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Abstract: In this work, we show a general approach for inhomogeneous composite

thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler.

This composite cooler consists of two thermoelectric modules (TEMs) connected thermally

in parallel and electrically in series. Each TEM has different thermoelectric (TE) properties,

namely thermal conductance, electrical resistance and the Seebeck coefficient. The system

is coupled by thermal conductances to heat reservoirs. The proposed approach consists of

derivation of the dimensionless thermoelectric properties for the whole system. Thus, we

obtain an equivalent figure of merit whose impact and meaning is discussed. We make use

of dimensionless equations to study the impact of the thermal conductance matching on

the cooling capacity and the coefficient of the performance of the system. The equivalent

thermoelectric properties derived with our formalism include the external conductances and

all intrinsic thermoelectric properties of each component of the system. Our proposed

approach permits us changing the thermoelectric parameters of the TEMs and the working

conditions of the composite system. Furthermore, our analysis shows the effect of the

number of thermocouples on the system. These considerations are very useful for the design

of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial

composite TEM connected electrically in series.

Keywords: thermoelectric cooler, Peltier effect; cooling capacity; coefficient of

performance; thermal coupling
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1. Introduction

Composite thermoelectric systems, based on thermoelectric effects, such as Seebeck effect and Peltier

effect, have a variety of uses nowadays. A composite thermoelectric cooling system (composite TECS)

has many advantages in comparison with the traditional cooling systems, such as the lack of moving

parts, low weight, does not need maintenance and the fact that it is environmentally friendly due to

lack of cooling substances. Disadvantage of the TECS are the low cooling capacity Qc and coefficient

of performance (COP). New techniques and thermoelectric materials have been proposed for designing

new thermoelectric specific systems that allow the improvement of the device performance through the

optimization of the thermal and electrical transport properties [1–3]. These TECS, known as solid-state

devices, are used in many different applications, ranging from controlling the temperature of laser

diodes, infrared detectors, superconductor applications, aerospace applications, electronic devices and

food storage [4].

It is well known that the thermal conductance of ceramic plates plays a vital role in the performance

of TECS. Yamanashi [5] has considered the effects of the thermal resistance of heat exchangers on the

performance of a TEC, with a constant thermocouple number. He has obtained the design parameters

through the dimensionless heat balance equations. On the other hand, Xuan [6], through introducing

equivalent impedances to take into account the thermal contact effect of a single stage, have derived

the maximum temperature difference, cooling capacity and COP. Recently, Pearson and Lents [7] have

studied a thermal network with an integrated TEC and performed a dimensionless analysis. They

concluded that dimensionless parameters reduce the complexity of the results, enabling the evaluation of

the system without knowing the detailed information of the geometries or the materials. These proposals

consider homogeneous TECS, i.e., TECS with thermoelectric modules (TEMs) that have the same

thermoelectric properties, namely the Seebeck coefficient, electrical resistance and thermal conductance.

However, the behavior of inhomogeneous composite TECS, i.e., composite TECS with TEMs that have

different thermoelectric properties, can not be predicted.

Apertet et al. [8] have considered an inhomogeneous thermoelectric generator system (TEGS)

composed of two different thermoelectric modules, electrically and thermally connected in parallel, using

linear irreversible thermodynamics, and they have proposed equivalent parameters for an equivalent

thermoelectric generator system, including realistic thermal coupling [9]. Using this linear approach,

others authors [10,11] have considered different configurations for composite TEGS.

Moreover, a widely-considered approach in the analysis for both TECS and TEGS is Ioffe’s

approach [12]. This approach includes the Joulean heat loss [5,6]. Thus, we are interested in the analysis

of inhomogeneous composite TECS, and we propose a general approach, based in Ioffe’s approach,

which includes all thermoelectric properties of the TEMs constituting the TECS. We illustrate this

general approach for a dual thermoelectric cooling system that consists of two TEMs with different

thermoelectric properties and thermal coupling. This approach can be useful for designing a composite

solid-state device with thermal coupling for switching between low power consumption or high heat

pumping performance [13].

The paper is organized as follows: In Section 2, we present the configuration of the dual

thermoelectric cooler system. We derive the equivalent parameters for our system and transform it into
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its dimensionless form, in Section 3. In Section 4, we analyze our numerical results for COP and for

cooling capacity, QC , and their behavior as a function of the thermal impedances. Finally, in Section 5,

we present our conclusions, and future work is discussed briefly.

2. Dual Thermoelectric Cooling System

Our composite TEC system is composed of two thermoelectric modules thermally connected in

parallel and electrically connected in series, as depicted in Figure 1. The system is coupled to two

heat reservoirs by thermal exchangers, and the temperatures of the heat reservoirs are Tc and Th with

Th > Tc. Kc and Kh are the thermal conductances of the heat exchangers at both sides, cold and hot,

respectively. Each TEM is characterized by a Seebeck coefficient αi, thermal conductance Ki and an

electrical resistanceRi, where i can be one or two as appropriate. The TEM1 and TEM2 are formed by

m and n thermocouples number, respectively. I is the electrical current through the TEMs.

Figure 1. Schematic of a Dual Thermoelectric Cooling System.

3. Heat Balance Equations

We assume that the heat flow between the TEMs and the surroundings is ignored, except for the cold

and hot end of each TEM; also, the properties of the N- and P -type elements are assumed independent

of temperature. In Figure 1, Qh is the heat rejected from the TEC system to the heat reservoir and Qc is

the cooling capacity or the heat absorbed from the cooled object. Assuming that the heat flow between

each stage and the heat reservoirs obey Newton’s law, we have:

Qh = Kh(T1 − Th) (1)

Qc = Kc(Tc − T2) (2)
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The heat flux flowing through the dual TEC system is the sum of two heat fluxes flowing through TEM1

and TEM2,

Qh = Qh1 +Qh2 (3)

Qc = Qc1 +Qc2 (4)

The heat fluxes, Qci and Qhi (i = 1, 2), for each TEM are given by:

Qh1 = m[α1IT1 +
1

2
I2R1 −K1(T1 − T2)] (5)

Qc1 = m[α1IT2 −
1

2
I2R1 −K1(T1 − T2)] (6)

Qh2 = n[α2IT1 +
1

2
I2R2 −K2(T1 − T2)] (7)

Qc2 = n[α2IT2 −
1

2
I2R2 −K2(T1 − T2)] (8)

where m and n are the number of thermocouples for TEM1 and TEM2, respectively. Equations (5)–(8)

contain three terms, namely αIT , Peltier heat, I2R, the internal heat generated by the Joulean loss and

K(T1 − T2), conduction heat loss. Clearly, the properties of different thermoelectric semiconductor

materials of each TEM are included in the above equations.

3.1. Equivalent Dual TEC System

In this section, we derive the equivalent thermoelectric parameters of the dual TEC system as a whole.

Combining Equations (1)–(3), (5) and (7), we obtain for the heat rejected, Qh,

Qh = αeqHITh +
1

2
I2ReqH −KeqH(Th − Tc) (9)

where,

αeqH =
(mα1 + nα2)(1 +

mα1I+nα2I
Kc

)

1 + (mK1+nK2)(Kc+Kh)
KhKc

+ (mα1I+nα2I)(Kh−Kc)
KhKc

− (mα1I+nα2I)2

KhKc

(10)

ReqH =
(mR1 + nR2)(1 +

mα1I+nα2I
Kc

+ 2mK1+nK2

Kc
)

1 + (mK1+nK2)(Kc+Kh)
KhKc

+ (mα1I+nα2I)(Kh−Kc)
KhKc

− (mα1I+nα2I)2

KhKc

(11)

KeqH =
(mK1 + nK2)

1 + (mK1+nK2)(Kc+Kh)
KhKc

+ (mα1I+nα2I)(Kh−Kc)
KhKc

− (mα1I+nα2I)2

KhKc

(12)

Similarly, combining Equations (1), (2), (4), (6) and (8), we have for absorbed heat Qc,

Qc = αeqCITc −
1

2
I2ReqC −KeqC(Th − Tc) (13)

where:

αeqC =
(mα1 + nα2)(1− mα1I+nα2I

Kh
)

1 + (mK1+nK2)(Kc+Kh)
KhKc

+ (mα1I+nα2I)(Kh−Kc)
KhKc

− (mα1I+nα2I)2

KhKc

(14)

ReqC =
(mR1 + nR2)(1− mα1I+nα2I

Kh
+ 2mK1+nK2

Kh
)

1 + (mK1+nK2)(Kc+Kh)
KhKc

+ (mα1I+nα2I)(Kh−Kc)
KhKc

− (mα1I+nα2I)2

KhKc

(15)

KeqC =
(mK1 + nK2)

1 + (mK1+nK2)(Kc+Kh)
KhKc

+ (mα1I+nα2I)(Kh−Kc)
KhKc

− (mα1I+nα2I)2

KhKc

(16)
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The equivalent thermoelectric parameters of our dual TEC system are given by Equations (10)–(12)

and (14)–(16). These equations generalize the previously obtained results for homogeneous

thermoelectric cooling systems considered by other authors [6]. For example, the parameters αeqH and

αeqC are the effective Seebeck coefficients for the hot and cold side, respectively. These equivalent

parameters not only combine all intrinsic thermoelectric properties of both modules, but also they

are significantly influenced by external thermal conductances. In Section 4.4, we will show that the

numerical behavior of the figure of merit for the whole system satisfies Bergman’s theorem. Notice that

the equivalent heat balance equations of the system (9) and (13), depend only on the temperatures Tc and

Th. Furthermore, we will use these results and recover, as limit cases, the design parameters for TEC

system, which have been previously studied by other authors; see Section 4.5.

3.2. Dimensionless Equivalent Heat Balance Equations

When a TEC system is optimized, it is convenient to rewrite the heat balance Equations (9) and (13),

into the dimensionless form as follows [5],

qh = ϕ
1 + ϕδ

µ
+

1

2
ϕ2 1

ZeqTh

1 + ϕδ + 2δ

µ
− 1− θ

µ
(17)

qc = ϕ
1− ϕρ

µ
− 1

2
ϕ2 1

ZeqTc

1− ϕρ+ 2ρ

µ
−

1
θ
− 1

µ
(18)

where dimensionless quantities are defined as,

θ =
Tc

Th

(19)

δ =
(mK1 + nK2)

Kc

(20)

ρ =
(mK1 + nK2)

Kh

(21)

ϕ = I
(mα1 + nα2)

(mK1 + nK2)
(22)

Zeq =
(mα1 + nα2)

2

(mR1 + nR2)(mK1 + nK2)
(23)

qh =
Qh

(mK1 + nK2)Th

(24)

qc =
Qc

(mK1 + nK2)Tc

(25)

µ = 1 + δ + ρ+ (δ − ρ)ϕ− ϕ2δρ (26)

In equations (17) and (18), the dimensionless current is represented by ϕ. The parameters δ and ρ

are dimensionless thermal conductances normalized by the cold and hot external thermal conductances,

respectively. θ is the temperature ratio of heat reservoirs. Zeq is the equivalent figure of merit and µ

is a coupling factor. Notice that we recover the dimensionless quantities qh and qc, which have been

considered as the entropy flow normalized by the intrinsic thermal conductances, mK1 + nK2, of the

inhomogeneous TEC system.
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The equivalent figure of merit Zeq, Equation (23), can be written in terms of the number of pairs of

each TEM as:

Zeq =
α2
1(D +

√
Zr)

2

R1K1(D + Zr)2
= Z1

(D +
√
Zr)

2

(D + Zr)2
(27)

where the number of pairs ratio, D, and the figure of merit ratio, Zr, are given by:

D =
m

n
(28)

Zr =
Z1

Z2

(29)

Now, the well-known COP for a cooling system,

COP =
Qc

Qh −Qc

(30)

can be written in terms of dimensionless heat quantities,

COP =
qc

1
θ
qh − qc

(31)

We point out that this approach can be used in the analysis of a thermoelectric heat pump.

4. Results and Discussion

In this section, we study the effect of the thermal conductance matching on the cooling capacity qc

and the COP of the TEC system. In our calculations, we use values Tc = 286K and Th = 296K for the

temperatures of the cold and hot reservoirs, respectively.

4.1. Cooling Capacity qc: External Conductances Match

The behavior of the cooling capacity and the COP as a function of the dimensionless current, ϕ, for

different external conductance ratios,

Kch =
Kc

Kh

(32)

are shown by Figures 2 and 6, respectively (see also Figures 11, 13 in Appendix).

Figure 2 shows that a limit value of qc is reached as the ratio Kch decreases for a given value of ϕ when

Kc < Kh. As the external conductance ratio decreases, the change in maximal values of the cooling

capacity are determined by the electrical current ϕ. Moreover, the limit values of qc are determined by

the ratio Kch. Thus, the condition Kc < Kh is bounded, because qc will reach limit values. Notice that

it is possible to reach the same limit value of qc, using different values of electrical current, ϕ.

From the results obtained in Section 3, our approach permits us to calculate the cooling capacity, qc,

in terms of any two thermoelectric parameters (ϕ,Kch, Zr) of the equivalent TEC system. For example,

Figure 3 shows the behavior of qc as a function of the figure of merit ratio Zr and external conductances

ratio, Kch, for different values of electrical current, ϕ.
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Figure 2. Cooling capacity vs. the external conductance ratio with different dimensionless

currents.

Figure 3. Cooling capacity vs. the external conductance ratio with different figure of merit

ratios and dimensionless current.

Notice that the behavior of qc includes several effects that are contained in different planes of Figure 3.

For example, maximum values for cooling capacity qc are shown in the plane qc vs. Zr, at different values

of electrical current ϕ, for small figure of merit ratios, Zr, and thermal conductances ratios, Kch. This

result is more clearly shown in Figure 4.
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Figure 4. Cooling capacity vs. the figure of merit ratio with different dimensionless current.

Our approach permits us to know the effect of (1) thermal conductances, Kch, and (2) the figure of

merit ratio, Zr, on the cooling capacity qc at different working conditions. These effects are shown in

Figures 11 and 12 of the Appendix.

Furthermore, we show the effect on qc of both ϕ and Zr, in Figure 5, for a given value of Kch.

Figure 5. Cooling capacity vs. the figure of merit ratio and dimensionless current.

In fact, Figure 5 shows the optimal values of qc in terms of ϕ and Zr for constant values of other

parameters, namely Z1, Th, θ, Kch and D, which determine the working conditions of the composite

TEC system.

We point out that our proposed approach permits us to change the thermoelectric parameters of the

TEMs and the working conditions of the composite system. This fact is very useful for the design of

thermoelectric composite systems.
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4.2. Coefficient of Performance (COP): External Conductances Match

Analogously, Figures 6, 7 and 8 show the corresponding behavior for COP of the system as a function

of Kch, Zr and ϕ, respectively.

Figure 6. COP vs. the external conductance ratio with different dimensionless currents.

Figure 7. COP vs. the external conductances ratio with different figures of merit and

dimensionless current.
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Figure 8. COP vs. the figure of merit ratio and dimensionless current.

Again, we obtain several results for COP of the system, which are included in different planes of

Figures 7 and 8. See Figures 13, 14 and 15 in the Appendix.

Table 1. COP for different values Kch.

Kch COP ∆COP

0 1.9866 0.045

0.05 1.9416 0.0437

0.10 1.8979 0.0424

0.15 1.8555 0.0412

0.20 1.8143 0.0400

0.25 1.7743 0.0389

0.30 1.7354 0.0378

0.35 1.6976 0.0368

0.40 1.6608 0.0358

0.45 1.6250 0.0349

0.50 1.5901 0.0339

0.55 1.5562 0.0331

0.60 1.5231 0.0322

0.65 1.4909 0.0314

0.70 1.4595 0.0306

0.75 1.4289 0.0298

0.80 1.3991 0.0292

0.85 1.3699 0.0284

0.90 1.3415 0.0278

0.95 1.3137 0.0271

For example, Figures 6 and 13 show that the maximal values of the COP tend to a limit maximum

value as the ratio Kch changes. This fact shows that it is not possible to optimize the system by just
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fixing the Kch, but also a limit for the external conductances Kch exists. Table 1 shows the behavior of

limit values for COP as we change the ratio Kch.

As is well known, the optimal working conditions are different for both maximum values of qc and

COP . A maximum value for qc is obtained for high values of ϕ; meanwhile, the maximum values of

COP are obtained in low ranges of ϕ. In Section 4.3, we obtain the qualitative behavior of COP for a

commercial composite TEM connected in series.

4.3. Numerical Validation

Firstly, Table 2 shows some values of Kch, δ and ρ used in our calculations, only for completeness

reasons.

Table 2. Values of ρ and δ for given values of Kch.

Kch 0.3 0.5 1 2

δ 0.3522 0.3522 0.3522 0.3522

ρ 0.10566 0.1761 0.3522 0.7044

Nowadays, it is possible to fabricate composite TEMs connected in different configurations [13,14].

We use the thermoelectric parameters, α1 = α2 = αLuo, R1 = R2 = RLuo and K1 = K2 = KLuo,

for a composite TEM connected in series proposed by Luo [15] for obtaining Figure 9. The behavior

of the COP , shown in Figure 9, is very near to that reported in the datasheet for the SP − 254 −
1.0−2.5 (series) TEM connected electrically in series, with the same thermoelectric properties for each

component of the TEM [16].

Figure 9. COP vs. the input voltage corresponding to an SP − 254− 1.0− 2.5 (series) TEC

module connected in series.
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4.4. Role of the Equivalent Figure of Merit

In the previous section, we studied the effect of the external conductance matching on the performance

and the cooling capacity of our system. In this section, we analyze the role of the equivalent figure of

merit, Zeq, in the qc and COP parameters in terms of the number of pairs, n and m, and the figure of

merit of each component TEM, Z1 and Z2.

Using Equation (23) or Equation (27) and the numerical values of the thermoelectric properties of

TEM 2, shown in Table 3, for a fixed value of Z1 = 0.0027, we obtain Figure 10, which shows the

equivalent figure of merit of the system as a function of the number pairs of each TEM.

Table 3. Numerical values of the thermoelectric properties of TEM 2 when Z1 = 0.0027.

Zr α2 R2 K2 Z2

0.1 0.0170 0.341 0.0313 0.0273

0.5 0.0381 1.705 0.1565 0.0054

1 0.054 3.41 0.313 0.0027

2 0.0766 6.82 0.626 0.0013

3 0.0935 10.23 0.939 0.0009

Figure 10. Equivalent figure of merit vs. the number of pairs ratio with different figure of

merit ratios.

Our results show that if the thermoelectric properties of both modules have the same value, Zr = 1,

the equivalent figure of merit Zeq becomes independent of the number of pairs. On the other hand, if

Zr 6= 1, the equivalent figure of merit approaches Zr = 1, as the number of pairs increases. Meanwhile,
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if the number of pairs ratio decreases, the value of Zeq tends to the figure of merit that satisfies the Zr.

Notice that the value of Zeq is not greater that the values of the figure of merit for each TEM of the

system, independently of the number, n or m, of the number of pairs. Thus, the result is according to the

theorem of Bergman [17], which says that the equivalent figure of merit of the TEM, can only be lower

than the highest Z of the more efficient TEM. The value of Zeq is affected by the figure of merit ratio

Zr. When Zr is lower than the unit, or Z2 > Z1, it is possible to increase the values of the equivalent

figure of merit by having a lower number of pairs ratio n > m, but it is not possible to get a higher value

than the Z2 that satisfies the Zr. Our analysis is consistent with the obtained results for thermoelectric

generator systems [8] because of the generality of Bergman Theorem.

4.5. Simplified Approaches: Previously Considered Cases

Finally, in this section, we derive some results previously obtained for more simple models.

From Equation (18), by setting qc = 0, it is possible to get the full solution for the temperature ratio θ,

θ =
1

ϕ(1− ϕρ)− 1
2
ϕ2 1−ϕρ+2ρ

ZeqTc
+ 1

(33)

In order to proceed with the approaches, it is necessary to define a new temperature ratio θh:

θh =
1

θ
= ϕ(1− ϕρ)− 1

2
ϕ21− ϕρ+ 2ρ

ZeqTc

+ 1. (34)

Now, solving dθh
dϕ

= 0, ϕmax can be approximated through a power series expansion, leading to:

ϕmax = ZeqTc − (
1

2
Z2T 2

c + 2ZeqTc)ρ+O(ρ2) (35)

and finally, substituting ϕmax into Equation (34) yields:

θh(max) = ϕmax(1− ϕmaxρ)−
1

2
ϕ2
max

(1− ϕmaxρ+ 2ρ)

ZeqTc

+ 1 (36)

In the limit ρ → 0 or when Kc >> (mK1 + nK2), the maximum dimensionless current and

temperature ratio are respectively reduced to:

ϕmax = ZeqTc (37)

θh(max) =
1

2
ZeqTc + 1 (38)

We highlight the fact that if the thermoelectric properties of the two modules are the same, i.e.,

α1 = α2 = α, R1 = R2 = R and K1 = K2 = K, then the equivalent figure of merit becomes the

ordinary one, and from Equations (37) and (38) we obtain,

ϕmax = ZTc (39)

θh(max) =
1

2
ZTc + 1 (40)

Equations (39) and (40) have been previously obtained by many authors [5,6].
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5. Conclusions

Using our proposed approach to analyze a composite TEC system, formed by two TEMs, with

different thermoelectric properties each, connected thermally in parallel and electrically in series,

equivalent thermoelectric properties have been derived. These equivalent properties depend on all

thermoelectric parameters of the composite TEC system, namely Seebeck coefficients, α(1,2), thermal

conductivity, K(1,2), the electrical resistance, R(1,2), of each TEM and external thermal conductances

K(c,h). The corresponding dimensionless heat balance equations may be very useful for the design of

composite thermoelectric systems, because they show the relation of the thermoelectric parameters of

the TEM components of the system. The main parameters of the TEC system are external thermal

conductances of heat exchangers, Kch, and the figures of merit ratio, Zr. The obtained results from this

approach show the effect of two or more thermoelectric parameters on the COP and qc of the system. In

this work, it is shown that the maximum values for COP and qc are determined by the external thermal

conductances ratio Kch, with the condition Kc < Kh. In general, we have shown (see Section 4) that

our approach permits us to determine the optimal values of qc and COP for different working conditions

determined. The obtained results in this work are useful for designing composite TEC systems with

thermal coupling, Kch. We show the consistency of our approach obtaining the COP as a function of

the input voltage for a commercial thermoelectric module connected electrically in series. Furthermore,

we have derived results previously obtained by many authors as limit cases of our approach. Finally, we

point out that the proposed approach in this work can be easily extended to include many TEMs with

different thermoelectric properties, each one connected thermally in parallel and electrically in series.

Acknowledgments

M.A.O.R. This work was financially supported by research grant 20150488 of Instituto Politecnico

Nacional, Mexico. C.Y.F.N. was partially financially supported by CONACyT, Mexico (grant no.

514381). The authors acknowledge the editorial assistance of the editors to improve the manuscript.

Author Contributions

M.A.O.R. designed research; C.Y.F.N. calculated the data; M.A.O.R. and C.Y.F.N. analyzed data; I.L.

supervised the dimensionless analysis, read and commented on the manuscript; M.A.O.R. and C.Y.F.N.

wrote the paper. All authors have read and approved the final manuscript.

A. Effect of the Thermoelectric Parameters in COP and Qc

In this Appendix, we list figures showing the effect of the thermoelectric parameters on COP and qc

of the system. Notice that several results are included in the 3D figures discussed in the above sections.

The figures in this Appendix show important limit intervals of the thermoelectric parameters.
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A.1. Cooling Capacity qc

We reproduce several results for qc in terms of thermal conductances, Kc and Kh, electrical current,

ϕ, and the figure of merit, Z.

Figure 11. Cooling capacity vs. dimensionless current with different external thermal

conductances ratios.

Figure 12. Cooling capacity vs. dimensionless current with different figure of merit ratios.

Figure 11 shows the effect of the external conductances, Kch = Kc/Kh, on the cooling capacity qc.

At the same electrical current ϕ, we can obtain different maximum values for qc for a given value of

Zr = Z1/Z2.

On the other hand, for a given Kch, the behavior of cooling capacity qc vs. the electrical current is

shown in Figure 12 when we change the figures of merit ratio Zr.
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A.2. Coefficient of Performance

In this Appendix section, we obtain several results for COP in terms of thermal conductance, Kch,

electrical current, ϕ, and figure of merit, Z, see Figures 13–15. Our results contained in the Appendix

show important intervals of limit values for the thermoelectric parameters. For example, as Zr increases

in the TEMs, clearly, for the same current, we have different cooling capacities. In Figure 12, we show

that there are intervals for ϕ in which qc is zero for a given Zr value. If Z of any TEM increases, qc

increases also. Figure 4 shows some intervals for maximum values of qc for this condition.

Figure 13. COP vs. dimensionless current with different external conductances ratios.

Figure 14. COP vs. dimensionless current with different figure of merit ratios.
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Figure 15. COP vs. the figure of merit ratio with different dimensionless currents.
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Nomenclature

COP Coefficient of performance

D Number of pair ratio

I Electric current through thermoelements (A)

K Thermal conductance of thermoelement

Kc Thermal conductance of cold-end heat exchanger (W
K
)

Kch Thermal conductance of heat exchangers ratio

Kh Thermal conductance of hot-end heat exchanger (W
K
)

m Total number of thermoelements at first TEM

n Total number of thermoelements at second TEM

qc Dimensionless cooling capacity

qh Dimensionless heat rejection

Qc Cooling capacity of the TEC system (W )

Qh Heat rejection of the TEC system (W )

R Electric resistance of thermoelement (Ω)

T1 Hot end temperature of TEMs (K)

T2 Cold end temperature of TEMs (K)

Tc Temperature of the cold reservoir (K)

Th Temperature of the hot reservoir (K)

V Input voltage (V )

Z Figure of merit ( 1
K
)

Zr Figures of merit ratio

Zeq Equivalent figure of merit
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Greek letters

α Seebeck coefficient of thermoelement ( V
K
)

δ Cold conductance ratio

∆T Temperature across the TEMs (K)

ρ Hot conductance ratio

θ Temperature of heat reservoirs ratio

ϕ Dimensionless current

µ Coupling factor

Subscripts

1 First TEM

2 Second TEM

eqH Equivalent for hot side

eqC Equivalent for cold side

ch Heat exchangers conductances ratio

Lou Thermoelectric value obtained through Z. Luo’s method

r Ratio

max Maximum
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