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Abstract: This work presents a new general purpose classifier named Averaged
Extended Tree Augmented Naive Bayes (AETAN), which is based on combining the
advantageous characteristics of Extended Tree Augmented Naive Bayes (ETAN) and
Averaged One-Dependence Estimator (AODE) classifiers. We describe the main properties
of the approach and algorithms for learning it, along with an analysis of its computational
time complexity. Empirical results with numerous data sets indicate that the new approach is
superior to ETAN and AODE in terms of both zero-one classification accuracy and log loss.
It also compares favourably against weighted AODE and hidden Naive Bayes. The learning
phase of the new approach is slower than that of its competitors, while the time complexity
for the testing phase is similar. Such characteristics suggest that the new classifier is ideal in
scenarios where online learning is not required.

Keywords: classification; tree augmented Naive Bayes; model averaging

1. Introduction

Bayesian network classifiers are based on learning the relations of (conditional) independence among
variables (also called attributes) in a domain in order to predict the label (or state) of a targeted variable
(also called class). They have been shown to perform well with respect to other general purpose
classifiers [1,2]. Some well-known examples are the Naive Bayes and the Tree Augmented Naive
Bayes (TAN) classifiers. The Naive Bayes has a very straightforward approach of assuming that all
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attributes are parented by the class and are conditionally independent of each other given the class.
TAN on the other hand weakens this assumption of independence by using a tree structure wherein each
attribute directly depends on the class and one other attribute. Both of these classifiers are based on
the Bayesian networks [3,4]. Because Naive Bayes uses a much simpler model, it generally fits data
less well than TAN and so is less likely to overfit compared with TAN, which forces attributes to be
dependent on each other. Irrespective of their structural constraints, Naive Bayes and TAN have been
shown to perform extremely well when compared to unrestricted Bayesian network classifiers [2] (that
is, Bayesian networks without any constraint on their graph structure). Unrestricted Bayesian networks
have also a disadvantage in terms of computational complexity: Learning their structure (or essentially
the Markov blanket of the class node) is an NP-hard task [5,6]. In this work we focus on Bayesian
network classifiers that can be learned exactly and efficiently from data, that is, we aim at learning
both the structure and the parameters of such networks with a tractable exact approach. Learning can
be performed in a generative manner (aiming at the joint distribution) or in a discriminative way (with
respect to the targeted class variable). Because we are interested in exact and efficient learning, we
choose to perform generative learning. Such decision precludes us from using discriminative learning
of Bayesian network classifiers [7–10], which have been shown to perform well even though learning
is conducted using approximate methods. On the other hand, our focus on exact and efficient learning
allow us to conclude that the differences in the results are actually differences in the quality of the
models and not due to some possibly sub-optimal solution during learning, while we acknowledge that
other classifiers with greater accuracy (but approximate learning) might exist if we expanded our scope.

Very recently, the Extended TAN (ETAN) classifier [11,12] has been created to fill the gap in model
complexity between Naive Bayes and TAN, in that it can detect the best model of dependencies among
attributes without forcing them to be either conditionally independent or directly dependent. This
approach allows ETAN to adapt to the characteristics of the data and usually produces models that fit
better than both TAN and Naive Bayes while avoiding increased complexity. It is empirically shown that
ETAN achieves classification accuracy comparable to the Averaged One-Dependence Estimator (AODE)
classifier, one of the state-of-the-art general purpose classification methods [13]. However, ETAN is still
usually outperformed by AODE.

Herein we present two simple improvements to ETAN that we can show to be effective. The first
improvement builds on the structure of dependencies of ETAN by extending the search space of models
that is captured by ETAN to include even further models of (conditional) independence among the
variables in the domain. This idea can fit the data better than ETAN can. The second and possibly
more significant extension made, is to build upon that by using a concept of model averaging: instead
of picking the most probable model of independences, we average over a set of possible models. This
is a promising approach as it goes in the direction of a full Bayesian estimation for the model. In fact,
AODE—a high performing classifier—uses a similar technique. Our approach is different from AODE
in that by building upon ETAN we have a wider range of possible models when compared with AODE
(which averages only Naive Bayes classifiers), so in theory our classifier should build better models.
We will empirically demonstrate this assertion. Some classifiers in the literature are related to this work
and deserve a mention. Keogh and Pazzani [14] propose an extension of Naive Bayes that goes in the
same direction of AODE and AETAN, however their approach is not globally optimal. Qiu et al. [15]
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build a similar graph structure as AODE, but use a discriminative learning approach. Other attempts to
improve on Naive Bayes and TAN have been proposed [16,17], but they usually do not focus on exact
and efficient learning.

This document is divided as follows. Section 2 describes the problem of classification and the most
common Bayesian network classifiers. These are general purpose classifiers, in the sense that no specific
domain knowledge or other information is exploited but the data set. Section 3 describes the accuracy
measures that are used for comparing classifiers in this work, and then Section 4 presents the new
classifier and the details on how to implement it. Section 5 describes our experimental setting and
results, and finally Section 6 concludes the work and points to future developments.

2. Background

We assume that a data set D = {D1, D2, . . . , Dm} without missing values is available, where each
Di is a vector observation for the n + 1 variables X, composed of a target (or class) variable C and n
covariates (or attributes) Y. By using these data, we want to build a probabilistic modelM with which
we can evaluate the posterior probability ofC given a vector y of observations for Y to make a prediction
about the unknown class label. This problem is usually called supervised classification. That is, given a
classC ∈ X and some attribute observations y, where Y = X\{C}, we use the classifierM, which was
previously built from D, to calculate the posterior probability function pM(C|y), which can then be used
for instance to guess the most probable label of C. This probability function pM is obtained from the
distribution that we have learned from D, which might underlying have a complicated set of conditional
independences among variables in X. This set of conditional independences is encoded by a directed
acyclic graph (DAG) where each variable is associated to a node (by a one-to-one correspondence, so we
might refer to either nodes or variables entailing the same meaning) in the graph and the arcs are used to
define relationships between nodes. An arc from Xi to Xj denotes that Xi is a parent of Xj (and so Xj

is a child of Xi). The DAG represents a Markov condition: every variable is conditionally independent
of its non-descendent variables given its parents. By using such a representation, we can write

pM(C|y) ∝ pM(C|πC)
n∏
i=1

pM(yi|πYi)

where πYi and πC are observations for the parents of Yi and C, respectively, such that they are consistent
with the vector y. Hence, the challenge is to build this modelM, composed of a DAG G and probability
functions pM(X|ΠX), for the variables X ∈ X.

To fulfill the goal of building M, we take the (training) data set D and find G that maximizes its
posterior probability, that is, G∗ = argmaxG∈G p(G|D), with G the set of all DAGs over node set X and

p(G|D) ∝ p(G) ·
∫
p(D|G,θ) · p(θ|G)dθ (1)

where p(θ|G) is the prior of θ for a given graph G, θ = {θijk}∀ijk is the entire vector of model
parameters such that θijk is associated with p(Xi = k|Πi = j), where k ∈ {1, . . . ri}, j ∈ {1, . . . , rΠi}
and i ∈ {0, . . . , n} (rZ =

∏
X∈Z rX denotes the number of states of the joint variable Z and rX the
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number of states of a single variable X). The prior is assumed to be a symmetric Dirichlet with positive
hyper-parameter α∗:

p(θ|G) =
n∏
i=0

rΠi∏
j=1

Γ

(
α∗

rΠi

) ri∏
k=1

θ
α∗

rXi
rΠi
−1

ijk

Γ( α∗

rXirΠi
)

(2)

α∗ is usually referred to as the Equivalent Sample Size (ESS). The value in Equation (1) is also
known as the Bayesian Dirichlet Equivalent Uniform (BDeu) score [18,19], where we assume parameter
independence and modularity [20]. We further assume that there is no preference for any graph and
set p(G) as uniform, so it can be rewritten as sD(G) = p(D|G). Under these assumptions, it has been
shown [19] that the graph maximizing its posterior probability is the argument of

max
G

n∑
i=0

rΠi∑
j=1

lΓ( α
∗

rΠi
)

lΓ( α
∗

rΠi
+Nij)

ri∑
k=1

lΓ( α∗

rXirΠi
+Nijk)

lΓ( α∗

rXirΠi
)

(3)

where lΓ is the log-gamma function, Nijk indicates how many elements in D contain both Xi = k and
Πi = j. The values {Nijk}ijk depend on the graph G (more specifically, they depend on the parent set
Πi of each Xi), so a more precise notation would be to use NΠi

ijk instead of Nijk, which we avoid for ease
of exposition.

In order to find the graph representing the best set of conditional independences over the space of all
possible DAGs G, multiple approaches have been proposed in the literature, including score properties to
reduce the search space (De Campos and Ji [21]), dynamic programming (Silander and Myllymaki [22]),
branch-and-bound [23], A∗ and path finding methods [24], mixed integer linear programming [25],
among others. These methods do not scale with the number of variables, which is nothing but expected,
as the problem is known to be NP-hard in general and even if we limit each node to have at most two
parents [6,26]. Therefore, some simplification assumptions must be made in order to achieve practical
running times and tractable computation.

There are two main possibilities for building classifiers on top of Bayesian networks that are tractable:
the Naive Bayes classifier and the Tree Augmented Naive Bayes (TAN) classifier. The Naive Bayes
classifier (equivalently a log-linear model) is the simplest of the Bayesian network classifiers, by
assuming that pM(Yi|C, Yj) = pM(Yi|C) for any i 6= j. The graphical representation of this is that
of a directed tree with the class, C as the sole root and with all attributes being leaves with the class as
their only parent, the example in Figure 1b illustrates it. As such, a Naive Bayes classifier has a constant
structural shape irrespective of the training data. This restriction will often lead to underfitting on the
part of a Naive Bayes classifier, however it still performs quite well (when scored on zero-one accuracy;
see Section 3 for a description of accuracy measures) [27,28]. The question of why the naive Bayes does
so well despite its’ deficiencies has been attempted to be answered by Friedman [29], among others.
Friedman also suggested that misclassification error be decomposed into bias and variance errors; in
doing so we can represent both the error from erroneous assumptions made during learning in bias error
and the error from the sensitivity of the parameters of the classifier to the training data in variance
error. In these terms, the Naive Bayes classifier has low variance—as it does not have a large number of
parameters to estimate; but high bias due to its strict assumption of independence.
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(a) (b)

(c) (d)

Figure 1. Some examples of the different structures possible within the classifiers we have
written about here. (a) Possible with ETAN; (b) Possible with naive or ETAN; (c) Possible
with TAN or ETAN; (d) Possible with ETAN.

The tree augmented Naive Bayes (TAN) classifier, presented in [29], was an attempt to reduce this
high bias by relaxing the assumption of independence between attributes. It does this by allowing a more
complex graph model in which each attribute has the class and one other attribute as its parents—except
a single attribute which has only the class as a parent. This approach can be seen as a middle ground
between general Bayesian networks which can learn without constraints and the rigid structure of naive
Bayes, in which each attribute has only the class as a parent. As we can see in [2,30–32], TAN is shown
to not only outperform general Bayesian networks, but Naive Bayes as well. Figure 1c shows a possible
graph model with TAN from which we can see that compared with the naive model in Figure 1b, a
more complex and possibly more fitting model can be learned. Under TAN we now see that two of
the attributes in our example are dependent upon the third. Also of note is that if one were to remove
the class (including its arcs) from the TAN classifier model, so that the graph was made up only of the
attributes, then we would now be left with a directed tree; this is the origin motivation of its name.

By using the BDeu scoring function, one can devise an efficient algorithm for TAN, because BDeu is
decomposable, that is, p(G|D) can be written as a sum

∑n
i=0 sD(Xi,Πi) of local computations involving

a node and its parents in the graph G. By also using the likelihood equivalence property of BDeu,
that is, a score function is likelihood equivalent if given two DAGs G1 and G2 over X where the set of
conditional independences encoded in G1 equals that of G2, then we have p(G1|D) = p(G2|D), then one
can use a simple minimum spanning tree algorithm to find the best possible graph G∗ to build the TAN
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classifier [33] in quadratic time in n: G∗TAN = argmaxG∈GTAN
p(G|D),wherein GTAN is the set of all the

TAN structures with nodes X.
Note that TAN forces a tree to cover all the attributes, as well as ensures that they are all children

of the class. This might be undesirable, if the data are not sufficient to lead to such a complex structure
of dependencies. With that in mind, very recently we have proposed the Extended TAN (or ETAN)
classifier [11], intended to allow a trade-off in the model complexity between the very simple Naive and
the more sophisticated TAN models. ETAN has the additional ability of being able to learn from data
in which circumstances an attribute Yi should be a child of C, as well as to identify whether attributes
should be directly dependent on each other or not without having to force a tree to cover them all. More
formally, we can define the ETAN graph (representing its conditional independences) as a DAG such
that, for each attribute Yi, |Πi| ≤ 1, or |Πi| = 2 and Πi ⊇ {C}. The class C still has no parents. So,
we search for G∗ETAN = argmaxG∈GETAN

p(G|D), where GETAN are all DAGs satisfying the aforementioned
restrictions. In Figure 1a,d we can see some structures that are possible within the rules of ETAN. We
point out that the ETAN graphs encompass both the Naive Bayes and TAN graphs. In this case, the
implementation relies on the well-known Edmonds’ algorithm [34] (also attributed to [35]) as means
for finding the ETAN graph of maximum posterior probability. While much more complicated in its
implementation, ETAN can still run in quadratic time in n [12].

3. Accuracy Measures

Clearly we must have some way of measuring the accuracy of a classifier in order to understand which
is the best for our purposes. The first measure of quality of a given classifier is the value of the posterior
probability of its graph G (or equivalently under the given assumptions the probability p(D|G) of the
training data under such model), also called Bayesian Dirichlet equivalent uniform (BDeu) score [18].
This is a measure of fitness and not of classification accuracy, but it is still very relevant to understand
the difference between the approaches.

When we compare the effectiveness of the classifiers in our testing data (which is not used for inferring
the classifiers), two main measures can be used [4]. The zero-one accuracy is a measure of correctly
predicted class labels. So if we let T = (y1, c1), . . . , (yN , cN) be the testing instances yi and their
corresponding class labels ci, where yi is a vector observation for the attributes Y as defined previously,
then the zero-one accuracy is such that

zo(M,T) =
1

N

N∑
i=1

I

(
ci = argmax

j
pM(C = j|yi)

)
,

where I is the indicator function, that is, the percentage of successfully classified labels. Another
important measure is the log-loss function. Simply put, the objective of the log-loss function is to
approximately compare the posterior probability generated by the classifier M with the true posterior
probability of the class using the Kullback-Leibler distance [36]. Note that this is an approximation, as
only with the number of testing samples N →∞ we would obtain the true difference between them. We
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want the estimated posterior probability of the class to be as close as possible to the true one, therefore
the most accurate classifier in this case is that which has the lowest log loss:

logl(M,T) = −
N∑
i=1

log(pM(C = ci|yi)).

These measures are going to be used in Section 5 to evaluate the quality of the classifiers.

4. Averaged ETAN

In [12] it has been shown that the ETAN classifier performs quite well; in time complexity it is
not worse than TAN, and it generates models that fit the data better than both TAN and Naive Bayes.
Although TAN is shown to have a better zero-one accuracy in most cases, the log-loss accuracy of
ETAN was shown to be significantly better than TAN—making it a good choice in situations where an
accurate model of the data is as important as an accurate classification result. It was also found that
the performance of ETAN increases proportionally to the number of attributes in the domain. However,
ETAN was only slightly competitive with the Averaged One-Dependence Estimators (AODE) classifier,
one of the state-of-the-art general purpose classification methods [13]. The idea behind AODE is to
choose an attribute and elect it to be a parent of the class, while keeping the remaining graph constraints
unchanged. Because AODE is based on the Naive Bayes classifier, the result is a graph that has the
class plus a super attribute linked together, and then all other attributes as children of them both. We
extend such an idea with the already good properties of ETAN to create the so-called Averaged ETAN
(or AETAN).

First, we widen the range of possible models of ETAN by adding the possibility of a super attribute
on top of the existing ETAN algorithm. The super attribute is an attribute S chosen to act as a parent of
the class C. We iterate over all possible attributes one at a time (and also without any super attribute, in
order to ensure that our approach generalizes ETAN). For each candidate super attribute, we find the best
ETAN graph over the remaining attributes Y \ {S} such that S is a parent of C. An example is shown
in Figure 2.

Figure 2. An example of a new structure possible with Extended Tree Augmented Naive
Bayes (ETAN)pp.
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All of these discovered models MS and their graphs GS are stored into an averaged model M,
together with their probabilities p(GS,D). Then the class prediction for a new observation vector y

under averaging modelM is computed by the class posterior probability function as:

pM(C|y,D) ∝
∑
GS

p(GS,D) · pMS
(C,y|GS,D). (4)

Such averaging is supposed to improve classification accuracy, as it makes the inference process closer
to a full Bayesian approach (even if the averaging is performed only over a very small set of graphs).
In spite of that, this averaging usually has the effect of increasing the accuracy of classification while
reducing the impact that any single graph has on the overall result. The non-obvious part is how to learn
an ETAN model with an extra super attribute S.

The implementation of AETAN is obviously based on that of ETAN, but some non-trivial
improvements are needed. Algorithm 1 contains the pseudo-code for AETAN. We give as input
the variables X and a score function sD, as the method works with any score function which is
decomposable. In each main loop, the algorithm simply adds the resultant graph into a list of all inferred
graphs list; we loop through adding the best graph for each class and super attribute combination to the
list. Once finished, we return the list of graphs ready to be averaged at the time of testing (the probability
of each of them, which is proportional to their score, is also returned).

This implementation first initializes a temporary graph through the call to ArcsCreation and then
makes use of Edmonds’ algorithm for finding the minimum directed weighted spanning forest. The
overall time complexity is O(n3m), which is n times slower than ETAN or TAN. This comes from a
simple analysis of ArcsCreation, which is O(n2m) and Edmonds’ algorithm, whose contract step is
O(n2) while its expand step is O(n). After the list of models is inferred, the testing procedure as defined
in Equation (4) takes time O(n2) per evaluation, which is asymptotically the same time complexity as
that of AODE (but much slower than TAN and ETAN).

Algorithm 1 AETAN(X, sD)

1: list← ∅
2: for all S ∈ X \ {C} do
3: (arcs, otherParents)← ArcsCreation(X, S, sD)

4: G ′ ← (X, arcs)
5: EdmondsContract(G ′)
6: G∗ ← null

7: for all root ∈ X \ {C, S} do
8: in← EdmondsExpand(root)
9: G ← buildGraph(X, root, in, otherParents)

10: if sD(G) > sD(G∗) then
11: G∗ ← G
12: list← (list, (G∗, sD(G∗)))

return list

For each possible S, we first create the arcs that will be given to Edmonds using the function
ArcsCreation (presented in Algorithm 2), by taking the highest scoring edge for each pair while testing
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the worth of having the super attribute and the class as possible additional parents. The logic is
straightforward, and the important characteristic is that those decisions can be taken locally as they
never yield directed cycles in the resulting graph. The variable otherParents is used to keep track of
which of the four combinations of parents was used in the creation of the edge, for use later. We do
not include these parents in the graph until after Edmonds’ algorithm has finished (so we store them for
later inclusion). With the arcs in hands, Edmonds’ creates the directed minimum spanning tree. Finally,
Algorithm 3 returns a graph using the result of Edmonds and the stored parent sets. More details on
Edmonds’ can be found elsewhere [34,37,38].

Algorithm 2 ArcsCreation(X, S, sD)

1: for all Xi ∈ X \ {C, S} do
2: otherParents[Xi]← max(sD(Xi, {C, S}), sD(Xi, {C}), sD(Xi, {S}), sD(Xi, ∅))
3: arcs← ∅
4: for all Xi ∈ X \ {C} do
5: for all Xj ∈ X \ {C} do
6: 3Parents← sD(Xi, {C, S,Xj})
7: 2ParentsClass← sD(Xi, {C,Xj})
8: 2ParentsSA← sD(Xi, {C,Xj})
9: onlyAttrib← sD(Xi, {Xj})

10: w′ ← max(sD(Xi, ∅), sD(Xi, {C}, sD(Xi, {S}), sD(Xi, {C, S})))
11: w ← max(3Parents, 2ParentsClass, 2ParentsSA, onlyAttrib)− w′

12: if w > 0 then
13: Add Xj → Xi with weight w into arcs
14: otherParents[Xj → Xi]← max(3Parents, 2ParentsClass, 2ParentsSA, onlyAttrib)

15: else
16: otherParents[Xj → Xi]← otherParents[Xi]

return (arcs, otherParents)

Algorithm 3 buildGraph(X, S, in, otherParents)

1: G ← (X, ∅)
2: for all node ∈ X \ {C, S} do
3: Πnode ← ∅
4: if in[node] 6= null then
5: Πnode ← Πnode ∪ {in[node]} ∪ otherParents[in[node]→ node]

6: else
7: Πnode ← Πnode ∪ otherParents[node]

return G

The overhead of learning AETAN (the creation of multiple ETAN with super attributes) makes it
slower than ETAN, as we will see in the experiments.
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5. Experiments

We run experiments with the following Bayesian network classifiers: Naive Bayes, TAN, ETAN,
AETAN (the new approach), AODE, Weighted AODE (or WAODE) [39] and Hidden Naive Bayes
(or HNB) [40]. All experiments are executed within Weka (Waikato Environment for Knowledge
Analysis [41,42]), for which we developed an extension with the ETAN and AETAN methods. The
experiment results we show herein were generated by learning our classifiers using 20 runs of 5-fold
cross-validation, and so each classifier’s learning procedure has been called 100 times per data set, and
tested over the extra fold also 100 times. We use the Bayesian Dirichlet equivalent uniform (BDeu)
score with hyper-parameter α∗ = 5 unless specified (it is not well understood how this affects the
accuracy of classification and we will explore the results of a few different values α∗ as suggested in the
literature [43–45], but a more detailed study on α∗ is beyond the scope of this work).

As for the data sets, we have chosen 51 data sets from the UCI machine learning repository [46].
These data sets were selected on the basis of number of attributes and number of data samples (enough
to provide for useful analysis) having up to 100 attributes.

In Table 1 we see some interesting statistics about the overall performance of AETAN. It defeats every
other classifier in percentage of correct classifications (zero-one accuracy) and log loss values by a good
margin (except for HNB, which is comparable in zero-one accuracy and root mean squared error, but
is inferior in log loss compared to AETAN). We point out that our analysis and the presented p-values
have not taken into account multiple test correction, but as can be seen from the values in the table, the
conclusions are the very same even if that is considered.

Table 1. Table showing Averaged Extended Tree Augmented Naive Bayes (AETAN) versus
other classifiers. W means AETAN wins (is superior to the other classifier), T is a tie, and L
represents losses. Pvalues correspond to Wilcoxon signed-rank test. RMSE is the root mean
squared error as obtained by Weka [42]. Methods were used from Weka and its plugins.

Classifier
Zero-one Accuracy Log Loss RMSE

W/T/L Pvalue W/T/L Pvalue W/T/L Pvalue

Naive 35/0/16 6× 10−4 46/0/5 5× 10−9 41/0/10 3× 10−7

ETAN 42/0/9 6× 10−7 49/0/2 1× 10−9 49/0/2 7× 10−10

TAN 32/0/19 0.04 43/0/8 2× 10−7 38/0/13 9× 10−5

AODE 35/0/16 0.03 37/0/14 2× 10−4 38/0/13 6× 10−4

WAODE 33/0/18 0.07 36/0/15 1× 10−3 36/0/15 2× 10−3

HNB 26/0/25 0.42 30/0/21 7× 10−3 25/0/26 0.85

Naive (α∗ = 2) 34/0/17 1× 10−3 46/0/5 2× 10−9 41/0/10 3× 10−7

ETAN (α∗ = 2) 40/0/11 5× 10−7 48/0/3 4× 10−9 48/0/3 2× 10−8

AETAN (α∗ = 2) 38/1/12 7× 10−5 44/0/7 6× 10−7 42/0/9 4× 10−7

TAN (α∗ = 2) 34/0/17 0.01 45/0/6 1× 10−8 40/0/11 4× 10−6

AODE (α∗ = 2) 30/0/21 0.20 38/0/13 1× 10−4 37/0/14 2× 10−3

WAODE (α∗ = 2) 30/0/21 0.23 36/0/15 8× 10−4 35/0/16 4× 10−3
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The boxplots shown in Figure 3 show the log loss information in more detail. Each of boxplot relates
the results obtained from the 100 executions of the learning function for each data set (comparisons are
always over the very same training and testing data, for the different classifiers). We see very good
results for AETAN versus ETAN and AODE, even though the magnitude of the improvement is not so
large (still statistically significant). We see that AETAN is on average at least as good as and often
superior to both ETAN and AODE in terms of log loss, with some outliers. Very similar results (in fact
noticeably better, versus Naive and TAN) are not shown.

Figure 3. These graphs show the log loss difference between AETAN and ETAN (Top) and
AETAN and Averaging One-dependent Estimator (AODE) (Bottom). The values are the
difference between the log loss of the first classifier minus AETAN, so higher values mean
AETAN is better.

In a similar way for the zero one accuracy, Figure 4 allows us to see the degree of improvement
between AETAN and other classifiers (namely AODE and ETAN; results for Naive and TAN are omitted
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as they are always inferior to these). Again we see that it is usually slightly better than the others with
some outliers, for example in the vowel data set its classification results were much better than that of
AODE. There were only two losses in which the opposing classifier was much better than AETAN and
these were both under AODE, when using the lung-cancer and primary-tumor data sets. Each of our
boxplots relates the results obtained from the 100 executions of the learning function for each data set.

Figure 4. A comparison of correct classification ratio between AETAN and ETAN (Top)
and AETAN and AODE (Bottom), higher value means AETAN is better as these results are
the accuracy of AETAN divided by the others.

The great advantages of AETAN over its competitors in terms of zero one accuracy and log loss do not
come for free. In Figure 5 we see that AETAN is considerably slower to be inferred than ETAN, which
runs in similar time as TAN and AODE. It is worth mentioning that this difference is significant only for
learning the model. During testing, the time complexity of AETAN is comparable to that of AODE, so
the slower time of AETAN is not a great concern unless the targeted application requires online learning.
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Figure 5. Comparison of computation time to learn the classifier between AETAN and
ETAN, expressed as a ratio of AETAN/ETAN so higher values mean AETAN is slower.

6. Conclusions

In this work we propose a new general purpose classifier called Averaged Extended Tree Augmented
Naive Bayes, or simply AETAN. Its main idea is to combine the good properties of the Averaging
One-dependent Estimator (AODE) and the Extended Tree Augmented Naive Bayes (ETAN) into a single
classifier which could potentially improve on both. Empirical results with numerous benchmark data sets
show that AETAN indeed outperforms the others, with the drawback of larger computational time for
inferring the models. As future work, we intend to explore different score functions and the effect of
the equivalent sample size in the classification results for general purpose Bayesian network classifiers.
We also intend to expand on AETAN towards more general Bayesian networks where exact and efficient
learning is still possible.
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