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Abstract: The dynamics of brain area influenced by focal epilepsy can be studied using

focal and non-focal electroencephalogram (EEG) signals. This paper presents a new method

to detect focal and non-focal EEG signals based on an integrated index, termed the focal and

non-focal index (FNFI), developed using discrete wavelet transform (DWT) and entropy

features. The DWT decomposes the EEG signals up to six levels, and various entropy

measures are computed from approximate and detail coefficients of sub-band signals. The

computed entropy measures are average wavelet, permutation, fuzzy and phase entropies.

The proposed FNFI developed using permutation, fuzzy and Shannon wavelet entropies

is able to clearly discriminate focal and non-focal EEG signals using a single number.

Furthermore, these entropy measures are ranked using different techniques, namely the

Bhattacharyya space algorithm, Student’s t-test, the Wilcoxon test, the receiver operating

characteristic (ROC) and entropy. These ranked features are fed to various classifiers,

namely k-nearest neighbour (KNN), probabilistic neural network (PNN), fuzzy classifier

and least squares support vector machine (LS-SVM), for automated classification of focal

and non-focal EEG signals using the minimum number of features. The identification of the

focal EEG signals can be helpful to locate the epileptogenic focus.
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1. Introduction

Epilepsy is characterized by seizures, which may be due to epileptogenesis [1,2]. Epilepsy affects the

quality of the patient’s life and may lead to social impairment [3]. Patients of generalized and partial

epilepsy can develop resistance to drugs during the course of epilepsy. The proportion of such patients

is approximated to be 20% in generalized epilepsy and 60% in partial epilepsy [3]. In order to treat such

patients surgically, the brain area involved in epileptic seizure generation needs to be removed. In this

way, the identification of the brain area participating in seizure generation becomes an important step

before the surgery.

Various techniques are developed to understand the dynamics of epileptogenic focus based on

electroencephalogram (EEG) signals. These techniques can be useful to identify the epileptogenic

focus. In the literature, to study the characteristics of epileptogenic focus, many non-linear parameters,

like linear correlation, mutual information and phase synchronization with surrogate analysis [4],

the time-variant connectivity measure and modified effective connectivity measure [5], coherence

patterns [6], mean phase coherence establishing inter-electrode synchrony [7], moving window

correlation dimension [8], etc., are examined. Results presented in these studies show that non-linear

parameters are significantly useful for epileptogenic focus localization. The non-linear parameters

extracted from EEG signals can be helpful to represent the non-linear dynamics of the brain [2].

Recently, Andrzejak et al. analyzed the bivariate EEG signals recorded intracranially from the patients

of partial epilepsy [9]. The recordings from the epileptogenic focus are categorized as focal EEG signals,

and recordings from other areas of the brain are defined as non-focal EEG signals. The identification

of focal EEG signals can be used to locate the epileptogenic focus. Hence, the focal EEG signal

classification is an important research problem. Epileptic activities in EEG signals are classified by

extracting features from time, frequency, time-frequency and non-linear analysis of EEG signals [10].

The EEG signals are analyzed using wavelet transform and statistical pattern recognition in order to

detect epileptic seizures [11]. In [12], discrete wavelet transform (DWT) is used for decomposition and

classification of normal and epileptic EEG signals. Hence, features extracted from the time-frequency

domain using DWT can be used to extract useful information from EEG signals. Entropy is a measure of

variability within a signal [13]. It is a numerical descriptor that measures the randomness of a signal [14]

and can be used to detect epilepsy using EEG signals [13,14].

In the present work, the automatic classification of the focal EEG signals is performed using DWT.

The experimental results are presented for DWT from two to six levels. The proposed system used to

perform the classification of focal and non-focal EEG signals is shown in Figure 1. Entropy measures,

namely average Shannon wavelet entropy, average Rényi wavelet entropy and average Tsallis wavelet

entropy, are computed from the energies of detail and approximate coefficients. The average fuzzy

entropy, average permutation entropy and average phase entropies are computed from the sub-band

signal reconstructed from the approximate coefficients. These computed entropy measures serve as

the input feature set for different classifiers. Feature ranking methods, such as the Bhattacharyya space



Entropy 2015, 17 5220

algorithm, Student’s t-test, the Wilcoxon test, the receiver operating characteristic (ROC) and entropy,

are used to rank the features. These ranked features are used as the features for the classifiers, namely

probabilistic neural network (PNN), k-nearest neighbour (KNN), fuzzy and least squares support vector

machine (LS-SVM) for the classification of focal and non-focal EEG signals. We have also proposed a

focal and non-focal index (FNFI) to discriminate focal and non-focal EEG signals.
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Figure 1. Block diagram of the proposed automatic classification system.

The remaining sections are arranged as follows: Section 2 describes the dataset used, the feature

extraction, the ranking methods, classification and the integrated discrimination index. In Section 3, the

results of this study are presented, and the results are discussed in Section 4. The paper concludes in

Section 5.

2. Methodology

2.1. Dataset

The EEG recordings of focal and non-focal classes studied in this paper are taken from Bern Barcelona

database (www.dtic.upf.edu/~ralph/sc/). Details of the database can be found in [9]. The database

consists of bivariate EEG signals recorded intracranially from five patients of pharmacoresistant temporal

lobe epilepsy. The time series in bivariate EEG signals are represented by “x” and “y”. Each EEG signal

has 10, 240 samples, sampled at a 512-Hz sampling frequency. The database consists of 3750 focal EEG

signal pairs and 3750 non-focal EEG signal pairs. In this study, we have used 50 focal EEG signal pairs

and 50 non-focal EEG signal pairs. The “x” time series of a focal EEG signal pair and a non-focal EEG

signal pair are shown in Figure 2. Figure 3 depicts the “y” time series of focal EEG signal pair and

non-focal EEG signal pair.
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Figure 2. Plot of the “x” time series of EEG signal pairs: (a) focal EEG signal; (b) non-focal

EEG signal.

www.dtic.upf.edu/~ralph/sc/
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Figure 3. Plot of the “y” time series of EEG signal pairs: (a) focal EEG signal; (b) non-focal

EEG signal.

2.2. Feature Extraction

In order to perform the classification of focal and non-focal EEG signals, the extraction of features is

an important step. Features are extracted from DWT coefficients of both “x” and “y” time series of EEG

signal pairs. A brief description of DWT and entropy features is given in the following sections.

2.2.1. Discrete Wavelet Transform

The EEG signal is converted to the wavelet domain by performing discrete wavelet transform

(DWT) [15]. In the DWT, the EEG signals are passed through the low pass filter (LPF) and high pass

filter (HPF). The filtered signals are down-sampled by a factor of 2. This process converts the signals

to low pass (approximate) and high pass (detail) coefficients. This procedure forms the first level of

decomposition of the EEG signal. For the next level of decomposition, the approximate coefficients are

again passed through the HPF and LPF, and the same process is repeated to obtain the next level of

DWT coefficients. After each level of decomposition, the bandwidth obtained is half of the bandwidth

of the previous level [16]. In this paper, the DWT of the EEG signals is performed up to six levels using

Daubechies wavelet of order 4 (db4) [12], and then, Shannon, Rényi, Tsallis, permutation, phase and

fuzzy entropies are extracted using these DWT coefficients.

2.2.2. Average Shannon Wavelet Entropy

In the Shannon wavelet entropy computation, the wavelet decomposition and Shannon entropy are

incorporated together. This entropy measure provides the variability associated with different frequency

bands. The wavelet coefficients obtained by applying DWT are used to compute the energy of these

detail and approximate sub-band signals. If Ei denotes the energy of the i-th sub-band signal computed

from the wavelet coefficients, then the total signal energy can be given by [17]:

Et =
K
∑

i=1

Ei (1)

where K denotes the total number of sub-band signals obtained from the DWT of the EEG signal. The

relative wavelet energy can be defined as [17]:
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qi =
Ei

Et

(2)

Finally, wavelet entropy using Shannon entropy formula can be defined as [17]:

Swn = −
K
∑

i=1

qi log(qi) (3)

If Swnx and Swny denote the Swn of the “x” and “y” time series of EEG signal, respectively, then the

average Shannon wavelet entropy of the signal can be defined as:

SwnAvg =
Swnx + Swny

2
(4)

2.2.3. Average Rényi Wavelet Entropy

We have used the formula proposed by Rényi [18] to compute the wavelet entropy of EEG signal

from qi. The Rényi wavelet entropy can be defined as [18]:

Rwnα =
1

1− α
log

(

K
∑

i=1

qαi

)

, α 6= 1 (5)

In this paper, the value of α is taken as 2. For α = 2, Rényi entropy is also called Rényi’s quadratic

entropy and can be given as [13]:

Rwn2 = − log

(

K
∑

i=1

q2i

)

(6)

The average Rényi wavelet entropy in terms of the Rényi wavelet entropies of the “x” (Rwnx) and

“y” (Rwny) time series of EEG signal can be defined as:

RwnAvg =
Rwnx +Rwny

2
(7)

2.2.4. Average Tsallis Wavelet Entropy

Tsallis wavelet entropy is presented in [19], which uses the Tsallis entropy formula to compute

entropy from qi of the signal. In [19], it is shown that the Tsallis wavelet entropy can extract improved

features by reducing the negative effects of wavelet aliasing. In [19], Tsallis entropy is computed using

the sliding window for a signal. In this paper, we have used the Tsallis entropy formula to compute the

Tsallis wavelet entropy without using any window. The Tsallis wavelet entropy can be defined as [19,20]:

Twna =
1

a− 1

(

1−

K
∑

i=1

qai

)

, a 6= 1 (8)

where parameter a is called the nonextensivity index [19]. In this work, a = 2 is considered for Tsallis

wavelet entropy computation. The average Tsallis wavelet entropy can be computed as:

TwnAvg =
Twnx + Twny

2
(9)

where Twnx and Twny are the Tsallis wavelet entropy obtained for the “x” time series and the “y” time

series of the pair of EEG signal, respectively.
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2.2.5. Average Fuzzy Entropy

Fuzzy entropy is developed based on the concept of fuzzy sets. In [21], the authors applied the fuzzy

entropy measure on the surface electromyogram (EMG) signal by employing the family of exponential

functions as a fuzzy membership function [22]. In this paper, we have computed the fuzzy entropy of

EEG signals, based on the approach presented in [21]. The fourth level approximate component obtained

from the DWT of the EEG signal is used for the computation of fuzzy entropy. In the computation of

fuzzy entropy, three parameters need to be determined. The first parameter is the length of sequence

to be compared, denoted by m, and the other two parameters are r and n. The width of the boundary

of the exponential function is controlled using parameter r, and parameter n determines the gradient of

the boundary of exponential function. In this work, to compute the fuzzy entropy of the approximate

component of the wavelet transform of EEG signals, the values of r = 0.2 and n = 2 are fixed [21], and

for m = 2, 3, 4, fuzzy entropies are computed. We have considered m = 4 for our experiment, because

the p-value obtained for the discrimination of focal and non-focal classes with m = 4, p = 4.04× 10−7

is better than p = 2.17 × 10−6 for m = 3. The p-value for m = 2 is 8.72 × 10−6; thus, the m = 4 is

a suitable choice for fuzzy entropy computation. Finally, the average of the fuzzy entropy (FzenAvg) is

computed for the “x” and “y” time series of pair of EEG signal.

2.2.6. Average Permutation Entropy

In permutation entropy, the variation of predefined symbols in the neighboring samples is

quantified [23]. The computation of the permutation entropy requires the determination of embedded

dimension m and time lag τ . The total number of possible symbols depends on the value of m. For

a given value of m, a total of m! permutations are possible. Each permutation can be considered as a

symbol. Based on the parameters m and τ from a time series, the embedded time vector is formed. In

the time series vector, the probability distribution of the each symbol is computed. If tk represents the

number of occurrences of the k-th symbol in the time series, then the probability of occurrence of the

k-th permutation can be estimated as [24]:

sk =
tk

N −m+ 1
(10)

where N is length of the signal. The permutation entropy in terms of sk can be given as [23]:

Pen = −

K
∑

k=1

sk log(sk) (11)

where K is the number of symbols for a given embedded dimension. A smaller value of the Pen

indicates more regularity present in the time series [23]. In [24], the value of m suggested is from 3 to 7.

Various studies for the application of Pen on EEG signals are compared in [25], and it can be observed

that the values m = 3 and τ = 1 are commonly used. In this work, we have taken m = 3 and τ = 1 for

the computation of Pen. If Penx and Peny represent the permutation entropy of the “x” time series and

the “y” time series of the pair of EEG signal, then the average permutation entropy can be given as:

PenAvg =
Penx + Peny

2
(12)
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2.2.7. Average Phase Entropies

The spectral representation of higher order moments, like third order moments, is known as higher

order spectra (HOS) [14]. The computation of the phase entropies employs the bispectrum, which is the

spectrum of third order moments. The bispectrum of a signal can be represented by β(F1, F2), which is

a function of two frequency components F1 and F2, and can be defined as [26]:

β(F1, F2) = E[X(F1)X(F2)X
∗(F1 + F2)] (13)

where X(F ) represents the Fourier transform of a signal and X∗ denotes the complex conjugate. The

two probabilities can be estimated in terms of the L1 and L2 norms of the bispectrum as [27]:

uk =
|β(F1, F2)|

∑

ξ

|β(F1, F2)|
(14)

vj =
|β(F1, F2)|

2

∑

ξ

|β(F1, F2)|
2

(15)

where ξ represents the non-redundant region [14]. The phase entropies Hen1 and Hen2 can be defined

in terms of these probability estimates uk and vj as [14,27]:

Hen1 = −
∑

k

uk log(uk) (16)

and:

Hen2 = −
∑

j

vj log(vj) (17)

The phase entropies are utilized as features for the diagnosis of epileptic EEG signals automatically

in [14]. In this paper, average phase entropies Hen1Avg and Hen2Avg computed from the fourth level

approximate component obtained from DWT of EEG signal are defined as [28]:

Hen1Avg =
Hen1x +Hen1y

2
(18)

and:

Hen2Avg =
Hen2x +Hen2y

2
(19)

where Hen1x and Hen2x represent the notations of Hen1 and Hen2 of the “x” time series of EEG

signals, respectively. The entropies Hen1y and Hen2y are Hen1 and Hen2 of the “y” time series of

EEG signals.

2.3. Feature Ranking

The feature ranking step helps to select the most relevant features from the available features.

Based on ranking, the features with higher ranks can be selected, and features with lower rank can

be ignored [29]. Thus, the minimum number of features required to obtain the highest classification

accuracy can be obtained using feature ranking methods. This reduces the complexity of the classifier

without sacrificing its performance [16]. In this work, Bhattacharyya space algorithm, Student’s t-test,

Wilcoxon method, receiver operating characteristic (ROC) method and entropy-based feature ranking

methods are used for feature selection. A brief explanation of these methods is given as follows:
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2.3.1. Bhattacharyya Space Algorithm

This method uses the Bhattacharyya distance, which is a measure of the separability between two

populations [29,30]. The ranking of features is performed based on the discrimination ability of features.

2.3.2. Student’s t-Test

The Student’s t-test evaluates the population mean and uses it to determine the discrimination between

two groups [16]. As a result of this test, the t-value is obtained for the computed feature of two classes.

In order to rank the features, the t-value is used. The features with a higher t-value are considered to

have more discriminative ability [31].

2.3.3. Wilcoxon Test

The Wilcoxon test belongs to the class of nonparametric tests, which use a rank-based procedure [32].

In this method, the two-sample unpaired Wilcoxon test is applied for feature ranking [33]. The method

is also referred as the Wilcoxon–Mann–Whitney test and employs the magnitude of resultant U-statistics

to rank the features [34,35].

2.3.4. Entropy

In the entropy method for feature reduction, the divergence is used to measure distance between the

probability density functions, which is a form of Kullback–Leibler distance [36]. The features with

higher divergence are considered more suitable for discriminating classes.

2.3.5. Receiver Operating Characteristic Method

In this method, the receiver operating characteristic (ROC) is drawn between sensitivity and

1-specificity, for different values of the threshold. Based on the area under the ROC curve, ranking

of the features is performed [29,36].

2.4. Classification

In this work, classification of focal EEG signals is performed using different classifiers. The goal is

to find out the maximum classification accuracy. A ten-fold cross-validation procedure is followed for

testing the performance of classifiers [37]. In this procedure, the available dataset is divided into ten

random sets of equal size. Nine sets are used to train the classifier, and the remaining set is utilized for

the evaluation of classifier performance. The whole process is repeated ten times, without repeating any

set for classification. Finally, the performance evaluation parameters are computed by taking the average

of all ten folds. The classifiers used in this work are briefly explained as follows.

2.4.1. Probabilistic Neural Network

The probabilistic neural network (PNN) classifier employs a four-layer architecture for

classification [38]. The PNN classifier consists of feed forward networks of neurons arranged in layers.
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The input layer is the first layer, which simply passes the input to the pattern layer neurons [39].

The obtained output from the pattern layer is summed up and averaged at the summation layer. The

summation layer also estimates the maximum likelihood of a pattern being classified. Finally, the

decision of the class is made at the decision layer based on Bayes’s decision rule [39]. The selection of

smoothing parameter [39] denoted by σ1 is required for performing classification using PNN classifier.

2.4.2. k-Nearest Neighbour

In k-nearest neighbour (KNN) classifier, an unknown sample is classified using the relation of the

unknown sample with the known nearest samples [38]. The closeness of the k-nearest sample is

determined using distance or similarity criteria [40]. It is considered that the near samples have more

contribution than the far samples. Finally, the unknown sample is considered to belong to the class that

is common among the k-nearest neighbors.

2.4.3. Fuzzy Sugeno Classifier

In the fuzzy classification, instead of considering that the sample belongs to a particular class, the

sample is considered to be a member of each class with a different membership function. The class of

the sample is determined based on fuzzy if-then rules [41]. In the fuzzy Sugeno classifier, the fuzzy

inference system (FIS) is generated using the subtractive clustering technique [42]. The behavior of the

fuzzy system is determined by FIS. Clusters in the FIS are fixed by the radius (R). The input and output

membership functions of the classifier used in this paper are Gaussian and linear, respectively [43].

2.4.4. Least Squares Support Vector Machine

The support vector machine (SVM) [44] classifier can be used for both linear and non-linear

classification, by selecting the suitable kernels [23]. The SVM method performs the mapping of the

data into higher dimensional space, where it can be separated using a decision boundary. In order to

find the decision boundary, the margin between two hyperplanes associated with support vectors of two

different classes is maximized [23]. The problem of finding a decision boundary can be formulated as an

optimization problem subjected to inequality constraints [45]. The least squares support vector machine

(LS-SVM) provides the least squares solution of the optimization problem [45]. The classification

of EEG signals of different classes has been studied using SVM classifier and LS-SVM classifier in

[28,46–48]. The radial basis function (RBF) [28] is used as a kernel in this work to form the decision

boundary. The width of the RBF kernel function can be controlled using a parameter [47] denoted by σ2.

2.5. Integrated Discrimination Index

The significant features can be used to derive an expression, such that for each class, the expression

results in a unique range of values [49–54]. Such an index can be used to characterize the state of a

physiological condition [49]. Using a single index, two or more classes can be discriminated. This

concept of the integrated index is used to diagnose diabetes using heart rate signals [50], coronary artery
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disease (CAD) using ultrasound images [51], malignant and benign thyroid using ultrasound images [52],

CAD using heart rate signals [53] and diabetes retinopathy using fundus images [54].

In this work, significant features are used to derive an integrated discrimination index, namely the

focal and non-focal index (FNFI). The significant features are selected based on the class discrimination

ability and the classification performance of the features. Based on trial and error experiments, FNFI can

be given as:

FNFI = 10×

[

α1(n1 +
1

β1

n2)− n3

1

γ1

]

(20)

where n1, n2 and n3 are the values of the three features extracted from focal and non-focal EEG signals.

The coefficients α1, β1 and γ1 are optimized in order to obtain a unique range of FNFI for each class.

The coefficients of the formula in (20) are determined using the genetic algorithm (GA). GA is an

optimization algorithm based on the law of natural selection and genetics [55]. It is less sensitive to

initial conditions. It successively searches the optimal solution of a problem using selection, crossover

and mutation operations [56].

3. Results

In this work, we have extracted seven entropy features from the DWT of focal and non-focal EEG

signals. Using these extracted features, the classification of the EEG signals corresponding to focal and

non-focal classes is performed. The performance of the four classifiers is presented for the second to

sixth levels of DWT decomposition. The highest classification performance is found at the fourth level

of DWT.

The sub-band signals obtained from the fourth level of DWT coefficients are shown in Figure 4.

Figure 4a shows the focal EEG signal and its four detail (d1-d4) and approximate (a4) sub-band signals.

Similarly, four detail and approximate sub-band signals of the non-focal EEG signal are shown in

Figure 4b. The entropies SwnAvg, RwnAvg and TwnAvg are computed using energies of d1–d4 and a4

sub-band signals. The other entropies, FzenAvg , Hen1Avg, Hen2Avg and PenAvg, are computed from

a4 sub-band signal. Similarly, the features are computed from other levels of the DWT decomposition

of the EEG signals.

Table 1. p-values obtained as a result of Kruskal–Wallis statistical test for feature

discrimination at different DWT levels.

Feature
Wavelet decomposition level

2 3 4 5 6

SwnAvg 6.000× 10−4 6.565× 10−5 9.182× 10−7 9.511× 10−8 1.901× 10−6

RwnAvg 2.332× 10−6 1.336× 10−7 1.901× 10−6 6.565× 10−5 7.000× 10−4

TwnAvg 7.000× 10−4 8.760× 10−5 1.495× 10−6 1.026× 10−7 2.761× 10−6

FzenAvg 6.722× 10−9 5.701× 10−9 4.042× 10−7 5.766× 10−1 2.495× 10−6

Hen1Avg 4.710× 10−2 2.890× 10−2 6.300× 10−3 2.510× 10−2 4.906× 10−1

Hen2Avg 2.090× 10−2 1.770× 10−2 1.160× 10−2 2.990× 10−2 3.379× 10−1

PenAvg 2.690× 10−2 1.092× 10−5
5.253× 10

−10 5.729× 10−6 1.638× 10−1
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The Kruskal–Wallis statistical test [57] has been applied for determining the discrimination ability of

features extracted from epileptic seizure EEG signals [58–60] and RR-interval (interval between adjacent

QRS complexes of electrocardiogram) signals [61]. In order to examine the class discrimination ability

of the features, the Kruskal–Wallis statistical test is applied on all features, and the resultant p-values are

shown in Table 1. The box plots of various entropy features computed for the second to sixth levels of

the DWT-based decomposition are presented in Figures 5–9. The lowest p-value of a feature is indicated

by bold entry in Table 1. It can be noticed from Table 1 that PenAvg obtained from the fourth level

approximate sub-band signal has the lowest p-value, indicating the highest discrimination ability among

all features.
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Figure 4. EEG signal and its decomposition using DWT: (a) focal and (b) non-focal.
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Figure 5. Boxplots of various entropies computed from the second level of DWT for focal

(F) and non-focal (N) EEG signals.
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Figure 6. Boxplots of various entropies computed from the third level of DWT for focal (F)

and non-focal (N) EEG signals.
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Figure 7. Boxplots of various entropies computed from the fourth level of DWT for focal

(F) and non-focal (N) EEG signals.
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Figure 8. Boxplots of various entropies computed from the fifth level of DWT for focal (F)

and non-focal (N) EEG signals.
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Figure 9. Boxplots of various entropies computed from the sixth level of DWT for focal (F)

and non-focal (N) EEG signals.

The range of features computed from the fourth level of DWT is presented in Table 2. Before

performing the classification, features are ranked using different feature ranking methods. The

classification accuracies of various classifiers are shown in Table 3. The parameters of the classifiers

are selected on the basis of trial and error experiments. The parameters corresponding to the

maximum classification accuracy are mentioned in Table 3. In this work, the classification accuracy for

classification of focal EEG signals is computed using ten-fold cross-validation procedure. The obtained

highest classification accuracies are shown by bold entries in Table 3. It can be observed from Table 3

that the LS-SVM classifier with features obtained from the fourth level of DWT-based decomposition

results in the highest classification accuracy. Hence, we formulated FNFI using the features extracted

from the fourth level of DWT-based decomposition. The plot of the classification accuracy obtained

using the LS-SVM classifier versus the number of features used for different feature ranking methods is

shown in Figure 10. The ranking of features, using Student’s t-test, is as PenAvg, FzenAvg, SwnAvg,
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TwnAvg, RwnAvg, Hen1Avg and Hen2Avg. Except for the last two features, all (first five) features were

ranked in the same order for Student’s t-test and ROC methods. Therefore, the plots corresponding to

Student’s t-test and ROC overlap each other in Figure 10. The highest performance using the minimum

number of features for various ranking methods using the LS-SVM classifier is presented in Table 4.

It can be noticed from Table 4 that the LS-SVM classifier with only the first three ranked features

using the Student’s t-test and ROC methods provided the highest performance. These three features

are PenAvg, FzenAvg and SwnAvg. The performance of the classifier is measured in terms of accuracy

(Acc), sensitivity (Sen) and specificity (Spe) [62]. The highest values of Acc, Sen, and Spe obtained

are 84%, 84% and 84%, respectively, using the ten-fold cross-validation method for focal and non-focal

EEG signals classification. Table 4 shows the mean ± standard deviation of the obtained performance

evaluation parameters (Acc, Sen, and Spe) during ten-folds cross-validation procedure using LS-SVM

classifier for different ranking methods.

Table 2. Range distribution (mean ± standard deviation) of different entropy features

extracted from the fourth level of DWT for focal and non-focal classes.

Feature Focal EEG signals Non-focal EEG signals t-value

SwnAvg 0.1764± 0.0782 0.2874± 0.1230 5.3831

RwnAvg 0.0970± 0.0617 0.1810± 0.1023 4.9688

TwnAvg 0.0904± 0.0521 0.1606± 0.0813 5.1419

FzenAvg 0.2841± 0.0321 0.3254± 0.0400 5.6913

Hen1Avg 0.3002± 0.0470 0.3304± 0.0628 2.7250

Hen2Avg 0.1212± 0.0499 0.1536± 0.0676 2.7228

PenAvg 0.9414± 0.0205 0.9698± 0.0196 7.0752
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Figure 10. Plot of average classification accuracy (obtained using the LS-SVM classifier)

versus the number of features for various feature ranking methods.
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Table 3. Classification accuracy (%) obtained using different classifiers for features extracted

from various sub-bands of DWT. PNN, probabilistic neural network; KNN, k-nearest

neighbour; LS-SVM, least squares support vector machine.

DWT based

decomposition level
Classifier ROC

Student’s Bhatacharyya
Entropy Wilcoxon

t-test space algorithm

Second

KNN (k = 1) 72 75 75 75 75

PNN (σ1 = 0.41) 79 81 80 80 80

Fuzzy (R = 0.1) 80 79 81 81 81

LS-SVM (σ2 = 3.6) 77 79 81 82 81

Third

KNN (k = 1) 75 75 70 70 70

PNN (σ1 = 0.21) 79 78 79 79 79

Fuzzy (R = 0.1) 81 81 80 81 80

LS-SVM (σ2 = 4.2) 81 80 79 78 80

Fourth

KNN (k = 1) 70 70 74 68 72

PNN (σ1 = 0.31) 80 80 78 75 76

Fuzzy (R = 0.1) 82 82 81 82 79

LS-SVM (σ2 = 4.2) 84 84 81 83 81

Fifth

KNN (k = 1) 61 61 63 68 68

PNN (σ1 = 0.21) 75 75 75 75 79

Fuzzy (R = 0.1) 78 78 78 79 81

LS-SVM (σ2 = 8.6) 77 78 77 77 79

Sixth

KNN (k = 1) 70 67 70 67 71

PNN (σ1 = 0.21) 73 75 73 75 75

Fuzzy (R = 0.1) 78 78 78 76 78

LS-SVM (σ2 = 6.8) 76 77 76 78 77

Table 4. Best performance of the proposed system using different ranking methods. Acc,

accuracy; Sen, sensitivity; Spe, specificity.

Ranking method Number of features Acc (%) Sen (%) Spe (%)

Bhattacharyya space algorithm 7 81± 8.75 78± 14.75 84± 12.65

Student’s t-test 3 84± 10.74 84± 15.77 84± 12.66

Wilcoxon 4 81± 12.86 80± 21.08 82± 19.88

ROC 3 84± 10.74 84± 15.77 84± 12.66

Entropy 5 83± 10.59 82± 14.75 84± 12.64

Table 2 shows the ranges of extracted entropy features for focal and non-focal classes of EEG signals

and the corresponding t-values. It can be observed that PenAvg, FzenAvg and SwnAvg are more suitable

for the discrimination of focal and non-focal EEG signals. These selected features are used to develop

an FNFI for the discrimination of focal and non-focal classes. In (20), the values of the coefficients α1,

β1 and γ1 computed using GA are −1, −14 and −3, respectively. Figure 11 represents the distribution

of the FNFI for focal and non-focal EEG signals. It can be observed in Figure 11 that FNFI results in the

clear separation between two classes.
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Figure 11. Distribution plot of FNFI for focal and non-focal EEG signals.

4. Discussion

The purpose of this study is to analyze the EEG signals acquired from the focal and non-focal area

of epileptic brain by applying wavelet transform in order to localize the epileptogenic focus. Due to

non-stationary nature of EEG signals, DWT is used to analyze focal and non-focal EEG signals. In

order to determine the suitable DWT level, classification performance is evaluated using entropy features

extracted from the second to sixth levels. We have obtained the highest classification performance using

entropy features computed from the fourth-level DWT.

In [9], the randomness, non-linear independence and stationarity tests have been performed using

surrogate analysis. This study has shown that EEG signals recorded from the epileptic brain area

are more non-linear, less random and more stationary as compared to the EEG recordings from the

nonepileptogenic brain area. Nonlinearity in focal and non-focal EEG signals has been studied using

the non-linear prediction error and rank-based prediction score [63]. In this study, it is indicated that

the degree of the non-linear deterministic structure is higher in focal EEG signals than non-focal EEG

signals. Furthermore, non-focal EEG signals are found to be more non-stationary, as compared to focal

EEG signals. In another study on the same database [64], univariate and bivariate recurrence network

measures are applied to test the randomness and nonlinearity of focal and non-focal EEG signals. The

average clustering coefficient, assortativity and average cross-clustering coefficients are found to be

suitable to discriminate focal and non-focal EEG signals. This implies that focal EEG signals have

a higher degree of structural complexity and interdependency as compared to non-focal EEG signals.

Entropy is a non-linear parameter; hence, it can effectively capture the non-linear activities of the

central nervous system and human brain [2,13,14]. The box plots depicted in Figures 5–9 show that

the SwnAvg, RwnAvg and TwnAvg consistently have lower values for focal EEG signals as compared to

non-focal EEG signals for all levels of DWT. It can also be observed that as the level of DWT-based

decomposition increases, the entropy values of SwnAvg, RwnAvg and TwnAvg also increase. The

PenAvg, FzenAvg , Hen1Avg and Hen2Avg also exhibit higher values for non-focal EEG signals as
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compared to focal EEG signals from the second to fourth levels of DWT decomposition. The PenAvg,

Hen1Avg and Hen2Avg show smaller values for focal EEG signals at the fifth level of DWT as compared

to non-focal EEG signals. The observed trend of entropy features from the second to fourth level of

DWT-based decomposition suggests that the values of entropy features for focal EEG signals are smaller

than non-focal EEG signals. The entropy of a signal measures the complexity present in the signal [24].

A lower value of the entropy indicates the presence of less complexity and more regularity in the signal.

In other words, focal EEG signals are more regular may be due to the synchronized electrical activities

of neurons in the epileptogenic brain area.

In [65], the temporal dynamics of epileptogenic focus is studied using the frequency-entropy (FE)

templates. In this method, the FE template of the inter-ictal recording is compared with the reference

template in different electrodes, and it is suggested that the high template similarity can be used as an

indicator of epileptogenic focus. In [66], the delta asymmetry is shown to be useful for epileptic focus

determination in 83% of patients. In [67], an algorithm for focus localization is presented using improved

transfer entropy measures. These information flow-based measures reliably identified the epileptogenic

focus in four patients. The local field potential synchrony showed lower values in seizure-generating

brain [68]. They concluded that the epileptic brain region is functionally isolated from other brain

regions. In these methods, the epileptogenic zone is localized using different non-linear parameters on

the recorded EEG signals. In the proposed method, we have classified the EEG signals recorded from

the focal and other areas of brain, which can be used for epileptogenic focus localization. We have

compared our proposed method with the existing automated methods, which used the same database

(Table 5). In [69], two subsets of focal and non-focal EEG classes of sizes of 50 and 750 pairs of

EEG signals are analyzed. Only the single-channel recordings of focal and non-focal EEG signals are

used for classification. In order to classify focal and non-focal classes, the authors have used delay

permutation entropy (DPE) and the SVM classifier. They obtained classification accuracy of 84% and

75% for the first 50 sets and 750 sets of EEG signals of focal and non-focal classes, respectively. In [70],

the authors have classified only the first 50 sets of EEG signals of focal and non-focal classes. The

features utilized to perform classification are average sample entropy (ASE) and average variance of

instantaneous frequencies (AVIF) of intrinsic mode functions (IMFs) of EEG signals. They have reported

a classification accuracy of 85% using the LS-SVM classifier. In [28], entropy features are extracted from

the IMFs of EEG signals of focal and non-focal classes. Average Shannon, Rényi, approximate, sample

and phase entropies are used for the classification of focal and non-focal EEG signals. These average

entropies coupled with the LS-SVM classifier resulted in 87% classification accuracy. In these studies,

features did not show any particular trend across various IMFs. However, in this study, we can clearly

observe that entropy values for focal EEG signals are smaller than the non-focal EEG signals. This

trend indicates that the epileptogenic brain area is less complex. Hence, the identification of focal and

non-focal EEG channels can be used to characterize the epileptogenic focus.

It can be observed from Table 3 that the standard deviation of the classification performance measures

is high. Hence, we developed an index to discriminate the focal and non-focal EEG classes. In this

work, an integrated index and automated system are developed for the discrimination of focal and

non-focal EEG signals. It can be seen from Figure 11 that these two classes are clearly separable
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using a single-number FNFI. Thus, the FNFI can be helpful for epileptologists to determine the

epileptogenic focus.

The proposed system has the following advantages:

• A novel discrimination index, FNFI, is proposed using three features that can identify focal and

non-focal EEG signals using a single number.

• This integrated index can be used by epileptologists to cross-check their diagnosis and, hence, can

reduce their workload significantly.

The limitation of the present study is the use of a small EEG database. The database used in this study

contains only 50 pairs of focal EEG signals and 50 pairs of non-focal EEG signals. In order to apply

the proposed method to clinical purposes, a more exhaustive study with a database containing a large

number of EEG signals recorded from a number of subjects is required.

Table 5. Comparison of studies performed on the Bern-Barcelona database for automatic

classification of EEG signals of focal and non-focal classes using the same database.

DPE, delay permutation entropy; ASE, average sample entropy; AVIF, average variance of

instantaneous frequency; IMF, intrinsic mode function.

Authors Datasets Features Classifiers
Ten-fold

cross-validation used

Classification

accuracy (%)

Zhu et al. [69]
50 signals

DPE SVM No
84

750 signals 75

Sharma et al. [70] 50 signals ASE, AVIF measures from IMFs LS-SVM Yes 85

Sharma et al. [28] 50 signals Entropy measures from IMFs LS-SVM Yes 87

This work 50 signals Entropy features from DWT
KNN, PNN, fuzzy

Yes
FNFI clearly

and LS-SVM discriminates two classes

5. Conclusion

In this paper, a new method for the classification of focal EEG signals using an integrated index

developed based on entropies is proposed. This technique helps to detect the unknown class of EEG

signal using a single number. Furthermore, we have used entropy-based features computed from the

DWT of EEG signals to perform the classification. We have also used various ranking methods for

feature selection. In this work, Student’s t-test- and ROC-based ranking methods are found to be most

suitable. We have achieved the highest average classification accuracy of 84%, sensitivity of 84% and

specificity of 84% using the LS-SVM classifier. Our study suggests that the focal EEG signals are

more regular compared to non-focal EEG signals, as all entropy measures of focal EEG signals are

smaller than non-focal EEG signals. By separating the EEG signals from focal and other areas of brain,

the epileptogenic focus can be determined. Therefore, this novel index and proposed computer-based

automatic diagnosis system can be used to identify the area of epileptogenic focus during epilepsy

screening. The FNFI devised using three entropy features helps to discriminate focal and non-focal

EEG signals.
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In the future, the proposed methodology can be evaluated on the entire dataset. The proposed method

can be studied to discriminate normal and abnormal EEG signals, like autism, Alzheimer’s disease,

depression, etc.
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