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Abstract: In this work, the irreversible processes in light heating of Silicon (Si) and 

Germanium (Ge) thin films are examined. Each film is exposed to light irradiation with 

radiative and convective boundary conditions. Heat, electron and hole transport and 

generation-recombination processes of electron-hole pairs are studied in terms of a 

phenomenological model obtained from basic principles of irreversible thermodynamics. 

We present an analysis of the contributions to the entropy production in the stationary state 

due to the dissipative effects associated with electron and hole transport,  

generation-recombination of electron-hole pairs as well as heat transport. The most 

significant contribution to the entropy production comes from the interaction of light with 

the medium in both Si and Ge. This interaction includes two processes, namely, the 

generation of electron-hole pairs and the transferring of energy from the absorbed light to 

the lattice. In Si the following contribution in magnitude comes from the heat transport. In 

Ge all the remaining contributions to entropy production have nearly the same order of 

magnitude. The results are compared and explained addressing the differences in the 

magnitude of the thermodynamic forces, Onsager’s coefficients and transport properties of 

Si and Ge. 
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1. Introduction 

The study of transport phenomena and irreversible processes is necessary in the development of 

many technological devices. Multilayer systems are involved, for instance, in the development of new 

type of coats which have application as glues, filters, among others, as well as in thermoelectrics, 

optoelectronics, solar cells, thermal barriers, mirrors, etc. The effects of light incidence in some 

applications must be understood in order to know how heating affects the performance of the device. 

Secondary mirrors are used in solar energy concentration devices where high concentrated solar 

radiation heats them degrading their physical properties. An alternative to reduce heat flow in this 

process are photonic crystals which can be designed by minimizing the transferring of energy to the 

structure [1]. Semiconductor technology is being used to exploit the waste heat from various 

household and industrial processes as in electronic, automotive, and other industries. Development of 

new thermoelectric materials for that purpose has been rapid in past few years. The analysis of entropy 

production is being used to characterize materials as, for instance, in the case of ferromagnetic 

materials under the application of oscillating electromagnetic fields [2] or in the case of thermoelectric 

materials in thermal oscillating regimes [3,4]. The study of dissipation and irreversibility in different 

processes in physics and engineering is in the above context a useful tool to found optimization 

procedures. The minimum entropy production principle states that a system evolves in time reaching a 

minimum entropy production rate at the stationary state. This often establishes a relation between 

irreversible processes and optimal performance [5,6]. The investigation of these relationships in 

dielectric thin films constitutes the foundation of the understanding of behavior and performance of 

multilayer systems. This theme has attracted the interest of the scientific community [7–10] and it is 

the one we are interested in. 

In this work, we address the problem of light heating of Si and Ge thin films and study in detail the 

contributions to the entropy production in the system. This involves irreversible processes associated 

with heat transferring, particle transport and generation of electron-hole pairs via light-matter interaction. 

The main interest in considering Si and Ge is due to their importance as constituent materials in the 

field of quantum dots, quantum wires and quantum wells [11]. Here, we quantify and compare the 

entropy generation as produced by dissipative fluxes both in the case of Silicon and Germanium thin 

films. We explain differences in terms of the transport properties of each material as well as the 

magnitude of thermodynamic forces producing fluxes. The modeling is based on balance equations of 

mass and energy obtained from fundamental principles of irreversible thermodynamics. They are 

solved by using a high order numerical method, the so called Spectral Chebyshev Collocation  

method [12,13], in order to validate solutions obtained from Wolfram Mathematica 10.0. The survey is 

as follows. In Section 2 we include a description of the physical model used to study the dissipative 

processes and entropy production in a semiconductor film. The model is obtained from basic principles 

of irreversible thermodynamics by means of a suitable choosing of thermodynamic forces and fluxes. 
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This leads to identify six processes producing entropy in the system related with the heat transport. 

They are particle transport and generation-recombination of electron-hole pairs, besides the absorption 

of light in the medium through two mechanisms, namely, the generation of electron-hole pairs and the 

transferring of energy from the incident light to the lattice. The Chebyshev Collocation method is 

described at the end of this section. Our results concerning the stationary profiles of heat flux, particle 

density distributions and generation-recombination pairs rate as well as the associated entropy 

production to each dissipative process can be seen in Section 3, where it is also included a discussion 

focused to the understanding of the differences in the contributions to entropy production for Si and 

Ge. We end the article with some concluding remarks in Section 4. 

2. Methods 

2.1. The System 

The considered system is schematically shown in Figure 1. It consists of a thin film (in grey) of Si 

(Ge) with thickness L . The incidence of the light beam is from the left as it can be seen. Air is 

assumed to the left of the film and a heat and particle source to the right. This last may be conceived 

like a substrate at constant temperature which conducts charged particles. In the left boundary we 
suppose that the film radiates energy at temperature )0(T  and losses heat by convection. In the right 

boundary the temperature is fixed with value 0)( TLT =  and )()( 00 TnLn = , )()( 00 TpLp = , where 0n  

and 0p  are the electron and hole densities at the fixed value of temperature 0T . Initial conditions are 

represented by uniform distributions of temperature and particle densities. 

 

Figure 1. A schematic view of a Si (Ge) thin film of length L  with incidence of light from 

the left. 

2.2. Mathematical Model 

Due to the progress in the microscaling techniques the film thickness may be reduced to become 

comparable to the phonon mean free path (PMFP). When the thickness is below the PMFP the heat 

and charged particles transport regime becomes of the ballistic type. This may make necessary to use a 

radiative transport equation to describe energy transfer [14]. Otherwise, the transport pertains mainly 

to the diffusive regime. In this work, the film thickness of the film is constrained to be above the 

PMFP in such a way that the classical constitutive equations together with continuity and energy 

conservation equations represent a valid autonomous mesoscopic theory to describe heat and particle 

transport in the system. Combination of the internal energy conservation and the continuity equations 

for electron and holes densities with suitable constitutive equations leads to a transport model where 
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the incident light energy is incorporated as a volumetric heat source to account for the absorption of 

energy by the medium. The three so obtained equations can be solved with the above boundary 

conditions for the temperature and the particle densities to obtain the space distribution of quantities  

of interest. 

We then start by stating the basic assumptions made to formulate the governing equations of 

densities and fluxes [15]: (a) The system is considered as constituted by the host lattice (a particle and 

heat conductor rigid solid) and two species, namely, electrons and holes subjected to drift and 

diffusion. This system is denoted here on as LEH. The lattice is assumed to be non-magnetizable; (b) 

Each of the three components (lattice, electrons and holes) is locally in thermodynamic equilibrium; 

(c) They are able to interchange energy with each other by various scattering mechanisms; (d) The 

three components are in thermal equilibrium; (e) The admissible states of electrons and holes are 

determined by their particle densities and chemical potentials, as well as the local equilibrium 

temperature. For the case of the host lattice its physical states are defined solely by its temperature;  

(f) The internal electric energy is of electrostatic nature and the associated field is given by Poisson 
equation (Equation (A32) below). The electric potential φ  is not a dynamic variable. For a more 

detailed discussion about this point see [15]; (g) The whole system is thermally coupled to the ambient 

and the electromagnetic field of the incident light. 

Some comments on condition d) are in order. The thermal equilibrium among species in the system 

is reached if one assumes that electrons in the conduction band do not have enough energy to produce 

effects such as tunneling and others, but they only stay in the conduction band and then recombine 

with holes. This assumption is supported by the fact that there are no externally applied high electric 

fields that could provide the energy needed for the electrons tunnel out of the material. This led us to 

write the particle flows with constant mobility and diffusion coefficients. In this situation, both the 

lattice and the populations of electrons and holes are not far from the equilibrium, which allows us to 

assume that they are in thermal equilibrium with the lattice. It must be noted that inhomogeneities in 

the electron density and local cross effects in the system (as Seebeck’s) make the electrons in the 

conduction band flow during the time they stay in the conduction band. 

The model derived from the above assumptions is obtained along basic principles of irreversible 

thermodynamics. In order to make this paper self-contained the thermodynamic formalism is exposed 

in detail in Appendix A (see also [16]). 

2.3. The Reduced Model 

The resulting equations are very complicated and highly non-linear. They were simplified through a 

dimensional analysis. The final form of the dynamic equations used to describe heat and particle 

transport can be seen below in Equations (1)–(3). They were obtained from Equations (A1) and (A2) 

and (A34) with Equations (A26)–(A28) and (B1) and the dimensional analysis found in Appendix C. 

The continuity and energy conservation dimensional equations for the stationary state read as follows: 
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where )(xn  and )(xp  are the particle densities of electrons and holes, respectively, )(xT  is the 

thermal equilibrium temperature of the electrons, the holes and the lattice. The quantities ijL  are 

Onsager’s coefficients described in Appendix A, while )(xP  is the energy of incident light transferred 

as heat to the lattice. BK  is the Boltzmann’s constant. It is worth mentioning that in the stationary state 

the generation rate of electron-hole pairs equals the net recombination rate, i.e., 0=− GR . This is the 

reason why the term GR −  does not appear in Equations (1) and (2). The complete reduced equations 

can be seen in Appendix C. 
The potential function φ  of the self-consistent electric field is given by Poisson’s Equation, 

transcribed here from Appendix A: 

( )pnq
xx

−=







∂
∂

∂
∂ φε  (A32)

In the next section we establish the boundary conditions accompanying Equations (1)–(3). 

2.4. Boundary Conditions 

Boundary conditions (b.c.) for temperature and particle densities have been extensively  

studied [17–19]. We assume here radiation and convective b.c. for the temperature equation, Equation (3), 

at the left hand side of the film and Dirichlet b.c. at the right hand side. The last implies that the system 
is in contact with a heat and particle reservoir at a constant temperature 0T  at Lx = . The thermal b.c. 

are then written as: 

( )( ) ( )( )4 4

0

0 0
x

T
K h T T T T

x ∞ ∞
=

∂ = − + εσ −
∂

 (4)

( ) 0TLT =  (5)

In expression (4), h  is the convection coefficient of the air surrounding the thin film on the left and 

ε  and σ  the emissivity of the material and the Stephan-Boltzmann constant, respectively. 

For the particle density equations, Equations (1) and (2), zero particle flux is assumed at the left 
hand side of the film while at the right hand side b.c. are )()( 00 TnLn =  and )()( 00 TpLp = . These 

conditions read as follows (see Equations (A26) and (A27) in Appendix A) 
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As it can be seen, the electron and hole densities have been written in terms of their equilibrium 
values at temperature 0T  in Lx = . In Equations (6) and (7) cN  and vN  are the densities of states in the 

conduction and the valence band, respectively, and gE  is the gap energy of the material. Note that, as 

it can be shown, the continuity equations do not support a finite solution if the particle fluxes are zero 

at both sides of the film and therefore the steady state for particle densities does not exist. This is due 

to the fact that the incident light acts as a continuous source of particles in the system and the walls 
would be preventing the passage of particles outside. Finally, the b.c. for the electric potential φ  in 

Poisson equation, Equation (A32), is taken of Dirichlet type [20]. This condition fixes the zero level of 

electric potential energy at the film walls. It is given as 

.0)()0( == Lφφ  (8)

2.5. Solutions for n , p  and T  

In this short section, we describe how the solutions of the stationary Equations (1)–(3) with b.c. 

Equations (4)–(8) are obtained. First we note that the temperature field becomes decoupled from 

Equations (1) and (2). We then find an analytical solution of Equation (3) for the stationary state, 

obtained with Wolfram Mathematica 10.0, where the source term is taken from Equations (B1). It reads 

xkekekkxT T
bx

T
ax

TT 3210)( +++= −−  (9)

For numerical values of the constants in the above equation see Appendix D. Afterwards the 
continuity Equations (1) and (2) are numerically solved for n  and p  with Mathematica and the 

solutions validated with a high order numerical method described in the next subsection. 

2.6. Spectral Chebyshev Collocation Method 

The numerical method used here is based on the Spectral Chebyshev Collocation (SCC) method 

which assumes that an unknown Partial Differential Equation (PDE) solution can be represented by a 

global, interpolating, Chebyshev partial sum. This form is often convenient, particularly if the solution 

is required for some other calculation where its rapid and accurate evaluation is important. In a  

finite-difference method, the approximation of a derivative at a grid point involves only very few 

neighboring grid values of the function, while the Chebyshev approximation involves all the grid 

values. The global character of spectral methods is beneficial for accuracy. Once the finite Chebyshev 

series representing the solution is substituted into the differential equation the coefficients are 

determined so that the differential equation is satisfied at certain points within the range under 
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consideration. In this spectral method, the PDE equation is required to be satisfied exactly at the 

interior points, namely, the Gauss-Lobatto collocation points given by 

cosi

i
x

N

π =  
 

 (10)

with .1,...,1 −= Ni  

In Equation (10), N denotes the size of the grid. The number of points is chosen so that, along 

with the initial or boundary conditions, there are enough equations to find the unknown coefficients. 

The positions of the points in the range are chosen to make small the residual obtained when the 

approximate solution is substituted into the differential equation. The range in which the solution is 

required is assumed finite, and, for convenience, a linear transformation of the independent variable is 

made to make the new range (−1, 1). 

Finally, an additional property of the spectral methods is the easiness with which the accuracy of 

the computed solution can be estimated. This can be done by simply checking the decrease of the 

spectral coefficients. There is no need to perform several calculations by modifying the resolution, as 

is usually done in finite-difference and similar methods for estimating the “grid-convergence”. A 

further explanation of this spectral method can be found in [12,13]. 

The spatial derivative terms in Equations (1) and (2) were expressed on derivative matrices 

expanded on Chebychev polynomials. The matrix-diagonalization method was used to solve the 

coefficient equation system in physical space directly. A coordinate transformation was necessary 

either to map the computational interval to −1 < x < 1. 

In Section 3 we report and discuss our results concerning the temperature and particle density 

profiles in the stationary state as well as the contributions to the entropy production. 

3. Results and Discussions 

In this section, our main results are displayed and discussed. They were obtained by using the 

values for Silicon (Si) and Germanium (Ge) parameters given in Table 1 and Appendix D. The 
assumed value of the electric field of the incident light is CNE /99.6130 =  which corresponds to the 

intensity of the solar light on earth. The film thickness is 100 nm . The convection coefficient of the air 

surrounding the thin film on the left is taken as 5=h KmW 2/  and the emissivity ε  is 0.88 and 0.09 
for Si and Ge, respectively. Finally, the reference temperature is 3300 =T  K . 

Table 1. Values of physical constants. 0K  is the thermal conductivity, ρ  is the thermal 

resistivity, ng  and pg are electric conductivities of electrons and holes, respectively, gE  is 

the gap energy, α  is the absorption coefficient and η  is the refractive index. 

Material 0K  ( / )W mK  ρ  ( )WmK /  ng  )/1( Ωm  pg  )/1( Ωm  gE  )(eV  α  )/1( m  η  

Si 148  0067.0  0.0002  0.00003  1.12  
7101×  01.4  

Ge 59.9  0167.0  1.601 0.47  0.66  
7107×  01.4  

In Figure 2, it can be seen the source term )(xP  of the energy conservation equation as a function 

of the position within the material. The x  domain has been redefined from ],0[ L  to ]1,1[−  in this and 

the following figures. P  decays much faster in Ge than in Si. In Ge it diminishes almost one order of 
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magnitude in the first third of the length of the medium, while in Si it decrements more or less a half of 

one order of magnitude in the whole length of the device. Moreover, in 1−=x  its magnitude in Ge is 

greater than in Si by almost one order of magnitude. The behavior of P  in the profile allows one to 

understand some of the following results shown in Figures 3–8. 

Figure 2. Absorbed light converted in heat vs. the position in the profile as given by the 
source term P ( )3/1 m  in Equation (B1). Si (left) and Ge (right). 

Figure 3. Stationary temperature (K) profiles for Si (left) and Ge (right). 

Figure 4. Stationary electron density ( )3/1 m  profile for Si (left) and Ge (right). 

In Figure 3, we present the stationary temperature profile for Si (left) and Ge (right) films. We 
remark the parabolic-like form of the profile in both cases. As mentioned, )(xT  was obtained by 

analytically solving Equation (3) in the stationary state with the b.c. (4) and (5). The temperature in the 
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profile is strongly influenced by )(xP  in the energy conservation equation. The displacement of the 

maximum of temperature to the left in both cases (Si and Ge) is due to the decaying behavior of )(xP  

shown in Figure 2. 

Figure 5. Stationary hole density ( )3/1 m  profile for Si (left) and Ge (right). 

Figure 6. Distribution in the profile of entropy production ( )sKmJ 3/  from heat transport. 

The figure on the left corresponds to Si and that on the right to Ge. 

 

Figure 7. Cont. 
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Figure 7. Entropy produced ( )sKmJ 3/  by particle transport processes in Si (left) and  

Ge (right). Above it can be seen the entropy production due to electron flux and below that 

due to hole flux. 

Figure 8. Entropy production ( )sKmJ 3/  from the interaction of the incident light with the 

material. The figure on the left corresponds to Si and those on the right to Ge. 

The stationary electron densities in the profile can be seen in Figure 4 where the left graph 

corresponds to Si and that on the right to Ge. They were obtained by solving Equation (1) in the 

stationary state. It can be seen how the temperature gradient produces a redistribution of the electron 

density in the profile. 

In Figure 5 it can be seen the stationary hole densities in the profile. The figure on the left 

corresponds to Si and that on the right to Ge. The displacement of the maximum density to the left in 

the case of Ge is due to the extreme position of its maximum temperature as seen in Figure 3. Ultimately 

this is a result of the spatial distribution of the light energy transferred to the lattice as inner energy. 

Note that the electron and hole densities for Ge are bigger by a factor of 310  and of 410  than those 

for Si, respectively. This can be understood in terms of the difference in the gap energy in Ge which is 

smaller than that of Si (see Table 1 above). All the particle profiles shown in Figures 4 and 5 were 

obtained by solving Equations (1) and (2) with the stationary profile of the temperature in the system 

and b.c. (6) and (7) for the particle densities and (8) for the electric potential. 

A few words on the dissipative flows are appropriate at this point. The result obtained for the heat 

flux from the numerical temperature distribution (Equation (C3)) shows that it is directed outwards the 

device in the part of the spatial domain to the left of the maximum temperature. On the right of this 
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maximum, it is also directed outwards. This behavior is found for both Si and Ge. Moreover, in the 

case of Ge a constant positive value is observed in practically the whole right part of the domain. The 

electron and hole fluxes have a different behavior. The electrons flow toward the left side in all the 

domain of the film while the holes flow towards the constant temperature side. In this way, the fluxes 

oppose one another in the spatial domain. The generation-recombination of electron-hole pairs 

vanishes in the whole domain as a consequence of the stationary condition, namely 0=+− GR . 

Our next graphs concern the contributions to the entropy production from different dissipative 

processes. They can be seen in Figures 6–8, where the cases of Silicon and Germanium have been 

plotted on the left and on the right respectively. We begin with the entropy produced by the heat flux 

in Figure 6. Both graphs have a minimum entropy production which coincides with the position of the 

maximum temperature in the profile (Figure 3) where the heat flux vanishes. 

The entropy produced by the transport of electrons and holes through the lattice for both Si and Ge 

can be seen in Figure 7. As appreciated in the figure, the entropy production due to the particle fluxes 

is O( 510− ) for electron flux in the case of Si, while it is O( 210− ) for Ge; for holes they are O( 510− ) and 

O( 110− ), respectively. The outstanding differences among the respective entropy productions can be 

explained if one considers two facts: first, the magnitude of the entropy production is mostly 

determined by the term in the chemical potential derivative in Equations (A26) and (A27) for electrons 
and holes. From this it is inferred that the entropy production is determined by the coefficients 11L  and 

21L  for electrons and holes, respectively. Accordingly with Appendix D 11L  and 21L for Ge are bigger 

by a factor of 410  than the values of the same coefficients for Si. It is worth mentioning the fact that 

the entropy production increases toward the constant temperature side in all cases. This is explained by 

the fact that the particle flux also increases toward the same side. 

In Figure 8, we show the entropy produced by the interaction of the light with matter transferring 

energy to the lattice. Clearly, it dominates over all other dissipative processes in the LEH system by 

almost 10 orders of magnitude. The spatial distributions nearly follow the shape of the spatial 

distributions of the source term P  in Figure 2. The final figure of this sequel is that of the partial 

entropy production defined as 

σ σ σ σPARTIAL Jq Jn Jp RG= + σ + +  (11)

This can be seen in Figure 9, where it was plotted by omitting the contribution of the entropy 

produced by the light-matter interaction. If this last is included, the graphs look like the graphs of the 

entropy production due to the transferring of energy from light to the lattice (Figure 8) hiding the 

contribution of all other dissipative effects. Anyway, they adopt the general features of the dominant 

contribution, i.e., the entropy produced by heat transport in the case of Si and the joint effect of all the 

contributions in the case of Ge. 
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Figure 9. Partial entropy production (Equation (11)) in the profile (it does not includes the 

interaction light-matter processes) for Si (left) and Ge (right). The entropy production is in 
( )sKmJ 3/ . 

We finalize this section by showing the global values (the entropy is integrated in the spatial 

domain) of the contributions to entropy production and the total value of it for Si and Ge. Table 2 

contains the data of such values corresponding to heat flux, electron and holes fluxes and  

generation-recombination processes, light energy conversion in heat, as well as the total entropy 

production without the contribution due to the light energy conversion. 

Table 2. Comparison of global contributions to the entropy production from different 
dissipative processes: Heat flux ( qJ ), electron flux ( nJ ), hole flux ( pJ ), electron-hole 

generation-recombination processes ( R  and G ) and conversion of energy light in heat 

( P ). It is also included the electron and hole mean densities. 
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Si 1.891 × 10−3 7.732 × 10−6 5.599 × 10−5 0 1.232 × 107 1.959 × 10−3 1.155 × 1016 4.538 × 1015 

Ge 4.662 × 10−2 2.381 × 10−2 7.999 × 10−2 0 1.238 × 107 1.599 × 10−1 2.567 × 1019 1.634 × 1019 

4. Conclusions 

In this final section, some further comments are included. First, we would like to comment on the 

experimental support needed for any theoretical whose aim is to describe a physical phenomenon. 

Next, we try to justify our numerical model and finally we make general comments on our results. 

Up to the best of the author’s knowledge there are not experimental observations that can be used to 

support the results obtained in this work. In fact, this work has been conceived to motivate 

experimentalists to address the problem of the use of entropy production criterion to optimize thermal 

nanostructured devices. Our aim here is to establish a theoretical and numerical basis to address that 

problem. Nevertheless, the continuity equations in our model (Equations (1) and (2)) admit an 

analytical solution if the temperature is assumed constant in the domain (as indeed it is). We have 
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compared the numerical solutions with the analytical one and have found a great agreement. It seems 

to us that this could justify in some extent the used numerical model. 

The following are final comments on our results. 

(a) It is noted that the temperatures of Si and Ge depend on several factors but mainly on the 

temperature of heat source at 1=x . As a matter of fact, the profile in both cases shows an almost flat 
shape due to the contact of the film with the heat source at a temperature 0T . Its spatial distribution is 

also determined by the magnitude of the absorption coefficient and the energy input due to the incident 

light at 1−=x , as well as the b.c. at the same position. (b) We note that all the profiles in Figures 3 to 

5 corresponding to the temperature and the particle densities show an extreme value at some position 

where the fluxes vanish (in fact, for the particle densities this position is at 1−=x ). This is the reason 

why the corresponding contributions to the entropy production show a minimum (in fact, they vanish) 

at the same position. c) We refer now to the different contributions to entropy production displayed in 

Figures 6 to 8 and the global values shown in Table 2. It is seen that the conversion of light energy in 

heat ( P ) is the dominant irreversible process in both Si and Ge. After this, the hole transport process is 

the most important in Ge while in Si is the heat transport. In Ge the remaining contributions (due to 

heat flux and electron transport) are on the same order of magnitude. In both materials, the smallest 

contributions to the entropy production are the generation-recombination of electron-hole pairs which 

vanish by the stationary condition. d) The fact that the entropy production due to particle transport 

(both electrons and holes) is bigger for Ge than for Si can be understood if one pays attention to the 
differences in the magnitude of Onsager’s coefficients 11L  and 21L . As shown in Appendix D, they are 

bigger by a factor of 410  in Ge than in Si. Their chemical potential gradients are on the same order. e) 

The entropy produced by heat transport process is bigger in the case of Ge than that of Si. The 

temperature gradient is responsible for this difference since in the case of Ge it is one order of 

magnitude bigger than in the case of Si. The thermal conductivities are on the same order. f) The 

summed global contributions to entropy production excepting those coming from the transferring of 
the energy of incident light into the material is represented in Table 2 by 

globalPartialσ . 

To conclude, we summarize this work as follows. We have calculated the contributions to the 

entropy production in Si and Ge thin films with light incidence. The system was considered to be 

constituted by the lattice and two different species, namely, electrons and holes. The model was based 

on principles of irreversible thermodynamics. Heat transfer, particle transport and electron-hole 

generation-recombination processes were included as well as light-matter interaction. The final form 

of balance and constitutive equations for electron density, holes density, internal energy, heat flux, 

electron flux, holes flux and recombination processes, respectively, is shown in Appendix A in 

Equations (A1) to (A8). We have seen that the relative magnitude of thermodynamic forces, Onsager’s 

coefficients and transport coefficients determine and explain the relative magnitude of the 

contributions to the entropy generation in the two materials considered. The most significant 

contribution to the entropy production comes from the interaction of light with the medium in both Si 

and Ge. This interaction includes two processes, namely, the generation of electron-hole pairs and the 

transferring of energy from the absorbed light to the lattice. The last is the dominant irreversible 

process in the LEH system for both Si and Ge. 



Entropy 2015, 17 4799 

 

 

The results contained in this work may be useful to the design of thin films used in electronic 

industry where the control of irreversible processes is an important issue. 
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Appendix 

A. Thermodynamic Formalism 

The governing equations of particle densities and internal energies are written in one dimension  

as [15,16,21,22]: 

GR
x

J

t

n n +−=
∂
∂−

∂
∂

 (A1)

GR
x

J

t

p p +−=
∂

∂
+

∂
∂

 (A2)

u
n n

n n

u J
qEJ P

t x

∂ ∂+ = − +
∂ ∂

 (A3)

u
p p

p p

u J
qEJ P

t x

∂ ∂
+ = +

∂ ∂  
(A4)

u
L L

L

u J
P

t x

∂ ∂+ =
∂ ∂

 (A5)

where sub-indexes n , p  and L  denote electrons, holes and lattice, respectively. n , nJ , p  and pJ  are 

the electron and the hole number densities and the corresponding particle fluxes, respectively; R  is the 

net recombination rate of electrons and holes by photon transitions, G  is the generation of electron-
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hole pairs due to the interaction of the incident light with the lattice; E  is the self-consistent electric 
field described through Poisson’s equation; it is given in terms of an electrostatic potential function φ  

by x∂∂− /φ , and q  the electron electric charge. Since the LEH system is coupled to the radiation field 

of the incident light, internal energy is not conserved. nP , pP  and LP  are the source terms in the energy 

balance Equations (A3)–(A5) of the electrons, holes and the lattice, respectively. In Equations (A3)–
(A5), ju  and u

jJ  ( Lpnj ,,= ) are the internal energies and the corresponding energy fluxes of 

electrons, holes and the lattice, respectively. Note that R−  describes the total balance of generation 

and recombination of electron-hole pairs. It must be remembered that a negative value of R  means 

that generation overpasses recombination of electron-hole pairs. 

Now we make the fundamental assumption that there exist a set of thermodynamic potentials 
),( nuSS nnn = , ),( puSS ppp =  and )( LLL uSS = , which are identified with the entropy density 

functions of each of the components of the LEH system. They are defined through the Gibbs relations: 

dndudST nnnn ν−=  (A6)

dpdudST pppp ν−=  (A7)

LLL dudST =  (A8)

where jT  and jν  ( pnj ,= ) are the temperatures and chemical potentials of electrons and holes, 

respectively. LT  is the temperature of the lattice. We now define the total entropy of the LEH system as 

LpnT SSSS ++=  (A9)

in such a way that by using Equations (A1)–(A8) in the time derivative of Equation (A9) one can 

arrive to the total entropy density balance equation which reads: 

( ) ( )

( )

1 1 1

1 1

uuu
p p pn n nT L

L n p n p

p u u un
n p L n p

n p L n p

p pn nL
n n p p

n p n p L n p

J JJ JS J

t T T T T T

JJ
q q J J J

T T T T T

PPP
J J R G

T T T T T T T

 νν∂ + ∇ ⋅ + + + − =  ∂  
   

⋅ ∇ν + ∇ϕ + ⋅ −∇ν − ∇ϕ + ⋅∇ + ⋅∇ + ⋅∇           
   ν  ν+ν ⋅∇ − ν ⋅∇ + − + + + +             

 (A10)

Let us introduce the electrochemical potentials n

∧
φ  and p

∧
φ  of electrons and holes through  

the expressions: 

φνφ qnn +=
∧

 (A11)

φνφ qpp −−=
∧

 (A12)

By assuming local thermal equilibrium among the components of the system LEH, i.e., 

TTTT pnL ===  (A13)

one can rewrite Equation (A10) as: 
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( )1p n pS nT
n pT q

JJS P
J J R G

t T T T T T

∧ ∧ ν + ν ∂  + ∇ ⋅ = ⋅∇ ϕ + ⋅∇ ϕ + ⋅∇ + − +  ∂    
 (A14)

In this last equation, the following identifications have been made. First, the total entropy flux is 

given by 

p

pp

p

u
p

n

nn

n
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u
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n

S
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T T

J

T

J

T

J

T

J

T

J
JJJJ

νν −+++≡++=  (A15)

second, the total energy absorbed from the incident light: 

pnL PPPP ++=  (A16)

and most important, the heat flux is defined along with the definition suggested by Muscato [16] as 

ppnn
u
p

u
n

u
Lq JJJJJJ νν −+++=  (A17)

From the right hand side of Equation (A10) one gets the entropy production: 

T
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J pn
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n +






 +
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1
 (A18)

In this way, there exist five thermodynamic dissipative fluxes, namely, the electron ( nJ ) and hole 

( pJ ) fluxes, the heat flux ( qJ ), the net generation-recombination of electron-hole pairs ( GR − ) and 

the energy being absorbed by the LEH system ( P ). The associated thermodynamic forces are: nT

∧
∇φ1

, 

pT

∧
∇− φ1

, 





∇

T

1
, 

T
pn νν +

 and 
T

1
, respectively. 

We use the above definition of thermodynamic forces and fluxes to express the contributions to the 

total entropy production 

n p qJ J J RG Pσ = σ + σ + σ + σ + σ  (A19)

with 

1
n

n
J n

q
J

T x T x

∂ν ∂ϕ σ = + ∂ ∂ 
 (A20)

1
p

p
J p

q
J

T x T x

∂ν ∂ϕσ = − − ∂ ∂ 
 (A21)

1
qJ qJ

x T

∂  σ =  ∂  
 (A22)

( )RG p n

R G

T

−σ = ν + ν  (A23)

P

P

T
σ =  (A24)

Another consequence of the selection made of thermodynamic fluxes and forces is the Onsager’s 

structure for the constitutive equations, which becomes 
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 (A25)

All the zeros in the Onsager’s matrix are a result of the fundamental assumption that fluxes and 

forces of different tensorial order do not couple. This is in agreement with Curie’s principle which 

states that the dissipative fluxes do not depend on all the thermodynamic forces. We display, for 

completeness, the final form of the constitutive equations for fluxes with explicit expressions and 

values of the Onsager’s coefficients to first order: 

x

T
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x
LJ x

n
n ∂

∂−−
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∂= 131211

ν
 (A26)

x

T
LEL
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LJ x
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−= 232221
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 (A27)

( )31 33 32 34 35
pn

q x

T
J L L L L E L

x x x

∂ν∂ν ∂= − + − + −
∂ ∂ ∂

 (A28)

( )npLGR νν +=− 41  (A29)

51

1
P L

T
=  (A30)

The coefficients ijL  are given by 
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(A31)

where ig  are the electric conductivities of electrons and holes, respectively, eeS  the Seebeck 

coefficient, 0T  the reference temperature, K  the thermal conductivity, 0n  and 0p the density of 

electrons and holes at the reference temperature, respectively. BK  is Boltzmann’s constant and q  the 

electron electric charge. For numerical values of relevant coefficients see Appendix D. The selection 
of the coefficients ijL  has been made by addressing known phenomenological laws of thermoelectric 

phenomena. From the possible physical mechanisms causing the generation-recombination processes, 
we assume that only phonon transitions contribute to the determination of the coefficient 41L  [23]. 

Accordingly with Shockley and Read’s theory phonon transitions take place primarily in two steps by 
way of traps [21]. The constants nC  and pC  in the expression of 41L  are the probability per unit time 
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that an electron in the conduction band will be captured by a trap and that a hole will be captured if the 

trap is filled with an electron so that it is in a condition to capture a hole, respectively. The quantities 

1n  y 1p  are typical deviations of the particle densities from the reference states. We also assume that 

the photon transitions due to the incident light are proportional to the sum of chemical potentials 
( np νν + ) [21]. 

The physical meaning of each term in equations (A26) to (A28) is well known [24]. We only 

mention that the third term on the r.h.s. of equations (A26) and (A27) corresponds to the Seebeck 

effect causing a flux of electrons and holes due to a temperature gradient, respectively, while in 

equation (A28) the third and the fourth terms describe the Peltier effect producing a heat flux due to 

the presence of an electric field. Moreover, Fourier and Fick laws are represented by the first terms on 

the r.h.s. of Equations (A26) and (A27).  

The conservation and constitutive equations must be complemented with Poisson’s equation: 

( )pnq
xx

−=







∂
∂

∂
∂ φε  (A32)

which has been written here for undoped materials by taking the electric charge density as  

( )q p nρ = −  (A33)

We close this appendix with two additional points. The first is the use of the caloric equation for 

rewriting the total internal energy balance equation, obtained by summing Equations (A3)–(A5): 

( )q
s v p n

JT
C qE J J P

t x

∂∂ρ + = − +
∂ ∂

 (A34)

where sρ  is the volumetric mass density of the material, vC  the specific heat at constant volume, and 

T  the local equilibrium temperature. There are two source terms in the temperature equation, namely, 

the first on the r.h.s. in the same equation due to the work made by the self-consistent electric field 

acting on the charged particles and the second is the absorbed energy from the incident light which is 

converted in heat. Secondly, the definition made of the heat flux, Equation (A17), differs from that of 

de Groot and Mazur [25], who defined it as 
u
T

u
p

u
n

u
Lq JJJJJ ≡++=  (A35)

If one assumes this definition then Equation (A14) converts in 
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This equation is in accordance with Equation (37) on page 343 of de Groot and Mazur. The last two 

terms on the r.h.s. do not appear in Equation (37) since conservation of total internal energy is assumed. 
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B. Optics 

The term P , in Equation (A34) (defined in Equation (A16)), is calculated by means of a temporal 

average taken over many periods of oscillation of the incident light. The temporal average does not 

affect the other terms in Equation (A34) because they are slow varying variables. In fact, the motion of 

the free carriers (electrons and holes) is not significantly affected by the electric field of the incident 

radiation, and so the internal electric energy of the LEH system. In this respect, it must be mentioned 
that the characteristic time of the temperature Tt  (that used to calculate the non-dimensional time) and 

that of the electric field of the incident light Et  (the inverse of light frequency) are related by 
8146 1010/10/ == −−

ET tt . This means that the temperature is a slow thermodynamic variable compared 

with the fast changes of the electric field of the incident light arriving to a stationary profile not 

perturbed by the rapid oscillations of the electric field. The generation of internal energy P  is then 

given by [15]: 

1AS
P

x

∂=
∂

 (B1)

being 1AS  the magnitude of the absorbed light energy in the medium. The symbol  represents the 

time average taken over a big enough number of oscillations of the electric field of the incident light. It 

is defined as ( ) '
0

dtLim
t

t  •≡•
∞→

. In a physical sense the limit is taken until the stationary state has been 

reached. This occurs for Ttt > . Thus, Ett >> . 

We now obtain the expression for the absorbed light intensity in the medium accordingly with 
Figure 10 where IS  is the incident light intensity, amIT TSS =1  the transmitted light intensity in the  

air-medium interface, '
1 1( ) x

T TS x S e−α=  the distribution of the intensity of the light propagated to the 

interface medium-air which is attenuated by the medium (it is a function of the position), 

maTR RSxS '
12 )( =  the intensity of the reflected light at the interface medium-air and ' ( )

2 2( ) x L
R RS x S e−α −=  

the intensity of the light propagated to the interface air-medium which is attenuated by the medium. α  
is the absorption coefficient of the medium. amT  is the transmission coefficient in the interface  

air-medium and maR  is the reflection coefficient in the interface medium-air. Finally, the absorbed 

energy in the medium is obtained when one substitutes the previous expressions in the following and 

takes the spatial derivative: 

)()()()( '
22

'
111 xSxSxSSxS RRTTA −+−=  

The result for the first step reads: 

( ) ( )( )( )( )
1 1 1 1x x L

A I am maS x S T e R e−α −α −= − − − . (B2)

Thus, the explicit expression for P  becomes 

( )( )( ) x x L
am I maP x T S e R e−α −α −= α +  (B2)

The termG , in Equations (A1) and (A2), is given by 

( )1 1( ) ( )I
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S
G x S S x

hf
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with h  the Planck constant and f  the light frequency. The transmission and reflection coefficients at 

the interfaces air-material and material-air are 
2

2m a
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a m a

n n
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n n n

 
=  + 

 (B5)

and 
2









+
−=

ma

ma
ma nn

nn
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respectively. mn  is the refractive index of the material and an  that of air. 

 

Figure 10. Schematic of the transmitted, attenuated and reflected light in the medium 
which were considered for calculating the absorbed energy 1AS .  

C. Dimensional Analysis 

The complexity of Equations (A1), (A2) and (A34) can be reduced through a dimensional analysis. 

This is achieved by making the usual transformation: 

L

x
x =∗ , 

τ
t

t =∗ , 
0n

n
n =∗ , 

0p

p
p =∗ , 

0T

T
T =∗  (C1)

and the potential function of the self-consistent electric field transformed as 

φεφ
2

0Lqn
=∗  (C2)

We begin the analysis of the dissipative fluxes, Equations (A26)–(A28). It can be proved that in the 

case of the heat flux (A28) all the terms are O( 1110− ) or smaller, excepting the term in the coefficient 

35L  which is O( 010 ). Therefore, we have conserved only this last term in the calculations. The heat 

flux takes the Fourier law form 

35q

T
J L

x

∂= −
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 (C3)

In this way the temperature equation takes the dimensional form 
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As it can be seen, the temperature equation is of the diffusion type with a source term coming from 

the interaction of the incident light with the medium. We now consider the particle fluxes, Equations 

(A26) and (A27). Dimensional analysis shows that the terms in the self-consistent electric field can be 

neglected with respect to the terms in the chemical potentials. In this way, the constitutive equations 

for the particle fluxes become 

11 13
n

n

T
J L L

x x

∂ν ∂= −
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 (C5)

21 23
p

p

T
J L L

x x

∂ν ∂= − −
∂ ∂

 (C6)

With the above simplifications and neglecting lowest order terms the dimensional Equations (A1) 

and (A2) read, for the electron density, 
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A similar equation is obtained for the hole density: 
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 (C8)

It is worth noting that the temperature equation becomes decoupled from Equations (C7) and (C8). 

The final form of Equations (C7)–(C8) in the stationary state used in the calculations is shown in 

Equations (1) and (2) in Section 2.2. 

D. Constants 

In this final appendix the values of the constants in the solutions of temperature and particle 

densities, Equations (9)–(11), can be found. Units are omitted. 

For Silicon: 

1.10 =Tk , 10
1 10384.3 −×−=Tk , 10

2 10318.2 −×−=Tk , 10
3 10209.6 −×−=Tk , 1=a , 

5.0=b , 33
11 10747.9 ×=L , 11

13 10862.6 ×=L , 33
21 10347.1 ×=L , 10

23 10484.9 ×=L , 

14835 =L , 34
41 1055.1 ×=L  

For Germanium: 

1.10 =Tk , 13
1 1096.2 −×−=Tk , 14

2 1001.1 −×−=Tk , 9
3 10965.1 −×−=Tk , 7=a , 5.3=b , 

37
11 10257.6 ×=L , 15

13 10502.1 ×=L , 37
21 10859.1 ×=L , 14

23 10461.4 ×=L , 9.5935 =L , 
38

41 1017.1 ×=L  
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