√

pk(−1|x)

∑

j 6=k λk,j

{

e−ηj(x) − eηj(x)
}

√

pk(−1|x)

≃1

2
log

pk(+1|x)
pk(−1|x) +

1

P

∑

j 6=k

λk,jηj(x).

F. Proof of Proposition 8

We observe that:

(

F̄ ∗
k (x)−

1

2
log

p0(+1|x)
p0(−1|x)

)2

−
(

F ∗
k (x)−

1

2
log

p0(+1|x)
p0(−1|x)

)2

=
1

4P 4(P + λk)2

(

λkδk(x)−
∑

j 6=k

λk,jǫj(x)

)(

(λk + 2P )δk(x) +
∑

j 6=k

λk,jǫj(x)

)

,

which implies the proposition.
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G. Proof of Proposition 9

The minimizer of the risk function Equation (27) satisfies:

δL(F1, . . . , FJ)

δFk
∝eFk(x)

{

πkpk(−1|x) +
∑

j 6=k

(πkλk,j + πjλj,k)e
−Fj(x)

}

− e−Fk(x)

{

πkpk(+1|x) +
∑

j 6=k

(πkλk,j + πjλj,k)e
Fj(x)

}

=0,

implying Equation (36).
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