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Abstract: The problem of robust H∞ control is investigated for Markov jump systems with

nonlinear noise intensity function and uncertain transition rates. A robust H∞ performance

criterion is developed for the given systems for the first time. Based on the developed

performance criterion, the desired H∞ state-feedback controller is also designed, which

guarantees the robust H∞ performance of the closed-loop system. All the conditions are

in terms of linear matrix inequalities (LMIs), and hence they can be readily solved by any

LMI solver. Finally, a numerical example is provided to demonstrate the effectiveness of the

proposed methods.
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1. Introduction

Many dynamical systems are subject to random abrupt changes, which may be caused by random

failures and repairs of the components, changes in the interconnections of subsystems, sudden

environment changes, etc. Most of the traditional dynamical systems are usually powerless to face these

random abrupt changes. However, Markov jump systems (MJSs), a special class of stochastic hybrid

systems, are suitable mathematical model to describe such systems. As a result, MJSs have been widely

applied in many fields, such as unmanned air vehicles [1], solar power stations [2], communication

systems [3], power systems [4], economics [5], and so on.
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MJSs have been widely investigated and many useful results have obtained, such as the controllability

and observability [6], controller design [6–9] and filtering [10,11]. For more extensive introductions, the

interested reader is referred to an important monograph about MJSs [12]. It is noticed that in almost all

reported results, only linear MJSs are considered. It is well known that the nonlinearity is an inevitable

feature of almost all real-world systems. The existence of nonlinearity may lead to undesirable behavior

of the systems. Therefore, MJSs with nonlinearity also attract researcher’s attention; see [13–15] and

references therein.

For MJSs, the transition rates are crucial to determine the behavior of the systems. Thus, the

main investigation on MJSs is to assume that the information on transition rates is completely known.

However, in practice, only estimated values of transition rates are available, and estimation errors, i.e.,

the uncertainties of the transition rates, may lead to instability or at least degraded performance of a

system. Therefore, no matter in the theory or in practice, it is necessary to further consider more general

jump systems with uncertain transition rates. There have been some reports regarding control of this

type of system in the literature. For example, in [16], the stability and control problems are considered

for linear MJSs with uncertain transition rates by using restrictive Young inequality. By using general

Young inequality, in [17] less conservative results than that of [16] are proposed. Due to the use of

Young inequality, the proposed controller design methods in both [16] and [17] need to solve a set of

nonlinear matrix inequalities (NLMIs). Unfortunately, such NLMIs cannot still be completely solved

up to now [18]. Moreover, in the existing literatures, only linear MJSs with uncertain transition rates

were studied. To the author’s best knowledge, the problem of H∞ control for MJSs with nonlinear noise

intensity function and uncertain transition rates has not been fully investigated. It still remains important

and challenging.

This paper is concerned with the robust H∞ control for MJSs with nonlinear noise intensity function

and uncertain transition rates. First, the robust H∞ performance criterion is derived. Then, H∞ controller

design method is presented based on the proposed performance criterion. Instead of using the traditional

Young inequality, we adopt an improved bounding technique for the uncertain terms. As a benefit, the

obtained controller design method only needs to solve a set of pure linear matrix inequalities (LMIs)

rather than NLMIs, which can be readily solved by any LMI solver. Finally, a numerical example is

given to show the effectiveness of the proposed methods.

Notations: The notations in this paper are quite standard. Throughout this paper, Rn and R
n×m denote

respectively the n-dimensional Euclidean space and the set of all n ×m real matrices. The superscript

T denotes transpose. The notation X ≥ Y (respectively, X > Y ) where X and Y symmetric matrices,

means that X − Y is positive semidefinite (respectively, positive definite). I denotes the identity matrix

of appropriate dimension. L2[0,∞) is the space of square integrable functions. (Ω,F , {Ft}t≥0,P) is a

complete probability space with a filtration {Ft}t≥0 satisfying the conditions that it is right continuous

and F0 contains all P−null sets. E{·} stands for the mathematical expectation. trace{A} denotes the

trace of a matrix A. We use ∗ as an ellipsis for the terms that are introduced by symmetry. diag{ · , · · · , ·}
stands for a block-diagonal matrix. Matrices, if their dimensions are not explicitly stated, are assumed

to be compatible for algebraic operations.
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2. Problem Description

Consider the following MJS with nonlinear noise intensity function and uncertain transition rates.

dxt = [A(rt)xt +B(rt)ut +Bv(rt)vt] dt+ f(xt, rt)dwt, (1)

zt = C(rt)xt +D(rt)ut +Dv(rt)vt, (2)

where xt ∈ R
nx is the state, ut ∈ R

nu is the control input, vt ∈ R
nv is the disturbance input which

belongs to L2[0,∞), zt ∈ R
nz is the controlled output, f : R

nx × S → R
nx×nw is the nonlinear

noise intensity function, and wt ∈ R
nw is an nw-dimension Brownian motion satisfying E{dwt} = 0,

E{dwt(dwt)
T} = Idt. The mode jump process {rt} is a continuous-time, discrete-state Markov process

taking values in a finite set S = {1, 2, . . . s}, and has the mode transition probabilities:

Pr{rt+∆ = j|rt = i} =

{

π̂ij∆+ o(∆), if i 6= j,

1 + π̂ii∆+ o(∆), if i = j,
(3)

where ∆ > 0, lim∆→0{o(∆)/∆} = 0, and π̂ij ≥ 0 for i 6= j, is the transition rate from mode i at time

t to mode j at time t + ∆, and π̂ii = −∑s

j=1,j 6=i π̂ij for each mode i. In addition, we assume that the

Markov process {rt} is independent of the Brownian motion {wt}.

In this paper, the noise intensity function f(·, ·) and the transition rate matrix Π̂ = {π̂ij}, ∀i, j ∈ S

cannot be exactly obtained. It is only known that f(·, ·) satisfies the following growth condition:

trace
(

fT (xt, rt)f(xt, rt)
)

≤ ‖Fixt‖2 , f(0, rt) ≡ 0, ∀rt = i ∈ S. (4)

where Fi, ∀i ∈ S is a known constant matrix.

As for Π̂, only its admissible uncertainty domain is known:

Dπ = {Π̂ = Π +∆Π : |∆πij | ≤ εij, εij ≥ 0, for all i, j ∈ S, j 6= i}, (5)

where Π = (πij), ∀i, j ∈ S is a known constant matrix, while ∆Π = (∆πij) denotes the uncertainty

of the mode transition rate matrix. For all i, j ∈ S, j 6= i, πij(≥ 0) denote the estimate of π̂ij and

∆πij = π̂ij − πij is the estimate error, which can take any value in [−εij , εij]; for all i ∈ S, one has

πii = −∑s

j=1,j 6=i πij and ∆πii = −∑s

j=1,j 6=i∆πij .

In this paper, we only consider a mode-dependent linear state-feedback control law

ut = K(rt)xt, (6)

where Ki = K(rt = i) ∈ R
nx×nu , i ∈ S, are the controller gain matrices to be designed. Substituting

the state-feedback controller (6) into system (1) one yields the corresponding closed-loop system

dxt =
[

Ā(rt)xt +Bv(rt)vt
]

dt+ f(xt, rt)dwt,

zt = C̄(rt)xt +Dv(rt)vt,
(7)

where

Ā(rt) = A(rt) +B(rt)K(rt),

C̄(rt) = C(rt) +D(rt)K(rt).

Certainly, the resulting closed-loop system (7) is also a MJS with nonlinear noise intensity function and

uncertain transition rates. Now, for a more precise description of the main objective in this paper, we

introduce the following definitions for the underlying system.
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Definition 1. [19] The system (7) is said to be robustly stochastically stable if with vt = 0

lim
t→∞

E
{

‖xt‖2
}

= 0

holds for any initial conditions and over all the admissible noise intensity functions and transition rates

satisfying (4)–(5).

Definition 2. [19] Given a scalar γ > 0, the system (7) is said to be robustly stochastically stable with

disturbance attenuation level γ if it is robustly stochastically stable, and under zero initial conditions,

‖zt‖2
E2

≤ γ2 ‖vt‖22 is satisfied for all nonzero vt ∈ L2[0,∞) and over all the admissible noise intensity

functions and transition rates satisfying (4)–(5), where

‖zt‖2E2 = E
{
∫ ∞

0

‖zt‖2 dt
}

.

Now, we are in a position to propose the object of the paper. The purpose is to design a linear

state-feedback controller (6), such that the resulted closed-loop system (7) is robustly stochastically

stable with a given disturbance attenuation level γ over all the admissible noise intensity functions and

transition rates.

The following lemma will be used in the sequel.

Lemma 1. (Schur Complement [20]) Given constant matrices Ω1, Ω2 and Ω3, with Ω1 = ΩT
1 and

0 < Ω2 = ΩT
2 , then ΩT

3Ω
−1
2 Ω3 − Ω1 < 0 if and only if
[

−Ω1 ΩT
3

∗ −Ω2

]

< 0 or

[

−Ω2 Ω3

∗ −Ω1

]

< 0.

For the sake of simplicity, in the rest of the paper a matrix A(rt = i) will be denoted by Ai.

3. Robust Stochastic H∞ Performance Analysis

In this section, the H∞ performance analysis problem of system (7) is considered. The following

theorem gives a robust stochastic H∞ performance criterion for system (7).

Theorem 1. Consider the MJS (1) with nonlinear noise intensity function and uncertain transition rates.

Given the controller gains Ki, i ∈ S, the closed-loop system (7) is robustly stochastically stable with

disturbance attenuation level γ if there exist matrices Pi > 0, Mij ≥ 0, i, j ∈ S, j 6= i, and scalars αi,

i ∈ S such that for ∀i ∈ S, the following LMIs are feasible.






Θi PiBvi C̄T
i

∗ −γ2I DT
vi

∗ ∗ −I






< 0, (8)

Pi − αiI ≤ 0, (9)

Pj − Pi −Mij ≤ 0, ∀j ∈ S, j 6= i, (10)

where

Θi = ĀT
i Pi + PiĀi + αiF

T
i Fi +

s
∑

j=1,j 6=i

{πij(Pj − Pi) + 2εijMij},

πij = πij − εij.
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Proof. Construct a stochastic Lyapunov function candidates as

V (xt, rt, t) = xT
t P (rt)xt, (11)

where Pi, i ∈ S are symmetric positive definite matrices with appropriate dimensions to be determined.

Let L be the weak infinitesimal generator of the random process {xt, rt}. Then, for each rt = i, i ∈ S,

it can be shown that

LV (xt, i, t) = xT
t

(

s
∑

j=1

π̂ijPj

)

xt + 2xT
t Pi

[

Āixt +Bvivt
]

+trace[fT (xt, i)Pif(xt, i)]. (12)

From (4) and (9), we have

trace[fT (x(t), i)Pif(x(t), i)] ≤ αix
T (t)F T

i Fix(t). (13)

In addition, noticing π̂ii = −
∑s

j=1,j 6=i π̂ij , π̂ij = πij +∆πij and πij = πij − εij , we have

s
∑

j=1

π̂ijPj =

s
∑

j=1,j 6=i

π̂ijPj −
s
∑

j=1,j 6=i

π̂ijPi

=
s
∑

j=1,j 6=i

π̂ij(Pj − Pi)

=

s
∑

j=1,j 6=i

[(πij − εij) + (εij +∆πij)] (Pj − Pi)

=

s
∑

j=1,j 6=i

{

πij(Pj − Pi) + (εij +∆πij)(Pj − Pi)
}

. (14)

Noticing Mij ≥ 0, ∆πij ∈ [−εij , εij], ∀i, j ∈ S, j 6= i, and (10), we have

(εij +∆πij)(Pj − Pi) ≤ (εij +∆πij)Mij ≤ 2εijMij , ∀ i, j ∈ S, j 6= i. (15)

Applying (15) to (14), we have

s
∑

j=1

π̂ijPj ≤
s
∑

j=1,j 6=i

{

πij(Pj − Pi) + 2εijMij

}

. (16)

Then, from (12), (13) and (16), we obtain

LV (xt, i, t) + zTt zt − γ2vTt vt ≤ xT
t

(

s
∑

j=1,j 6=i

{πij(Pj − Pi) + 2εijMij}
)

xt

+2xT
t Pi

[

Āixt +Bvivt
]

+ xT
t

(

αiF
T
i Fi

)

xt + zTt zt − γ2vTt vt

= ξTt Ψiξt, (17)

where

ξTt =
[

xT
t vTt

]

,
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Ψi =

[

Θi PiBvi

∗ −γ2I

]

+

[

C̄T
i

DT
vi

]

[

C̄i Dvi

]

.

From (17), we know that LV (xt, i, t) + zTt zt − γ2vTt vt ≤ 0 if Ψi < 0. By the Schur complement, one

can see that (8) guarantees Ψi < 0. Thus, LV (xt, i, t)+ zTt zt− γ2vTt vt ≤ 0 holds. Integrating both sides

with respect to t over the time period [0,∞), we have

∫ ∞

0

LV (xt, i, t)dt+

∫ ∞

0

[

zTt zt − γ2vTt vt
]

dt ≤ 0. (18)

In addition, by Itô’s formula, we can derive

E
∫ ∞

0

LV (xt, i, t)dt = EV (x∞, r∞,∞)− EV (x0, r0, 0). (19)

Therefore, taking the mathematical expectation on both sides of (18), we have

EV (x∞, r∞,∞)− EV (x0, r0, 0) + E
∫ ∞

0

zTt ztdt− γ2

∫ ∞

0

vTt vtdt ≤ 0. (20)

Under zero initial conditions, we have EV (x0, r0, 0) = 0 and EV (x∞, r∞,∞) ≥ 0, thus (20) guarantees

‖zt‖2
E2

≤ γ2 ‖vt‖22.
The second task is to show robustly stochastically stability of the closed system when vt = 0. By

following similar procedures as previously, we obtain

LV (xt, i, t) ≤ xT (t)Θix(t). (21)

One can see that (8) guarantees Θi < 0. Thus LV (x(t), t, i) < 0 holds for every xt 6= 0. Therefore,

by Definition 2 and [21], the closed-loop system (7) is robustly stochastically stable with vt = 0. This

completes the proof.

Remark 1. It is well known that the uncertainty domain (5) can be formulated into a fix polytope ([8,22]),

and then one can test the robust stochastic H∞ performance by solving large arrays of simultaneous

LMIs corresponding to the vertices of the uncertainty polytope. However, as the number of modes

increases, the number of LMIs increases exponentially. Thus it leads to a combinatoric complexity

explosion ([23,24]). Therefore, the element-wise description (i.e.,(5)) for the uncertain transition rates

has attracted researcher’s attention since the number of resulted LMIs increases only in function of

power along with the increase of the number of modes. When using the element-wise description, a

key problem is how to bound the uncertain term
∑s

j=1 π̂ijPj . The literature [25] considered the robust

stabilization problem with the element-wise description for the uncertain transition rates. The proposed

controller design method in [25] only involves LMIs, but they are usually conservative. The main

reason for this is that when bounding the uncertain term
∑s

j=1 π̂ijPj all transition rates are enlarged

as their upper bounds so that the relationship among them is not taken into account. By utilizing the

relationship among the transition rates, literature [16,17] obtained less conservative results than that

of [25]. However, in the stability analysis of [16,17], the traditional Young inequality is used to bound

the uncertain term
∑s

j=1 π̂ijPj . Such bounding technique produces the quadratic form of Pj − Pi (for

example, in [17] the quadratic terms (Pj − Pi)T
−1
ij (Pj − Pi) arise), which results that the obtained



Entropy 2015, 17 4768

controller design method involves a set of NLMIs. Unfortunately, such NLMIs cannot be completely

solved yet up to now [18]. Based on the bounding technique of [17], a LMI method for controller design

is proposed in [26], but it is at the expense of the increase of conservatism (i.e., the method in [26]

has a higher conservatism than that of [17]). From (14)–(16), one can see that our adopting bounding

technique avoids the production of quadratic form of Pj − Pi. It is easy to prove that the bounding

technique does not increase conservatism comparing with those of [16] and [17]. Moreover, as shown in

next section, the obtained controller design method only involves a set of pure LMIs rather than NLMIs,

which can be readily solved by any LMI solver. Therefore, the merit of the adopted bounding technique

is that the obtained controller design method is not only LMI method but also not at the expense of the

increase of conservatism comparing with the results in [16,17] and [26].

4. Robust Stochastic H∞ Controller Design

In this section, the H∞ controller design problem of system (1) is considered. The following theorem

is proposed to design the robust stochastic H∞ controller with the form (6) for system (1).

Theorem 2. Consider the MJS (1) with nonlinear noise intensity function and uncertain transition rates.

The closed -loop system (7) is robustly stochastically stable with disturbance attenuation level γ if there

exist matrices Qi > 0, Nij ≥ 0, Yi, i, j ∈ S, j 6= i, and scalars βi, i ∈ S such that for ∀i ∈ S, the

following LMIs are feasible.

















Φi Bvi QiC
T
i + Y T

i DT
i QiF

T
i Ξi

∗ −γ2I DT
vi 0 0

∗ ∗ −I 0 0

∗ ∗ ∗ −βiI 0

∗ ∗ ∗ ∗ −Λi

















< 0, (22)

[

−βiI βiI

∗ −Qi

]

≤ 0, (23)

[

−Qi −Nij Qi

∗ −Qj

]

≤ 0, ∀j ∈ S, j 6= i, (24)

where

Φi = (AiQi +BiYi)
T + (AiQi +BiYi) +

∑s

j=1,j 6=i
{2εijNij − πijQi},

Ξi =
[ √

πi1Qi · · · √
πi(i−1)Qi

√
πi(i+1)Qi · · · √

πisQi

]

,

Λi = diag{Q1, · · · , Qi−1, Qi+1, · · · , Qs}.

Moreover, an admissible controller gain is given by

Ki = YiQ
−1
i . (25)

Proof. First of all, by Theorem 1, we know that system (7) with nonlinear noise intensity function

and uncertain transition rates is robustly stochastically stable with disturbance attenuation level γ if
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inequalities (8)–(10) holds. By using the Schur complement and noticing (8)–(10) are equivalent to the

following (26)–(28), respectively.

















Φ̄i PiBvi CT
i +KT

i D
T
i F T

i Ξ̄i

∗ −γ2I DT
vi 0 0

∗ ∗ −I 0 0

∗ ∗ ∗ −α−1
i 0

∗ ∗ ∗ ∗ −Λ̄i

















< 0, (26)

[

−αiI I

∗ −P−1
i

]

≤ 0, (27)

[

−Pi −Mij I

∗ −P−1
j

]

≤ 0, ∀j ∈ S, j 6= i, (28)

where

Φ̄i = (Ai +BiKi)
TPi + Pi(Ai + BiKi) +

∑s

j=1,j 6=i
{2εijMij − πijPi},

Ξ̄i =
[ √

πi1I · · · √
πi(i−1)I

√
πi(i+1)I · · · √

πisI
]

,

Λ̄i = diag{P−1
1 , · · · , P−1

i−1, P
−1
i+1, · · · , P−1

s }.

Setting Qi = P−1
i , performing a congruence transformation to the inequality in (26) by

diag{Qi, I, · · · , I} and applying the change of variable Nij = QiMijQi, Yi = KiQi, and βi = α−1
i ,

one can obtain the inequality in (22). Performing a congruence transformation to the inequality in (27)

by diag{βiI, I}, one can obtain the inequality in (23). Performing a congruence transformation to the

inequality in (28) by diag{Qi, I}, one can obtain the inequality in (24). In addition, due to Yi = KiQi,

the desired controller gain is given by Ki = YiQ
−1
i . This completes the proof.

Remark 2. In view of Theorem 2, the H∞ control problem for MJSs with nonlinear noise intensity

function and uncertain transition rates can be solved in terms of the feasibility of LMIs in (22)–(24).

Note that the inequalities in (22)–(24) are not only linear with respect to variables Qi, Nij , Yi and βi but

also linear with respect to the scalar γ2. Then, the robust H∞ controller with minimum guaranteed cost

can be readily found by solving the following convex optimization problem:

COP : min
(Qi,Nij ,Yi,βi)

φ subject to (22)–(24) with φ = γ2.

Then, the minimum guaranteed cost is given by γ∗ = (minφ)1/2.

5. Numerical Example

In this section, an example is provided to illustrate the effectiveness of the developed theory in

this paper.

Consider the MJS (1) with two modes, whose data are:

A1 =

[

0.15 −0.08

2 −0.04

]

, B1 =

[

5.5

0.45

]

, Bv1 =

[

0.21

1.13

]

,



Entropy 2015, 17 4770

C1 =
[

−0.35 0.19
]

, D1 = −0.56, Dv1 = 0.25,

A2 =

[

−0.25 −0.13

0.5 0.22

]

, B2 =

[

4.22

−0.21

]

, Bv2 =

[

1.15

0.42

]

,

C2 =
[

0.44 0.28
]

, D2 = 0.76, Dv2 = 0.58.

The nonlinear noise intensity function satisfies:

trace
(

fT (xt, i)f(xt, i)
)

≤ ‖Fixt‖2 , where F1 = diag{0.1, 0.1} and F2 = diag{0.2, 0.2}. (29)

The uncertain transition rates satisfy:

Π =

[

−0.5 0.5

0.3 −0.3

]

, |∆πij | ≤ 0.8πij , for all i, j ∈ S, j 6= i, (30)

The robust stochastic H∞ controller is designed such that the resulting closed-loop system is robustly

stochastically stable with disturbance attenuation level γ over all the admissible nonlinear noise intensity

functions and uncertain transition rates. By solving COP, the obtain minimum disturbance attenuation

level is γ∗ = 0.5801 with the corresponding controller gain matrices

K1 =
[

−1.3470 −1.3780
]

, K2 =
[

−0.6703 −0.6596
]

. (31)

In the following simulation study, we choose f(xt, 1) = 0.1 sin ‖xt‖xt and f(xt, 2) =

−0.2 cos ‖xt‖ xt, which obviously satisfy (29). In each simulation run, the transition rates are randomly

varying but satisfy (30). To make the simulation more persuasive, simulation results with 1000 random

samplings are shown in this example.

Figure 1 is the state response curves with initial condition x0 = [−1 1]T when ut = 0 and vt = 0. It

is shown that the open-loop system is not stable since its state trajectories are not convergent along with

the increase of time.

However, under the same conditions, applying the controllers in (31), the trajectory simulation of

state response for the closed-loop system are shown in Figure 2. It is shown that the closed-loop system

is stable.

Now we further check whether the closed-loop system achieves the desired disturbance attenuation

level. We made simulations under the disturbance input vt = cos(t)e−0.1t. Figure 3 shows the

trajectories of functional cost J(Tf) =
∫ Tf

0
{zTt zt − γ2

0v
T
t vt}dt under zero-initial-state condition, where

γ0 = 0.5801. One can see from Figure 3 that J(Tf) always becomes negative along with the increase

of Tf in all the 1000 simulations. Therefore, the closed-loop systems achieves the desired disturbance

attenuation level.
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Figure 1. State response of the open-loop system with 1000 random samplings.

Figure 2. State response of the closed-loop system with 1000 random samplings.
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Figure 3. Functional cost J(Tf) with 1000 random samplings.

6. Conclusion

In this paper, the H∞ control problem is investigated for MJSs with nonlinear noise intensity function

and uncertain transition rates. Attention is focused on the design of a controller such that the closed-loop

system is robustly stochastically stable and guarantees a desired robust H∞ performance over all the

admissible noise intensity functions and transition rates. The developed method for controller design is

in terms of linear matrix inequalities, which can be readily solved by any LMI solver. The effectiveness

of the method is illustrated by a numerical example.
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