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1. Introduction

Many molecular and neurological systems involve multiple interacting factors affecting an outcome
synergistically and/or redundantly. Attempts to shed light on issues such as population coding in neurons,
or genetic contribution to a phenotype (e.g., eye-color), have motivated various proposals to leverage
principled information-theoretic measures for quantifying informational synergy and redundancy,
e.g., [1–5]. In these settings, we are concerned with the statistics of how two (or more) random variables
X1, X2, called predictors, jointly or separately specify/predict another random variable Y , called a target
random variable. This focus on a target random variable is in contrast to Shannon’s mutual information
which quantifies statistical dependence between two random variables, and various notions of common
information, e.g., [6–8].
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The concepts of synergy and redundancy are based on several intuitive notions, e.g., positive
informational synergy indicates that X1 and X2 act cooperatively or antagonistically to influence Y ;
positive redundancy indicates there is an aspect of Y that X1 and X2 can each separately predict.
However, it has been challenging [9–12] to come up with precise information-theoretic definitions of
synergy and redundancy that are consistent with all intuitively desired properties.

2. Background: Partial Information Decomposition

Partial Information Decomposition (PID) [13] defines the concepts of synergistic, redundant and
unique information in terms of intersection information, I∩({X1, . . . , Xn} :Y ), which quantifies the
common information that each of the n predictors X1, . . . , Xn conveys about a target random variable
Y . An antichain lattice [14] of redundant, unique, and synergistic partial informations is built from the
intersection information.

Partial information diagrams (PI-diagrams) extend Venn diagrams to represent synergy. A PI-diagram
is composed of nonnegative partial information regions (PI-regions). Unlike the standard Venn entropy
diagram in which the sum of all regions is the joint entropy H(X1...n, Y ), in PI-diagrams the sum of
all regions (i.e. the space of the PI-diagram) is the mutual information I(X1...n :Y ). PI-diagrams show
how the mutual information I(X1...n :Y ) is distributed across subsets of the predictors. For example, in
the PI-diagram for n = 2 (Figure 1): {1} denotes the unique information about Y that only X1 carries
(likewise {2} denotes the information only X2 carries); {1, 2} denotes the redundant information about
Y that X1 as well as X2 carries, while {12} denotes the information about Y that is specified only by
X1 and X2 synergistically or jointly.

{12}

{1} {2}

{1,2}

(a)
I(X1 :Y )

{12}

{1} {2}

{1,2}

(b)
I(X2 :Y )

{12}

{1} {2}

{1,2}

(c)
I(X1 :Y |X2)

{12}

{1} {2}

{1,2}

(d)
I(X2 :Y |X1)

{12}

{1} {2}

{1,2}

(e)
I(X1X2 :Y )

Figure 1. PI-diagrams for n = 2 predictors, showing the amount of redundant
(yellow/bottom), unique (magenta/left and right) and synergistic (cyan/top) information with
respect to the target Y .

Each PI-region is either redundant, unique, or synergistic, but any combination of positive PI-regions
may be possible. Per [13], for two predictors, the four partial informations are defined as follows: the
redundant information as I∩({X1, X2} :Y ), the unique informations as

I∂({X1} : Y ) = I(X1 :Y )− I∩({X1, X2} :Y )

I∂({X2} : Y ) = I(X2 :Y )− I∩({X1, X2} :Y ) ,
(1)

and the synergistic information as

I∂({X1, X2} : Y ) = I(X1, X2 :Y )− I∂ ({X1} : Y )− I∂ ({X2} : Y )− I∂ ({X1, X2} : Y )

= I(X1, X2 :Y )− I(X1 :Y )− I(X2 :Y ) + I∩({X1, X2} :Y ) .
(2)
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3. Desired I∩ properties and canonical examples

There are a number of intuitive properties, proposed in [5,9–13], that are considered desirable for the
intersection information measure I∩ to satisfy:

(S0) Weak Symmetry: I∩({X1, . . . , Xn} :Y ) is invariant under reordering of X1, . . . , Xn.

(M0) Weak Monotonicity: I∩({X1, . . . , Xn, Z} :Y ) ≤ I∩({X1, . . . , Xn} :Y ) with equality if there exists
Xi ∈ {X1, . . . , Xn} such that H(Z,Xi) = H(Z).

Weak Monotonicity is a natural generalization of the monotonicity property from [13]. Weak
monotonicity is inspired by the property of mutual information that if H(X|Z) = 0, then
I(X :Y ) ≤ I(Z :Y ).

(SR) Self-Redundancy: I∩({X1} :Y ) = I(X1 :Y ). The intersection information a single predictor X1

conveys about the target Y is equal to the mutual information between the X1 and the target Y .

(M1) Strong Monotonicity: I∩({X1, . . . , Xn, Z} :Y ) ≤ I∩({X1, . . . , Xn} :Y ) with equality if there
exists Xi ∈ {X1, . . . , Xn} such that I(Z,Xi :Y ) = I(Z :Y ).

Strong Monotonicity captures more precisely what is meant by “redundant information”, it says
explicitly that it information about Y that is redundant, not just any redundancy among the
predictors (weak monotonicity).

(LP) Local Positivity: For all n, the derived “partial informations” defined in [13] are nonnegative. This
is equivalent to requiring that I∩ satisfy total monotonicity, a stronger form of supermodularity.
For n = 2 this can be concretized as, I∩({X1, X2} :Y ) ≥ I(X1 :X2)− I(X1 :X2|Y ).

(TM) Target Monotonicity: If H(Y |Z) = 0, then I∩({X1, . . . , Xn} :Y ) ≤ I∩({X1, . . . , Xn} :Z).

There are also a number of canonical examples for which one or more of the partial informations have
intuitive values, which are considered desirable for the intersection information measure I∩ to attain.

Example UNQ, shown in Figure 2, is a canonical case of unique information, in which each predictor
carries independent information about the target. Y has four equiprobable states: ab, aB, Ab, and AB.
X1 uniquely specifies bit a/A, and X2 uniquely specifies bit b/B. Note that the states are named so as
to highlight the two bits of unique information; it is equivalent to choose any four unique names for the
four states.

Example RdnXor, shown in Figure 3, is a canonical example of redundancy and synergy coexisting.
The r/R bit is redundant, while the 0/1 bit of Y is synergistically specified as the XOR of the
corresponding bits in X1 and X2.

Example And, shown in Figure 4, is an example where the relationship between X1, X2 and Y is
nonlinear, making the desired partial information values less intuitively obvious. Nevertheless, it is
desired that the partial information values should be nonnegative.

Example ImperfectRdn, shown in Figure 5, is an example of “imperfect” or “lossy” correlation
between the predictors, where it is intuitively desirable that the derived redundancy should be positive.
Given (LP), we can determine the desired decomposition analytically. First, I(X1, X2 :Y ) =
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I(X1 :Y ) = 1 bit; therefore, I(X2 :Y |X1) = I(X1, X2 :Y ) − I(X1 :Y ) = 0 bits. This determines
two of the partial informations—the synergistic information I∂({X1, X2}Y ) and the unique information
I∂({X2} : Y ) are both zero. Then, the redundant information I∂({X1, X2} : Y ) = I(X2 :Y )− I∂({X2} :
Y ) = I(X2 :Y ) = 0.99 bits. Having determined three of the partial informations, we compute the final
unique information I∂({X1} : Y ) = I(X1 :Y )− 0.99 = 0.01 bits.

X1 X2 Y

a b ab 1/4
a B aB 1/4
A b Ab 1/4
A B AB 1/4

(a)
Pr(x1, x2, y)

I(X1, X2 :Y ) = 2

I(X1 :Y ) = 1

I(X2 :Y ) = 1

½  a
½  A

½  b
½  B

(b) circuit
diagram

(c)
Imin

(d)
WMS/I∧/Iα

Figure 2. Example UNQ. X1 and X2 each uniquely carry one bit of information about Y .
I(X1X2 :Y ) = H(Y ) = 2 bits.
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Figure 3. Example RDNXOR. This is the canonical example of redundancy and synergy
coexisting. Imin and I∧ each reach the desired decomposition of one bit of redundancy
and one bit of synergy. This example demonstrates I∧ correctly extracting the embedded
redundant bit within X1 and X2.
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X1 X2 Y
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Figure 4. Example AND. It is universally agreed that the redundant information is between
[0, 0.311] bits. The most compelling argument is from [15] arguing for 0.311 bits of
redundant information.
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Figure 5. Example IMPERFECTRDN. I∧ is blind to the noisy correlation between X1 and
X2 and calculates zero redundant information. An ideal I∩ measure would detect that all of
the information X2 specifies about Y is also specified by X1 to calculate I∩({X1, X2} :Y ) =

0.99 bits.
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4. Previous candidate measures

In [13], the authors propose to use the following quantity, Imin, as the intersection information
measure:

Imin (X1, . . . , Xn : Y ) ≡
∑
y∈Y

Pr(y) min
i∈{1,...,n}

I(Xi :Y = y)

=
∑
y∈Y

Pr(y) min
i∈{1,...,n}

DKL[Pr(Xi|y)‖Pr(Xi)] ,
(3)

where DKL is the Kullback-Leibler divergence.
Though Imin is an intuitive and plausible choice for the intersection information, [9] showed that

Imin has counterintuitive properties. In particular, Imin calculates one bit of redundant information
for example UNQ (Figure 2). It does this because each input shares one bit of information with the
output. However, it is quite clear that the shared informations are, in fact, different: X1 provides the
low bit, while X2 provides the high bit. This led to the conclusion that Imin overestimates the ideal
intersection information measure by focusing only on how much information the inputs provide to the
output. Another way to understand why Imin overestimates redundancy in example UNQ is to imagine a
hypothetical example where there are exactly two bits of unique information for every state y ∈ Y and
no synergy or redundancy. Imin would calculate the redundancy as the minimum over both predictors
which would be min[1, 1] = 1 bit. Therefore Imin would calculate 1 bit of redundancy even though by
definition there was no redundancy but merely two bits of unique information.

Another candidate measure of synergy, WholeMinusSum (WMS) [9,16], calculates zero synergy and
redundancy for Example RDNXOR, as opposed to the intuitive value of one bit of redundancy and one
bit of synergy.

5. New candidate measures

5.1. The I∧ measure

Based on [17], we can consider a candidate intersection information as the maximum mutual
information I(Q :Y ) that some random variable Q conveys about Y , subject to Q being a function of
each predictor X1, . . . , Xn. After some algebra, this leads to,

I∧({X1, . . . , Xn} :Y ) ≡ max
Pr(Q|Y )

I(Q :Y )

subject to ∀i ∈ {1, . . . , n} : H(Q|Xi) = 0
, (4)

which reduces to a simple expression in [12].
Example IMPERFECTRDN highlights the foremost shortcoming of I∧; I∧ does not detect “imperfect”

or “lossy” correlations between X1 and X2. Instead, I∧ calculates zero redundant information,
that I∩({X1, X2} :Y ) = 0 bits. This arises from Pr(X1 = 1, X2 = 0) > 0. If this were zero,
IMPERFECTRDN reverts to being determined by the properties (SR) and the (M0) equality condition.
Due to the nature of the common random variable, I∧ only sees the “deterministic” correlations between
X1 and X2—add even an iota of noise between X1 and X2 and I∧ plummets to zero. This highlights a
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related issue with I∧; it is not continuous—an arbitrarily small change in the probability distribution can
result in a discontinuous jump in the value of I∧.

Despite this, I∧ is a useful stepping-stone, it captures what is inarguably redundant information (the
common random variable). In addition, unlike earlier measures, I∧ satisfies (TM).

5.2. The Iα measure Intuitively, we expect that if Q only specifies redundant information, that

conditioning on any predictor Xi would vanquish all of the information Q conveys about Y . We take
this intuition to its final conclusion and find it yields a tigther lowerbound on I∩ than I∧. Moreover,
Iα pleasantly reduces to a I∧ but loosens the constraint in Equation (4) from H(Q|Xi) = 0 to
H(Q|Xi) = H(Qi|Xi, Y ):

Iα({X1, . . . , Xn} : Y ) ≡ max
Pr(Q|Y )

I(Q :Y )

subject to ∀i ∈ {1, . . . , n} : I(Q,Xi :Y ) = I(Xi :Y )
(5)

= max
Pr(Q|Y )

I(Q :Y )

subject to ∀i ∈ {1, . . . , n} : H(Q|Xi) = H(Q|Xi, Y )
. (6)

This measure obtains the desired values for the canonical examples in Section 3. However, its implicit
definition makes it more difficult to verify whether or not it satisfies the desired properties in Section 3.
Pleasingly, Iα also satisfies (TM). We can also show (See Lemmas 1 and 2 in Appendix A) that

0 ≤ I∧({X1, . . . , Xn} :Y ) ≤ Iα({X1, . . . , Xn} : Y ) ≤ Imin({X1, . . . , Xn} :Y ) . (7)

While Iα satisfies previously defined canonical examples, we have found another example, shown in
Figure 6, for which I∧ and Iα both calculate negative synergy. This example further complicates Example
AND by making the predictors mutually dependent.

X1X2 Y

0 0 00 1/3
0 1 01 1/3
1 1 11 1/3

(a)
Pr(x1, x2, y)

I(X1, X2 :Y ) = 1.585

I(X1 :Y ) = 0.918

I(X2 :Y ) = 0.918

I(X1 :X2) = 0.252

⅔  0
⅓  1

½  0
½  1

X1

X2

Y

OR

(b) circuit diagram (c) I∧/Iα (d) Imin

Figure 6. Example SUBTLE.
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6. Conclusion

The important part of this paper is exchanging (M0) with (M1) thus further constraining the space
of acceptable I∩ measures. The complexity community aspires to eventually find a unique I∩ measure
that satisfies a large portion of the desired properties, and any noncontroversial tightening of the space
of possible I∩ measures, even (or especially?) if obvious in hindsight, is immensely welcome.

As discussed in [12], I∩ measures fail (LP) if and only if they are too strict a measure of redundant
information. Loosening the constraints on I∧ yields Iα and achieves a nonnegative decomposition on
example IMPERFECTRDN. A natural next step is to loosen the constraints on Iα until achieving a
nonnegative decomposition for example SUBTLE. Alternatively, a very plausible measure of the “unique
information” [9,15,18] that satisfies (LP) for n = 2 yet does not satisfy (TM). It seems that (LP) and
(TM) will be incompatible, and it would be nice to prove this.
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A. Appendix

Proof Iα does not satisfy (LP). Proof by counter-example SUBTLE (Figure 6).
For I(Q :Y |X1) = 0, then Q must not distinguish between states of Y = 00 and Y = 01 (because

X1 does not distinguish between these two states). This entails that Pr(Q|Y = 00) = Pr(Q|Y = 01).
By symmetry, likewise for I(Q :Y |X2) = 0, Q must be distinguish between states Y = 01 and Y = 11.
Altogether, this entails that Pr(Q|Y = 00) = Pr(Q|Y = 01) = Pr(Q|Y = 11), which then entails,
Pr(q|yi) = Pr(q|yj) ∀q ∈ Q, yi ∈ Y, yj ∈ Y , which is only achievable when Pr(q) = Pr(q|y) ∀q ∈
Q, y ∈ Y . This makes I(Q :Y ) = 0, therefore for example SUBTLE, Iα({X1, X2} : Y ) = 0.

Lemma 1. We have I∧({X1, . . . , Xn} :Y ) ≤ Iα({X1, . . . , Xn} : Y ).

Proof. We define a random variable Q′ = X1 ∧ · · · ∧Xn. We then plugin Q′ for Q in the definition of
Iα. This newly plugged-in Q satisfies the constraint ∀i ∈ {1, . . . , n} that I(Q :Y |Xi) = 0. Therefore,
Q′ is always a possible choice for Q, and the maximization of I(Q :Y ) in Iα must be at least as large as
I(Q′ :Y ) = I∧({X1, . . . , Xn} :Y ).

Lemma 2. We have Iα({X1, . . . , Xn} : Y ) ≤ Imin (X1, . . . , Xn : Y )
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Proof. For a given state y ∈ Y and two arbitrary random variables Q and X , given I(Q :y|X) =

DKL[Pr(QX|y)‖Pr(Q|X) Pr(X|y)] = 0, we show that, I(Q :y) ≤ I(X :y),

I(X :y)− I(Q :y) =
∑
x∈X

Pr(x|y) log Pr(x|y)
Pr(x)

−
∑
q∈Q

Pr(q|y) log Pr(q|y)
Pr(q)

≥ 0 .

Generalizing to n predictors X1, . . . , Xn, the above shows that that the maximum I(Q :y) under
constraint I(Q :y|Xi) will always be less than mini∈{1,...,n} I(Xi :y), which completes the proof.

Lemma 3. Measure Imin satisfies desired property Strong Monotonicity, (M1).

Proof. Given H(Y |Z) = 0, then the specific-surprise I(Z :y) yields,

I(Z :y) ≡ DKL[Pr(Z|y)‖Pr(Z)]

=
∑
z∈Z

Pr(z|y) log Pr(z|y)
Pr(z)

=
∑
z∈Z

Pr(z|y) log 1

Pr(y)

= log
1

Pr(y)
.

Given that for an arbitrary random variable Xi, I(Xi :y) ≤ log 1
Pr(y)

. As Imin takes only uses the
mini I(Xi :y), the minimum is invariant under adding any predictor Z such that H(Y |Z) = 0. Therefore,
measure Imin satisfies property (M1).

References

1. Schneidman, E.; Bialek, W.; Berry, M.J. Synergy, redundancy, and independence in population
codes. J. Neurosci. 2003, 23, 11539–11553.

2. Narayanan, N.S.; Kimchi, E.Y.; Laubach, M. Redundancy and Synergy of Neuronal Ensembles in
Motor Cortex. J. Neurosci. 2005, 25, 4207–4216.

3. Balduzzi, D.; Tononi, G. Integrated information in discrete dynamical systems: Motivation and
theoretical framework. PLoS Comput. Biol. 2008, 4, e1000091.

4. Anastassiou, D. Computational analysis of the synergy among multiple interacting genes. Mol.
Syst. Biol. 2007, 3, 83.

5. Lizier, J.T.; Flecker, B.; Williams, P.L. Towards a Synergy-based Approach to Measuring
Information Modification. In Proceedings of 2013 IEEE Symposium on Artificial Life (ALIFE),
Singapore, Singapore, 16–19 April 2013; pp. 43–51.

6. Gács, P.; Körner, J. Common information is far less than mutual information. Prob. Control Inf.
Theory 1973, 2, 149–162.

7. Wyner, A.D. The common information of two dependent random variables. IEEE Trans. Inf.
Theory 1975, 21, 163–179.



Entropy 2015, 17 4653

8. Kumar, G.R.; Li, C.T.; Gamal, A.E. Exact Common Information. In Proceedings of 2014 IEEE
International Symposium on Information Theory (ISIT), Honolulu, HI, USA, 29 June–4 July 2014;
pp. 161–165.

9. Griffith, V.; Koch, C. Quantifying synergistic mutual information. In Guided Self-Organization:
Inception; Emergence, Complexity and Computation Serie, Volume 9; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 159–190.

10. Harder, M.; Salge, C.; Polani, D. Bivariate measure of redundant information. Phys. Rev. E 2013,
87, 012130.

11. Bertschinger, N.; Rauh, J.; Olbrich, E.; Jost, J. Shared Information—New Insights and Problems
in Decomposing Information in Complex Systems. In Proceedings of European Conference on
Complex Systems 2012; Springer Proceedings in Complexity Serie; Springer: Switzerland, 2013;
pp. 251–269.

12. Griffith, V.; Chong, E.K.P.; James, R.G.; Ellison, C.J.; Crutchfield, J.P. Intersection Information
based on Common Randomness. Entropy 2014, 16, 1985–2000.

13. Williams, P.L.; Beer, R.D. Nonnegative Decomposition of Multivariate Information. 2010,
arXiv:1004.2515.

14. Weisstein, E.W. Antichain. Available online: http://mathworld.wolfram.com/Antichain.html
(accessed on 29 June 2015).

15. Bertschinger, N.; Rauh, J.; Olbrich, E.; Jost, J.; Ay, N. Quantifying unique information. Entropy
2014, 16, 2161–2183.

16. Schneidman, E.; Still, S.; Berry, M.J.; Bialek, W. Network Information and Connected
Correlations. Phys. Rev. Lett. 2003, 91, 238701–238705.

17. Wolf, S.; Wullschleger, J. Zero-error information and applications in cryptography. In Proceedings
of IEEE Information Theory Workshop, San Antonio, TX, USA, 24–29 October 2004; pp. 1–6.

18. Rauh, J.; Bertschinger, N.; Olbrich, E.; Jost, J. Reconsidering unique information: Towards a
multivariate information decomposition. In Proceedings of 2014 IEEE International Symposium
on Information Theory (ISIT), Honolulu, HI, USA, 29 June–4 July 2014; pp. 2232–2236.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

http://mathworld.wolfram.com/Antichain.html

	Introduction
	Background: Partial Information Decomposition
	Desired I  properties and canonical examples
	Previous candidate measures
	New candidate measures
	The I  measure
	The I  measure

	Conclusion
	Appendix

