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Abstract: The clear need for accurate landslide susceptibility mapping has led to multiple 

approaches. Physical models are easily interpreted and have high predictive capabilities but 

rely on spatially explicit and accurate parameterization, which is commonly not possible. 

Statistical methods can include other factors influencing slope stability such as distance to 

roads, but rely on good landslide inventories. The maximum entropy (MaxEnt) model has been 

widely and successfully used in species distribution mapping, because data on absence are 

often uncertain. Similarly, knowledge about the absence of landslides is often limited due to 

mapping scale or methodology. In this paper a hybrid approach is described that combines the 

physically-based landslide susceptibility model “Stability INdex MAPping” (SINMAP) with 

MaxEnt. This method is tested in a coastal watershed in Pacifica, CA, USA, with a  

well-documented landslide history including 3 inventories of 154 scars on 1941 imagery, 

142 in 1975, and 253 in 1983. Results indicate that SINMAP alone overestimated 

susceptibility due to insufficient data on root cohesion. Models were compared using 

SINMAP stability index (SI) or slope alone, and SI or slope in combination with other 

environmental factors: curvature, a 50-m trail buffer, vegetation, and geology. For 1941 and 

1975, using slope alone was similar to using SI alone; however in 1983 SI alone creates an 

Areas Under the receiver operator Curve (AUC) of 0.785, compared with 0.749 for slope 

alone. In maximum-entropy models created using all environmental factors, the stability 

index (SI) from SINMAP represented the greatest contributions in all three years (1941: 48.1%; 

1975: 35.3; and 1983: 48%), with AUC of 0.795, 0822, and 0.859, respectively; however; 

using slope instead of SI created similar overall AUC values, likely due to the combined 

effect with plan curvature indicating focused hydrologic inputs and vegetation identifying the 
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effect of root cohesion. The combined approach––using either stability index or slope––

highlights the importance of additional environmental variables in modeling landslide initiation.  

Keywords: landslide susceptibility; maximum entropy model; physical model;  

hybrid model; cohesion 

 

1. Introduction 

Mass movement or mass wasting describes the movement of rock, debris, soil, or earth material by 

gravity. This movement may be fast or slow, typically depending on the amount of water present in the 

mass. Therefore multiple kinds of mass wasting can be distinguished. Varnes [1] has provided a 

comprehensive and widely accepted classification of mass movement types. Landslides are a special 

case of mass movement, but the term is also often used as a general description of any loose material 

sliding down a slope. The sizes of landslides vary, with smaller ones being more common than larger 

ones. Landslides are triggered when a threshold of stability is crossed, usually involving earthquakes or 

excess water, or an intrinsic threshold resulting from successive weathering of slope material [2]. 

Hydrologic inputs are a significant contributor to decreasing slope stability by their effect on pore 

pressure, and redirected flows can lead to slope failures. For instance, soil piping can contribute to 

landslides by increasing within-soil drainage rates [3], and runoff from impervious surfaces such as  

roads [4] can also contribute to downslope failures through concentrating flow.  

Landslides can be a serious threat to human habitat, and they are amongst the most damaging  

geo-hazards, although their effect may be attributed to the triggering factor. Recently, the 2014 Oso 

landslide in Washington State, USA, likely due to prolonged precipitation and involving a volume of  

8 × 106 m3 over an area of about 2.6 km2, killed 41 people [5,6]. In 2010, a large landslide along the 

Hunza River in Pakistan not only erased two villages, but additionally created a large dam resulting in a 

lake which flooded villages upstream and threatened flooding of habitat downstream [7]. The cumulative 

effect of small landslides can also be very destructive, particularly when large regions are affected by 

swarms of landslides. Thousands of landslides caused by an intense storm in January of 1982 resulted 

in the loss of life of 25 people in the San Francisco Bay area. Although most of these slides were not of 

large size, some of the scars can still be recognized on recent aerial photography.  

Given that landslides can be a dangerous event, it is important to understand their behaviour, and the 

conditions under which they occur. For this purpose, a spatiotemporal inventory of landslide episodes in 

the past is critical, and these inventories are a crucial component in the process of landslide analysis. 

Various methods are applied, although the most common procedures are identification in the field and 

detection of landslide scars from aerial photography. There are of course many logistical challenges in 

developing timely, accurate inventories; and it has been shown that landslide inventories can differ 

between investigators, methods applied, and multiple scales of data sources [8,9]. Recently, semi-automated 

landslide mapping using object-oriented image analysis (OBIA) from very-high resolution satellite 

images has received some attention [10,11]. Full automation has yet to be achieved, but this approach 

could be a promising path to rapidly creating a landslide record shortly after the event. The inventory is 

subsequently used to create maps of landslide susceptibility in order to identify areas or locations that 
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may experience sliding at some time in the future. Landslide hazard maps finally combine spatial with 

temporal probabilities [6,9].  

Landslide susceptibility mapping typically involves one of three approaches: heuristic reasoning, 

statistical analysis, and physically-based models. Each procedure has advantages and disadvantages.  

In general, heuristic methods are considered basic, involving coarse scales; statistical analysis is assumed 

to be appropriate at intermediate scales; while deterministic or physically-based methods are the most 

sophisticated but may only be possible at very fine scales. This progression from basic to sophisticate 

necessitates the inclusion of additional parameters. For example, physically-based models require 

geotechnical parameters, such as soil or root cohesion and angle of internal friction [12]. These variables 

are not routinely collected or available for large areas. 

Heuristic models can be easily implemented in a GIS environment and include consideration of 

variables such as lithology, geomorphology, land use, soils, or elevation and its derivatives. It should be 

noted, however, that slope needs to be treated with caution at coarse scales. A more detailed discussion 

of the variables can be found in van Westen et al. [9]. These variables are frequently weighted either by 

the investigator, or by more objective methods, such as multi-criteria decision analysis or physical 

modeling [13,14].  

Statistical models require a thorough landslide inventory for at least part of the study area for model 

development and validation. In addition, they assume that the environmental factors in the validation 

and development part of the study area are very similar. Statistical models that have been widely adopted 

to model landslide susceptibility are logistic regression and discriminant analysis [15]. While appealing 

and easily interpreted, these methods assume that the modeler has data on absences, which is unlikely to 

be true. Landslide inventories vary depending on scale or method, so that the absence of a landslide on a 

particular map may not necessarily imply that there are no landslides at a certain location. Only large-scale 

field-based methods have the potential to clearly show even smaller failures, whereas aerial 

photography-based methods may miss landslides due to vegetation cover or insufficient scale. Even so, 

older landslides may be fairly obscured due to erosional processes [8].  

Physically-based models of landslides often employ the limit equilibrium method, predicting slope 

stability as a factor of safety (FS) from cohesion, slope, pore water pressure and angle of internal friction. 

The factor of safety describes the stability of a slope as a ratio of shear strength and shear stress. While 

methods to calculate the FS vary, in a GIS environment, the infinite slope method is used almost 

exclusively, because it is the most suitable for a pixel-based analysis. The factor of safety can be written 

as (modified after Tosi [16]): ܵܨ = ܿᇱ + (γݏ݋ܿݖଶθ − ′ϕ݊ܽݐ(ݑ
γ݊݅ݏݖθܿݏ݋θ  (1)

where c′ is effective soil cohesion, γ is unit weight of the soil, z is soil depth, θ is slope angle, and ϕ is 

effective angle of internal friction.  

Cohesion ideally includes the added effect of root cohesion, which can be complex with large ranges 

even within nominally forested land cover, because the cohesive action of roots will have a stabilizing 

effect on the slope to the point of preventing the slope from failure [16,17]. While root cohesion can be 

quantified, this is a complex procedure not routinely done and availability of sufficiently spatially 

accurate data is extremely limited. Although it is therefore often ignored, there have been instances 
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where it is included. Attempts have been made to relate root cohesion to satellite derived vegetation 

information [18,19]. However, more research is needed in this area.  

When studying large numbers of landslides in a study area with limited detailed geotechnical site 

data, statistical methods commonly provide higher prediction accuracies [20], though the results are best 

seen as identifying causal factors instead of a general model that can be applied to many sites as a 

physical model can be. Other methods such as support vector machine, artificial neural networks, fuzzy 

logic, or decision trees have also been successfully employed recently, including applications of hybrid 

or ensemble methods [14,21–23]. 

While classical entropy-based models have long been used in geomorphic systems (e.g., on 

longitudinal profiles and on stream morphology), application to event-based landforms such as 

landslides and gullies is recent, although Haigh [24] distinguished entropy dissipating and entropy 

accumulating landslides in the Himalayas. The presence-only nature of landslides––or the limited 

knowledge of absence locations––makes maximum entropy methods designed for species habitat analysis 

appealing. Geomorphological events such as rapid mass wasting share many characteristics with 

biological occurrences in that while they respond to environmental conditions, absences may not imply 

the lack of favorable conditions. At a local scale, positively and negatively spatially autocorrelated 

effects may also play a part, since mass wasting events may either increase the likelihood of other events 

in close proximity due to increasing hillslope gradients along the failure margins, or change the local 

hydrological conditions to decrease the probability for nearby events. 

This research presents a novel hybrid or ensemble type model where the result of a physically-based 

method is incorporated into an entropy model, specifically a maximum entropy model (MaxEnt). 

Physical and maximum entropy models are at opposite ends of the spectrum in that the former is easily 

interpreted, based on physical principles, while the latter is in the realm of black boxes, operating in 

information (sometimes called environmental) space. However, the hybrid approach combines 

advantages of both methods. Given an appropriate scale of study where all critical parameters are known, 

physical models are clearly the best approach, and those that are spatially explicit should be able to have 

a high predictive power. However, many of these parameters are poorly known and spatially 

heterogeneous, so a pure physical modeling approach may be difficult to achieve. Maximum entropy 

models make no statistical assumptions about the variables used as inputs, and as a Bayesian approach 

focuses on maximizing probabilities, in this case that observations are similar based upon inputs in terms 

of maximizing entropy in information space which may include environmental space [25]. In the process, 

the model is parsimonious, with variables incorporated on the basis of their being necessary and 

sufficient in maximizing prediction accuracy [26]. 

2. Study Area  

The 21.3 km2 watershed of San Pedro Creek (Pacifica, CA, USA) has been the focus of numerous 

landslide and hydrological studies as a result of its steep hillslopes and hazardous conditions [27]. Steep 

hillslopes are common with more than ten per cent of slopes greater than 35° and a median slope at 10 m 

precision of 21°. The maximum elevation is along the southern boundary of the watershed, the 578-m 

North Peak of Montara Mountain, a mass of granodiorite on the Salinian block that is moving 

northwestward with the Pacific Plate (Figure 1). The dominant surficial geology derives from marine 
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deposits accreted at a convergent plate boundary, divided by the right-lateral Pilarcitos Fault into 

Jurassic/Cretaceous Franciscan Assemblage of graywacke, melange, greenstone, limestone and 

serpentinite to the north; and Paleogene marine sedimentary rocks to the south, including extensive 

uplifted turbidite beds visible along coastal bluffs. Mollisols of varying thickness have developed on 

weathered bedrock, slopewash, ravine fill and colluvium [28,29]. 

 

Figure 1. Surficial geology of San Pedro Creek watershed, after Pampeyan [30]. 

Land cover is one third urbanized as residential and commercial development, including most of the 

valley floors but extending upslope (Figure 2). The undeveloped areas are vegetated by a mixture of 

native and exotic grasses, forests, coastal scrub and chaparral, with riparian corridors of varying 

complexity along drainage lines (Figure 3). Upland vegetation communities are influenced by bedrock 

type, soil depth, slope and aspect, with Arctostaphylos chaparral prominent on steep areas with thin soils, 

and coastal scrub (with Baccharis pilularis, Chrysolepis chrysophylla, and other species) commonly on 

colluvium. Grasses are primarily on some south facing slopes, while trees are primarily introduced, 

mostly composed of Eucalyptus globulus and Pinus radiata. 

A combination of steep terrain and relatively weak bedrock can lead to extensive debris flows and 

slides during intense rainfall events [31]. Field and aerial photographic analysis conducted during a 

sediment source analysis [32] also points to the significance of impervious runoff from roads crossing 

steep midslopes, as seen in Figure 4. Precipitation is markedly seasonal, with 90% of the 840 mm annual 

rainfall occurring between November and April [33].  
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Figure 2. Streams, roads and trails in San Pedro Creek watershed. 

 

Figure 3. Major vegetation types in undeveloped areas, San Pedro Creek watershed, based 

upon field mapping in 2002. 
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Figure 4. Shallow landslides associated with impervious runoff in San Pedro Creek watershed. 

At left is the crest of a failure that occurred below Higgins Road in 2003; at right are older 

scars from the 1970’s below a dirt road above Picardo Ranch. (Photographs by Jerry Davis) 

3. Methodology 

3.1. Physically-Based Model 

Several versions of the infinite slope method have been employed with two good examples being 

SHALSTAB and SINMAP [34]. For this research SINMAP was used where the FS is given as: ܵܨ = ܥ + cosθ ሾ1 − ሿݎݓ tanϕsinθ  (2)

where C is made dimensionless by a combination of soil (Cs) and root cohesion (Cr), soil thickness D, 

soil density ρs, and gravity g.  ܥ = ௥ܥ + ρ௦݃ܦ௦ܥ  (3)

Here, r = ρw/ρs is the ratio of the density of water to soil density, and the ratio of the height of the 

saturated zone, Dw, and D, is the relative wetness w = Dw/D. 

The model extends the infinite slope model spatially to accumulate flows downslope, using the 

assumption that the capacity for downslope lateral flux is T sinθ, where T is soil transmissivity (m2 h−1) 

derived as the product of hydraulic conductivity and soil thickness, and provides spatial patterns of 

relative wetness. In SINMAP, together with an estimate of specific catchment area a = A/b, where A is 

contributing area for unit contour length b, slope and recharge (R) relative to transmissivity T, the relative 

wetness w is derived as: ݓ = ݊݅ܯ ൬ ܴܽܶ sin θ , 1൰ (4)

A stability index (SI) is then derived as the minimum factor of safety, with minimum cohesion and maximum 

recharge-to-transmissivity ratio. For ܵܨ௠௜௡ < 1, SI is set to ܲܵܨ)ܾ݋ݎ > 1); and for ܵܨ௠௔௫ < 1, SI is 

set to zero [34]. 
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3.2. Maximum Entropy Model 

Maximum entropy (MaxEnt) is increasingly being considered in the study of a variety of earth system 

processes [35,36]. MaxEnt compares the conditional density function of covariates (predictor variables) 

at presence sites ଵ݂(ݖ) to the marginal (background) density of covariates in the study area ݂(ݖ), in order 

to derive the conditional occurrence probability ܲݕ)ݎ =  Maximum entropy models derive .[37] (ݖ|1

from information theory (as opposed to thermodynamic entropy models), and have shown promise in a 

variety of applications in earth science [38].  

A maximum entropy modeling approach was used by Convertino et al. [26] for the 9130 km2 Arno 

River basin in the Tuscany region of Italy. Felicísimo [39] compared logistic regression, the maximum 

entropy (MaxEnt) application of Phillips et al. [40], multiple adaptive regression splines (MARS), and 

classification and regression trees (CART) for modeling landslide susceptibility in a region of northern 

Spain; CART and MaxEnt performed best based upon area under the receiver operator characteristic 

curve (AUC).  

3.3. Hybrid Model  

We propose a hybrid approach (Figure 5), starting with a physical infinite-slope model extended 

spatially with downslope accumulated flows influenced by soil thickness and tranmissivity (SINMAP) 

that is then used as an input into a maximum entropy model that is able to incorporate factors unsuitable 

for the physical model; various GIS geoprocessing tools are also used to create derivative datasets such 

as slope, curvature, and distances to streams and trails or roads. A physical model such as SINMAP has 

the advantage of employing the nature of water movement and the stability factors of the infinite slope 

model, and thus it can go farther than its inputs can do statistically, but it also has limitations. Inputs to 

the model itself are often difficult to assess, and cohesion in particular is well known to vary spatially, 

due in part to the major influence yet complex nature of root cohesion [41]. If no suitable root cohesion 

data are available, maps generated by the purely physical model considering only particle cohesion often 

show extensive slope failures. This is not surprising given the well-known counteracting role of root 

structures for preventing landslides. Because some parameters, particularly engineering properties of 

soil, such as cohesion and friction angle are difficult to quantify with the physically-based models at 

medium to coarse scales; other variables, such as distance to streams, roads and trails become more 

significant. Many slope failures may be attributed to local hydrologic factors such as concentrated runoff 

from impervious surfaces, for example trails and abandoned roads built on hillslopes. A hybrid approach 

incorporating as an input slope stability derived from a physical model, itself unattainable from any 

statistical approach, has the potential to do better than either a purely physical or purely statistical model. 
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Figure 5. Hybrid model combining a physical infinite-slope model extended spatially via 

soil thickness and transmissivity using downslope accumulated flows (SINMAP) with a 

maximum entropy (MaxEnt) model. SINMAP runs in ArcGIS, and ArcGIS geoprocessing 

tools are used to generate slope, plan curvature, stream distance and trail/road distance. If slope 

is used instead of stability index, this produces a purely statistical maximum-entropy model.  

3.4. Landslide Scar Data and Causal Factors  

Landslides are commonly focused in colluvial hollows similar to those described by Reneau et al. [42], 

and in this watershed colluvial fills of up to 6 m have been documented [43]. Subsurface hydrology is a 

major cause of shallow landslides [44]. Landslides appear to largely originate on slopes of 26°–45° and 

more than 35% of all watershed hillslopes fall into this range. In an El Niño event of January 1982, the 

largest landslides all occurred between a narrow range of 26°–30° [45] during a period of intense rainfall 

on already saturated hillslopes [46].  

Urbanization has been an important factor increasing landslide hazards in the watershed. Pampeyan [30] 

found that hillslope toe removal associated with increased development is a factor in increasing landslide 

potential within the watershed. Development on steep hillslopes has been seen as a contributing cause 

of landslides, leading in the 1970’s to the passage of a Hillside Protection Ordinance by the City of Pacifica. 

Finally, recreational use of steep hillslopes has led to the construction of extensive trail networks, most 

problematically in the case of off-road motorcycles, though the latter use has been greatly curtailed in 

recent decades. These trails divert and concentrate flow, contributing to landslide hazards downslope.  

A combination of archival research, aerial photography interpretation and field surveys were used to 

compile a spatiotemporal inventory of landslides (as well as gullies) occurring in San Pedro Creek 

watershed [32]. In this study, shallow landslides were identified by scars and tracks from imagery from 
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1941 (1:24,000), 1955 (1:10,000), 1975, 1983, 1991 and 1997 (1:12,000). Environmental factors 

considered included surficial geology, vegetated land cover, distances to streams and trail networks, and 

slope and curvature derivatives of elevation. While gullies were primarily developed during the earlier 

agricultural development of the watershed, as seen on the 1941 aerial photograph, steep topography and 

intense rainfall events clearly drove the patterns of landslides especially in later years with an expansion 

of impervious surfaces including road and trail development on hillslopes [47]. The focus of this paper 

is on a hybrid model applied to data collected for these studies for 1941, 1975 and 1983, when 

contributing factors appear to be more closely aligned with either (a) expansion of agricultural and other 

land uses (1941 imagery), (b) hydrological connectivity to impervious surfaces (1975), or (c) widespread 

slope instability after an intense precipitation event in 1982 (1983). 

Causal factors considered included categorical variables such as major vegetation classes 

(grassland/herbaceous, scrub, and forest), major surficial geology groups (granitics, sandstone, and 

colluvial hillslope deposits), and proximity to trails and streams. Vegetation is based on Wieslander [48] 

for 1941; aerial photographic interpretation in 1955, 1975, 1983, and 1997; and 2002 field mapping [49]. 

The most significant vegetation changes occurred between 1955 and 1975, a time of accelerated 

suburban development of the watershed. Trails and predominantly dirt roads built on hillslopes were 

digitized from these same aerial photographs (paved roads on valley floors were not used in our analysis.)  

Continuous factors were derived from elevation data, including slope and curvature. We acquired 

elevation data in two resolutions––3 m from LiDAR and 10 m from photogrammetric contouring––from 

the US Geological Survey, but selected the 10-m data for the model to avoid detecting actual scars in 

the LiDAR data. Each source has characteristic artifacts––LiDAR noise and stepped contour interpolation 

effects––that were mitigated using 3 × 3 low-pass filters: one for slope and two in succession for curvature. 

Spatial variation in precipitation intensity as was used in Convertino et al. [26], was not considered for 

our study due to the relatively small size of our study area with very few rain gauges to derive a suitable 

spatial input. Categorical variables included vegetation, geology, and Boolean 50-m trail and stream buffers. 

4. Results  

The hybrid landslide susceptibility model (see Figure 5) starts with deriving a stability index that 

employs data on soils, surficial geology, and elevation. Transmissivity and soil thickness were derived 

from a combination of soil and colluvium thickness, and a single set of inputs to approximate two 

contrasting conditions that create similar SINMAP inputs was selected: (a) moderately thick soils with 

high hydraulic conductivity on the granitic slopes of Montara Mountain, and (b) deep colluvium with 

moderate hydraulic conductivity (Table 1). Steady-state rainfall conditions are assumed.  

Table 1. SINMAP inputs for transmissivity (T), recharge (R), cohesion (C), friction (φ), and 

density (ρ). Soil data from Natural Resources Conservation Service SSURGO data, modified 

with colluvium depths from [30]. 

Parent 

material 

Soil depth 

(m) 

Hydraulic 

conductivity  

(m h−1) 

T  

(m2 h−1) 

R  

(m h−1) 

T/R  

(m) 
C 

Φ  

(º) 

Ρ  

(kg m−3) 

granitic 1 0.10 0.1 0.0002–0.0042 24–500 0–0.25 30–45 2000 

colluvium 3 0.03 0.1 0.0002–0.0042 24–500 0–0.25 30–45 2000 
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Given these assumptions, inventoried landslides from all years were predicted by SINMAP to be 

mostly undersaturated but unstable, with majorities of observed scars predicted in areas with a stability 

index less than 1.0 (Figure 6; Table 2). The stability index is mapped together with 1941, 1975, and 1983 

landslides in Figure 7. The general patterns observed is a widespread occurrence of slope failures each 

year, with 154 visible in 1941, 142 in 1975 and 252 in 1983. The last period is strikingly missing scars 

on the steepest slopes of Montara Mountain, suggesting somewhat contrasting conditions for slope 

failures captured in 1983. In both 1975 and 1983, however, many areas with predicted low stability index 

experienced no landslides, and while this may partially relate to an inability to predict the more complex 

local hydrologic flow and cohesion patterns in soils and colluvium, clearly missing are some important 

spatial controls that could not be considered in the physical model.  

 

Figure 6. Slope-Area Plot generated by SINMAP, with inventory landslides from all years 

plotted with boundary curves of stability index and saturation. 

Table 2. Stability Indices (SI) < 1.0 predicted by SINMAP for landslide scars by year. 

Imagery Year 1941 1955 1975 1983 1997 

n scars 154 39 142 253 10 
n SI < 1.0 91 24 91 197 6 

% 59% 62% 64% 78% 60% 

Variations in root cohesion is clearly an important missing variable in the physical model. The SINMAP 

inputs were based on soil particle cohesion alone, yet it appears this is insufficient to avoid slope failure; 

this is not surprising as the significance of roots in maintaining slopes is well known [16]. Given the 

highly variable depth of rooting in general and for scrub and chaparral plant communities in particular, 
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however, reasonable root cohesion estimates could not be sufficiently partitioned spatially to derive realistic 

estimates for physical modeling. Other potentially important variables may be slope curvature and 

proximity to features such as impervious surfaces and streams. In the hybrid model, the stability index 

result from SINMAP is therefore transferred along with these other factors into a maximum entropy model. 

 

Figure 7. Locations where landslides were first visible in 1941, 1975 and 1983, plotted on 

SINMAP Stability Index. 

MaxEnt models were developed for landslides first visible in 1941, 1975, and 1983 aerial photography, 

for 10 m input rasters; smaller numbers of scars first visible in 1955 and 1997 were used to test models 

developed for prior years 1941 and 1983, with 1983 data used to test the 1975 model. Results as receiver 

operator curves and prediction maps are given in Figures 8–10. Using a cross-validation approach, ten-fold 

random replicates (similar to the approach of Felicísimo et al. [39] for landslide modeling and  

Phillips et al. [40] for species distribution niche modeling) were used to assess model performance as 

AUC and threshold-based p values (Table 3). As slope and stability index are correlated, separate models 

were developed, one the hybrid model employing SI, the other a purely statistical model employing slope 

in degrees. Two measures of covariate contributions were assessed: percent contribution and permutation 

importance with lambda results reported for each class of categorical variables. 
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Figure 8. Receiver operator curves (ROC) generated by MaxEnt for 1941, 1975, and 1983 

landslides, from 10-fold replicate models. Receiving operator curves are shown as the total 

range of replicate curves, with the mean curve in red.  
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.  

Figure 9. Variable contribution jackknife plots generated by MaxEnt for 1941, 1975, and 

1983 landslides, from 10-fold replicate models. Jackknife plots provide the variable 

contributions from geology (geolreg), proximity to streams (nearstream), proximity to trails 

(neartr_), plan curvature (plancurv2), profile curvature (profcurv2), stability index (si_gt0), 

and vegetation (veg_). 
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Figure 10. Maps generated by MaxEnt for 1941, 1975, and 1983 landslides, from 10-fold 

replicate models. 
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Table 3. Maxent results by year of shallow landslide scars from aerial photography, 

including overall and 10-fold replicate models. Variables were chosen based upon their 

contribution to one or more models, and correlated variables (SI and slope) were not used 

together. Variable contributions are given as percent contribution (%) and permutation 

importance (PI). Models are evaluated as AUC for a threshold-independent assessment; for 

a threshold-dependent evaluation, arithmetic means of the 10 p values use the maximum test 

sensitivity + specificity threshold from MaxEnt [40]. Lambdas for categorical variables are 

for unreplicated models using all data for training. 

  1941 1975 1983 

 using: SI slope SI slope SI slope 

n  132 154 132 141 226 252 

AUC (using all data)  0.795 0.796 0.822 0.814 0.859 0.857 

AUC subsequent-year test data  0.778 0.795 0.749 0.742 0.853 0.842 

subsequent test year  1955 1983 1997 

n slides in test year  31 39 226 253 9 10 

10-fold replicates:        

AUC with 10-fold replicates  0.728 0.743 0.782 0.772 0.839 0.836 

AUC standard deviation  0.044 0.041 0.058 0.040 0.026 0.024 

p: maximum test sensitivity + specificity  0.004 0.041 0.001 0.000 0.000 0.000 

SINMAP stability index %C 48.1  35.3  48  

 PI 50.2  49.7  57.4  

Slope (°) %C  59.1  41  37.5 

 PI  59.3  49.2  46.4 

Plan curvature %C 9.6 13.4 6.4 7.4 15.3 19.6 

 PI 9.4 15 3.9 6.6 13.9 18.8 

Profile curvature %C 6.7 2.3 1.5 1.1 2.2 1.7 

 PI 10.1 4.8 4.2 3.1 5 2.7 

50-m trail buffer %C 0 0.3 22.5 16.8 0.1 0 

 PI 0 0.2 14.9 16.4 0.1 0 

Vegetation %C 35 23.7 32.2 33.2 24.6 27 

 PI 29.9 20 24.9 23.6 15.5 20.3 

0. Farmed (1941), Developed (1975 & 1983) λ   0.0 0.00 −1.93 −2.14 −0.02 −0.42 

1. Grassland λ  1.76 1.17 1.06 1.25   

2. Scrublands λ  0.54    1.43 1.39 

3. Forest λ   −0.01 −0.56 −0.34   

Geology %C 0.5 1.1 2.1 0.6 9.8 13.4 

  PI 0.1 0.7 2.2 1.2 7.9 11.4 

1. Granitic λ  −0.22 −0.40 0.0 0.0 −1.10 −1.03 

2. Sandstone λ  0.03   0.15   

3. Colluvium λ   0.03 −0.33 −0.02 0.54 0.58 
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5. Discussion and Conclusions 

In considering the hybrid model as an improvement over either a physically based model or a 

maximum entropy based statistical model, we can compare results from MaxEnt with varying inputs, such 

as (a) using stability index alone; (b) using stability index along with environmental factors; and (c) 

using slope angle as an alternative to stability index, along with the remaining environmental variables. 

Each of the three years of significant landslide evidence––1941, 1975 and 1983––represent contrasting 

scenarios indicative of both land cover changes and varying rainfall intensity conditions. These are 

interpreted below as the effects of cultivation and grazing on moderate slopes before 1941, suburban 

development leading up to 1975, and an especially intense rainfall event in 1982 seen in 1983 imagery.  

The landslide model for 1941 (AUC = 0.795) illustrates a preference for the areas of relatively 

moderate relief in the north-central part of the watershed, with vegetation and the SINMAP stability 

index contributing the most to the resulting model: 48% and 35%, respectively. Patterns of landslides 

reflect agricultural and grazing conditions prevalent until later residential development in the 1950’s. 

Many landslides occurred in scrubland areas on the steep eastern and southern hillslopes, though the 

north-central grassland shared a propensity for landslides, where grazing on hillslopes is a likely factor. 

Replacing the stability index with slope, however, produced identical results (AUC = 0.796), with slope 

contributing 59% of the model), suggesting no real improvement over stability index in the MaxEnt 

model. Stability index alone produced MaxEnt AUC of 0.652, while slope alone yielded an AUC of 0.687.  

Similarly, in 1975, little difference results from choosing slope over SI, either alone (AUC for SI 

alone is 0.717, for slope alone is 0.719), or in combination with other factors (0.822 for the hybrid model 

with SI, 0.814 for a purely statistical model with slope). By 1975, the north-central area had experienced 

suburban development, with some landslide areas in the north central area landscaped and stabilized for 

housing. The greatest numbers of landslides occurred instead on steeper grassland and scrubland hillslopes 

to the east and south. Using landslide scars from 1983 as test data scored low in AUC, suggesting that 

the 1975 model reflects contrasting conditions in that year as compared with the later year. One likely 

factor is the prominence of suburban development and major expansion of trails, including off-road 

motorcycle trails [50], on hillslopes leading up to 1975, and this is shown by the 22.5% contribution of 

a 50-m trail buffer for the hybrid model and the 16.8% contribution of this factor in the purely statistical 

model employing slope. 

The model from 1983 however does appear to show stability index contributing more than slope, at 

least as a single factor: when used alone, SI creates an AUC of 0.785, with slope alone creating an AUC 

of 0.749. But there is no real difference between the overall hybrid model (AUC of 0.859) and the 

statistical model employing slope (AUC = 0.857). In 1983, plan curvature and vegetation are the next 

most important contributors. Interestingly, numerous scars occur on the scrublands that dominate 

undeveloped steep hillslopes; it is likely that scrubland root structures do not extend deep enough to 

prevent landslides that result from an intense rainfall event. Similarly, only in the 1983 model does 

surficial geology play a prominent role, when landslides were abundant on colluvium, likely initiated 

from pore pressure threshold exceedances during the 1982 ENSO year [51]. 

Based on the mean and spread of receiver operator curves, the model worked much better for 1983 

slope failures. This may have resulted from better landslide data from that more recent year, aided by better 

preservation of landslide scars that could be observed during field visits in later years. Another explanation 
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may be the conditions leading to failures that likely provide a contrast between 1975 and 1983: the 

significance of impervious runoff in 1975 is less evident in 1983 in a lesser contribution of trail proximity, 

when under the intense 1982 ENSO rainfall events plan curvature (concentrating flow) appears to have 

played a more widespread role, in contrast to the possibly less predictable effects of impervious runoff.  

In conclusion, the potential benefit of the hybrid approach will certainly take additional testing, 

perhaps also in larger study areas where spatial variability in rainfall intensity may play a part. While 

apparent from this and other studies that a maximum entropy model provides the ability to incorporate 

many variables that cannot be incorporated in a physical model alone, the results are difficult to apply 

generally, which is of course the appeal of a physical model. Our results suggest that while a stability 

measure developed via a physical modeling approach can provide more information than slope alone, 

slope in combination with plan curvature (influencing the concentration of hydrologic flows) and 

vegetation (influencing patterns of root cohesion) can provide similar overall predictive power. The 

potential benefit of the hybrid approach may be to better identify the contributing factors for initiating 

landslides by including a potentially clearer picture of slope stability variation from the physical model 

output, and one that can be improved with more spatially detailed soil parameters, but may benefit from 

the additional contribution of environmental factors influencing root cohesion and hydrologic flows, in 

a maximum-entropy model.  
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