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Abstract: Since Advanced Encryption Standard (AES) in stream modes, such as counter

(CTR), output feedback (OFB) and cipher feedback (CFB), can meet most industrial

requirements, the range of applications for dedicated stream ciphers is decreasing. There

are many attack results using algebraic properties and side channel information against

stream ciphers for hardware applications. Al-Hinai et al. presented an algebraic attack

approach to a family of irregularly clock-controlled linear feedback shift register systems:

the stop and go generator, self-decimated generator and alternating step generator. Other

clock-controlled systems, such as shrinking and cascade generators, are indeed vulnerable

against side channel attacks. To overcome these threats, new clock-controlled systems

were presented, e.g., the generalized alternating step generator, cascade jump-controlled

generator and mutual clock-controlled generator. However, the algebraic attack could be

applied directly on these new systems. In this paper, we propose a new clock-controlled

generator: the switching generator, which has resistance to algebraic and side channel

attacks. This generator also preserves both security properties and the efficiency of existing

clock-controlled generators.

Keywords: clock-controlled generator; algebraic attack; side channel attack; switching

generator; period and linear complexity
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1. Introduction

Since the National Institute of Standards and Technology (NIST) announced that Rijndael was

proclaimed the winner of the Advanced Encryption Standard (AES) competition, no critical security

weaknesses have been demonstrated for this algorithm until now [1]. In addition, it has been reported

that its performance implemented in software and hardware seems to be excellent across a wide range

of computing environments [2,3]. Especially, AES in counter (CTR) or output feedback (OFB) mode

can meet most requirements for stream cipher systems, so that there has been an unavoidable long-term

decline for stream ciphers.

At the State of the Art in Stream Ciphers (SASC) 2004 and Asiacrypt 2004, A. shamir presented an

invited lecture titled “Stream Ciphers: Dead or Alive?” [4]. In this lecture, he pointed out that stream

ciphers would survive only in some niche applications. These applications are as follows:

• software-oriented applications with exceptionally high speed (e.g., routers)

• hardware-oriented applications with an exceptionally small footprint (e.g., RFID, smart cards)

Stream ciphers for hardware-oriented applications with restricted resources are often designed using

a linear feedback shift register (LFSR) [5]. LFSRs are well suited for hardware implementation. They

can produce sequences with large periods and good statistical properties. To generate keystreams with

good statistical properties, designers usually used LFSR output sequences as follows [6]:

• use multiple LFSRs and a nonlinear combining function

• use a single LFSR and nonlinear filter function

• use irregular clocking of the LFSRs (clock-controlled generators)

However, these generators with LFSRs are potentially very vulnerable to algebraic attacks and side

channel attacks.

An algebraic attack that uses over-defined systems of multivariate equations to recover the secret key

has gained much attention. These equations are derived relating the output bits to the internal state bits

for the generators. Let the size of the internal state be l and the low degree of the equations be d; then,

the time complexity of the algebraic attack is O(ld)ω, where ω is the exponent of Gaussian reduction

(ω < 3). In the paper [7], the value of ω is log27. Various algebraic attacks were first applied to block

ciphers and public key cryptosystems [8–10]. Thereafter, these attacks have been effectively applied to

LFSR-based systems [11–14]. In particular, Al-Hinai et al. showed that algebraic attacks were effective

against the irregularly-clocked LFSR systems in 2006 [15]. To be secure against the algebraic attack,

Kanso presented the generalized clock-controlled alternating step generator in 2009 [16]. However,

Hassanzadeh and Helleseth described an algebraic attack against this generator [17].

Irregularly-clock-controlled shift registers are highly vulnerable against side channel attacks, such as

simple power analysis and timing attacks [18] (Chapter 7). In particular, this attack could be strongly

applied to the shrinking generator and cascade generator, which had resistance to an algebraic attack.

To overcome these attacks, new clock-controlled generators were proposed in the European ECRYPT

eSTREAM project, such as cascade the jump-controlled generator (named Pomaranch) and the mutual

clock-controlled generator (named Mickey) [19]. However, the algebraic attack could be applied on

these generators [20].
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In this paper, we present a new clock-controlled generator: the switching generator. This generator

can be resistant to algebraic attack by maintaining both secure properties and the efficiency of traditional

clock-controlled generators. Especially, we can protect this generator against side channel attacks by

choosing some parameters easily.

2. Clock-Controlled Generators

LFSRs are known to allow fast implementation on hardware and produce sequences with large

periods and good statistical properties. However, the inherent linearity of these sequences results in

susceptibility to algebraic attacks. That is the fundamental reason why LFSRs are not used directly

for keystream generation. A well-known method for increasing the linear complexity with preserving

the same properties as those sequences is a nonlinear transformation, such as a filter generator and a

combination generator. An alternative method to achieve the same goal is to control LFSR clocks, that

is a clock-controlled generator.

The components of the clock-controlled generator can be grouped into two subsystems based

on functions: a clock generation and a data generation. In general, each component consists of

maximum-length LFSRs (m-LFSRs) that produce an output sequence with a maximum possible period.

The generator works in the following way:

1. A clock-controlling LFSR is clocked regularly.

2. Output bits of the controlling LFSR are used to determine the clocking.

3. By determining the clocking, a data-generating LFSR is clocked.

In order to describe this process in detail, we label registers A and B with length m and n. The i-th

bit of register A at time t is denoted by At
i. Suppose that the i-th bit of A controls the clocking of B in

such a way that if it is “0”, B is not clocked, and if it is “1”, B is clocked j times. In this case, we can

express the change to the k-th position of B as Equation (1):

Bt
k = Bt−1

k · (At−1
i ⊕ 1) ⊕ Bt−1

k−j · A
t−1
i (1)

Let fA and fB be a characteristic polynomial and MA and MB be a companion matrix for each register,

A and B; the above equation can be represented as Equation (2):

Bt
k = [MB · Bt−2]k · ([MA · At−2]i ⊕ 1)⊕ [MB · Bt−2]k−j · [MA · At−2]i (2)

In this section, we describe existing clock-controlled generators and summarize an algebraic attack

approach to these generators.

2.1. Description of Clock-Controlled Generators

Clock-controlled generators are described in this subsection. These generators produce sequences of

large periods, large linear complexity and good statistical properties.
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2.1.1. Stop and Go Generator

The stop and go generator, proposed by Beth and Piper in 1984, has two LFSRs A and B of length m

and n, respectively [21]. The output sequences zt are generated as follows:

1. Register A is clocked.

2. If the output of A is “0”, then register B is not clocked.

3. If the output of A is “1”, then register B is clocked.

4. The most significant bit of B forms part of the output sequence.

We can represent the above process as Equation (3).

zt = Bt−1
n · (At−1

m ⊕ 1) ⊕ Bt−1
n−1 · A

t−1
m (3)

In [22], Gollmann and Chambers proposed the Step 1/Step 2 generator, which may be seen as a

generalization of the stop and go generator. Register A of this generator controls the clocking of register

B on the principle that if the output is “0”, then B clocks d times before producing the output sequence,

and if the output is “1”, B clocks k times before doing so. This process is represented as Equation (4).

zt = Bt−1
n−d · (A

t−1
m ⊕ 1) ⊕ Bt−1

n−k · A
t−1
m (4)

2.1.2. Self-Decimated Generator

The self-decimated generator consists of a single LFSR A of length m [23]. LFSR A controls the

shifting of itself in the following way:

1. Register A is clocked.

2. If the output of A is “0”, then register A is clocked d times.

3. If the output of A is “1”, then register A is clocked k times.

4. The most significant bit of A forms part of the output sequence.

This process is called the (d, k) self-decimated generator and represented as Equation (5).

zt = At−1
m−d · (A

t−1
m ⊕ 1) ⊕ At−1

m−k ·A
t−1
m (5)

2.1.3. Alternating Step Generator

The alternating step generator employs three LFSRs A, B and C of length m, n and l,

respectively [24]. The output bits are generated as follows:

1. Register A is clocked.

2. If the output of A is “0”, then register B is clocked.

3. If the output of A is “1”, then register C is clocked.

4. The output bit is the XOR of the most significant bit of registers B and C.
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We can represent the process as Equation (6).

Bt
n = Bt−1

n · (At−1
m ⊕ 1) ⊕ Bt−1

n−1 · A
t−1
m

Ct
l = Ct−1

l−1 · (At−1
m ⊕ 1) ⊕ Ct−1

l · At−1
m (6)

zt = Bt
n ⊕ Ct

l

In 2009, Kanso presented the generalized alternating step generator [16]. This generator is similar to

the original alternating step generator, except that it is clocked in a variable number of steps. He used

the values of WB and WC and the sets {i0, i1, · · · , iWB−1} and {i0, i1, · · · , iWC−1} to compute a various

clocking number. In this generator, these values and sets are considered as a part of the key to be secure

against the algebraic attack. The output bits are generated as follows:

1. Register A is clocked.

2. If the output of A is “0”, then register B is clocked r(t) times, where r(t) = 1+ 20 ·At
i0
+21 ·

At
i1
+ · · ·+ 2WB−1 · At

iWB−1
,WB < m.

3. If the output of A is “1”, then register C is clocked s(t) times, where s(t) = 1+ 20 ·At
j0
+21 ·

At
j1
+ · · ·+ 2WC−1 ·At

jWC−1
,WC < l.

4. The output bit is the XOR of the most significant bit of registers B and C.

2.1.4. Cascade Generator

The cascade generator consists of N LFSRs and works in the same way as the stop and go

generator [25]. To explain the process of the cascade generator, we describe the cascade generator

of three stages. This generator has three LFSRs A, B and C of length m, n and l, respectively, and

works in the following way:

1. Register A is clocked.

2. If the output of A is “0”, then register B is not clocked; else B is clocked.

3. If the output of the XOR of the most significant bit of registers A and B is “0”, then register

C is not clocked; else C is clocked.

4. The output sequence is the XOR of the most significant bit of A, B and C.

The above process is represented as Equation (7) and can be expanded into the cascade generator of

N stages easily.

Bt
n = Bt−1

n · (At−1
m ⊕ 1) ⊕ Bt−1

n−1 · A
t−1
m

Ct
l = Ct−1

l · (At−1
m ⊕Bt−1

n ⊕ 1) ⊕ Ct−1
l · (At−1

m ⊕ Bt−1
n ) (7)

zt = At
m ⊕ Bt

n ⊕ Ct
l

2.1.5. (Self-)Shrinking Generator

The shrinking generator [26], proposed by Coppersmith et al. in 1993, employs two LFSRs A and B

of length m and n, respectively. The output sequences are generated as follows:
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1. Registers A and B are clocked.

2. If the output of A is “0”, then the output of B is discarded.

3. If the output of A is “1”, then the output of B forms part of the output sequence.

By modifying this generator, Meier and Staffelbach proposed the self-shrinking generator in

1994 [27]. This generator consist of a single LFSR A and works in the following way:

1. Register A is clocked two times.

2. If the first output of A is “0”, then the second output is discarded.

3. If the first output of A is “1”, then the second output forms part of the output sequence.

In 2010, Kanso presented the modified self-shrinking generator [28]. The output sequences are

generated as follows:

1. Generate the bit-triple (At
m, A

t+1
m , At+2

m ) through three times clocking of register A.

2. If At
m ⊕ At+1

m = “0”, then the third output is discarded.

3. If At
m ⊕ At+1

m = “1”, then the third output forms part of the output sequence.

The output bit of these generators cannot be represented as a determinate equation.

2.2. Algebraic Attacks on Clock-Controlled Generators

In paper [15,20], the authors described an algebraic attack against clock-controlled generators with

the following properties:

• For each register, the transitions from one state to the next must be described by a matrix product

of some copies of the given companion matrix.

• For each bit “0” and “1” of the controlling LFSR, the number of copies is fixed. For example, if

the control bit is “0”, then the number of copy is zero, otherwise the number of copies is one in

the stop and go generator.

Using these properties, they produced a family of equations relating the output bits to the internal

state bits for generators. The degree of this family of equations could be bounded by two. Therefore,

they could obtain the initial state of the generators within a significantly faster time than any other known

attack. Since the stop and go generator, self-decimated generator and alternating step generator had the

above properties, the algebraic attacks were applied to these generators easily.

As an example, they produced equations for two consecutive output bits of the stop and go generator

as follows:

zt = Bt−1
n · (At−1

m ⊕ 1) ⊕ Bt−1
n−1 · A

t−1
m = Bt

n (8)

zt+1 = Bt
n · (A

t
m ⊕ 1) ⊕ Bt

n−1 · A
t
m (9)
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Adding Equations (8) and (9), they could obtain Equation (10) of degree two.

zt ⊕ zt+1 = Bt−1
n · (At−1

m ⊕ 1)⊕ Bt−1
n−1 · A

t−1
m ⊕ Bt

n · (A
t
m ⊕ 1)⊕ Bt

n−1 · A
t
m (10)

= Bt
n ⊕ Bt

n · (A
t
m ⊕ 1)⊕ Bt

n−1 · A
t
m

= (Bt
n ⊕ Bt

n−1) · A
t
m

Therefore, the time complexity of this generator for the algebraic attack was O(n2·ω).

By the same method, equations bounded by degree two of the self-decimated generator and alternating

step generator could be produced easily. In 2010, the generalized alternating step generator, designed for

having resistance against the algebraic attack, was analyzed by Hassanzadeh and Helleseth [17]. They

used the algebraic attack technique. However, these attacks could not be applied to the (self-)shrinking

generator and cascade generator, which did not have the above properties.

3. Switching Generator

In this section, we present a new clock-controlled generator: the switching generator with resistance

to an algebraic attack and side channel attack.

3.1. Switching Generator Specification

The switching generator, shown in Figure 1, has two LFSRs A and B of length m and n, respectively.

In Figure 1, a MUX (multiplexer) is a logic that selects one of several inputs [29]. The data-generating

LFSR B works as Equation (11) using two companion matrices M1 and M2. These matrices are

companion matrices of two primitive polynomials.

Bt =







(M1)
i ·Bt−1 if At−1

m = 0,

(M2)
j · Bt−1 if At−1

m = 1.
(11)

The data-generating LFSR B is updated by bits of the controlling LFSR A and two companion

matrices M1 and M2. We describe the generating method for output sequences as follows:

1. Register A is clocked.

2. If the output of A is “0”, then the register B is clocked by using (M1)
i, then the output bit is

the most significant bit of this register.

3. If the output of A is “1”, then the register B is clocked by using (M2)
j , then the output bit is

the most significant bit of this register.

The period of the output sequences generated by this generator can be up to a maximum (2m − 1) ·

(2n − 1) if the matrix M2 is applied repetitively in the clocking process.

We define the ordered pair (i, j) of repetition as the switching index. Through using two distinct

companion matrices and a carefully chosen switching index in this generator, we can guarantee that this

generator can generate the maximum length sequence. For having resistance to the algebraic attack, this
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switching index is considered as a part of the key. If we choose this index carefully, this generator can

be also resistant to the side channel attack.

j
M

2

i
M
1

Figure 1. The structure of the switching generator.

3.2. Switching Index

The switching index (SI) (i, j) is determined by bits of the controlling register A, where 1 ≤ i ≤

ord(M1)− 1 and 1 ≤ j ≤ ord(M2)− 1. We define the smallest multiplication order of a given matrices

M1 and M2 as ord(M1) and ord(M2), when M
ord(M1)
1 = M

ord(M2)
2 = I , where I is the identity matrix.

This index can be found through following steps:

1. Generate output sequences of clock-controlling LFSR A as long as the period of this LFSR.

2. For each index (i, j),

(a) multiply two companion matrices depending on the output sequences of LFSR A;

(b) compute the characteristic polynomial of the computed matrix in Step (a).

(c) If the characteristic polynomial is a primitive polynomial, then the pair (i, j) is a

switching index.

In these steps, we call the switching matrix (SM) the multiplications of two companion matrices in

Step 2 (a) and the detailed process is shown in Example 1.

Example 1. Let fc be a characteristic polynomial of degree two for the clock-controlling LFSR and

fg1 , fg2 be two distinct polynomials of the same degree three for the data generating LFSR.

fc = x2 + x+ 1, fg1 = x3 + x+ 1, fg2 = x3 + x2 + 1

For each polynomial, companion matrices are as follows:

Mc =

(

0 1

1 1

)

, M1 =







0 0 1

1 0 1

0 1 0






, M2 =







0 0 1

1 0 0

0 1 1






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Suppose that an initial state of the clock-controlling LFSR is (0,1); the output sequences are the

three-periodic sequences with cycle (0,1,1). Using these sequences, the switching matrix SM is computed

as follows:

SM = (M2)
j · (M2)

j · (M1)
i = (M2)

2j · (M1)
i

In the case of (i, j) = (1, 6), SM is represented as the below matrix. The characteristic polynomial

of this matrix is x3 + x2 + 1 and is primitive. Therefore, (1, 6) is the switching index. We can also find

other indexes, such as (2, 3), (3, 2), (4, 5), (5, 4) and (6, 1).

SM(1,6) =







0 0 1

1 0 0

0 1 1







6

·







0 0 1

1 0 0

0 1 1







6

·







0 0 1

1 0 1

0 1 0






=







0 1 0

1 0 1

1 0 0






·







0 1 0

1 0 1

1 0 0






·







0 0 1

1 0 1

0 1 0






=







0 1 1

1 0 0

1 0 1







To obtain the switching index for given sizes m and n, we have to compute many operations

as follows:

1. Generate the output sequences of clock-controlling A as long as the period of this LFSR.

- The time complexity is 2m − 1.

2. For each index (i, j),

- the time complexity is (2n − 1)× (2n − 1).

(a) Multiply two companion matrices depending on the output sequences of A.

- The time complexity is (2m − 1) × O(n3), where O(n3) is the complexity of

the multiplication between two n×n matrices and O(•) is the asymptotic upper

bound.

(b,c) Compute the characteristic polynomial of the computed matrix and check that this

characteristic polynomial is a primitive.

- The time complexity is O(n3), where O(n3) is the complexity for factoring

polynomials over the given fields [6].

3. The total time complexity is (2m−1)+(2n−1)(2n−1){(2m−1)O(n3)+O(n3)} by 1 and 2.

If the size m and n is large, then the time complexity is very high. Therefore, we expressed this

situation as a hard problem.

3.3. Application of Switching Generator

To provide strong robustness, stream ciphers generally use many LFSRs or generators based on LFSR.

There are two methods for designing stream ciphers: a combination generator and a filter generator [6].

A5 (GSM) [30] and E0 (Bluetooth) [31] were constructed with a combination generator, and Sober

(Nessie project) [32] and Grain eStream project) [33] were designed with a filter generator. It is
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not good for security that our generator uses many LFSRs with the controlling LFSR because of the

guess-and-determine attacks. We can suggest that a stream cipher use many of our generators to meet a

design goal, such as 128-bit security and resistance against side channel attacks and algebraic attacks.

4. The Switching Generator’s Properties

In this section, we present the switching generator’s properties. The generator has resistance to

algebraic attacks with maintaining a large period, linear complexity and good randomness.

4.1. Existence of the Switching Index

For given initial states of length m and n, the existence proof of the switching index is a hard problem.

Therefore, we consider the probabilistic existence of the switching index, where this probability is the

chance that the characteristic polynomial of the switching matrix computed by clock control bits and

index (i, j) is primitive. To compute this probability, we use the following facts:

• Since the primitive polynomial must have a non-zero constant term, the number of candidates for

the primitive polynomial is 2n−1

• Over GF(2n), there are exactly φ(2n − 1)/n primitive polynomials of degree n, where φ is Euler’s

totient function [34].

Let Prf,n, shown in Equation (12), be the probability that a polynomial f of degree n in GF(2n) is

primitive. These values for given degrees n are listed in Table 1.

Prf,n =
φ(2n−1)

n

2n−1
=

φ(2n − 1)

n · 2n−1
(12)

Table 1. The probability Prf,n.

State Size(n) Probability State Size(n) Probability

2 0.5 32 0.03125

4 0.25 64 0.0156

8 0.125 128 0.0078

16 0.0625 256 0.0039

From Equation (12) and the bounds of index (i, j), we can compute the expectation Expf,i,n of the

existence of the switching index for degree n and a fixed i as Equation (13). These expectation values

for given degrees n are listed in Table 2.

Expf,i,n = (2n − 2) ·
φ(2n − 1)

n · 2n−1
=

φ(2n − 1) · (2n−1 − 1)

n · 2n−2
(13)

By Equation (13), we can compute the expectation for degree n = 3 (see Example 1). The expectation

is 3.5. Therefore, there are at least three candidates from a theoretical standpoint. However, there are six

candidates, such as (1, 6), (6, 1), (2, 3), (3, 2), (4, 5) and (5, 4), in Example 1.
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Table 2. The expectation Expf,i,n.

State Size(n) Expectation State Size(n) Expectation

2 1 32 227

4 3.5 64 257.99

8 24.99 128 2120.99

16 211.99 256 2247.99

4.2. Properties of the Switching Index

Since the matrix multiplication is not commutative, switching matrices would be changed depending

on the output bits of the clock-controlling LFSR. This property means that the period of the output

sequence generated by the switching generator would be changed depending on the initial state for

the clock controlling LFSR. However, the below Theorem 1 indicates that the period of the switching

generator is constant, independent of the initial state for the clock controlling LFSR [35].

Theorem 1. For two square matrices M1, M2, the characteristic polynomial CP has a property

as follows:

CPM1·M2(x) = CPM2·M1(x)

Proof. If λ is a root of CPM1·M2(x), then it is an eigenvalue of M1 ·M2. Therefore, there is a non-zero

vector v, such that M1 ·M2 · v = λ · v. We can multiply M1 ·M2 · v = λ · v by M2 on both sides, then

obtain the below equation:

M2 ·M1 · (M2 · v) = M2 · (M1 ·M2 · v) = M2 · (λ · v) = λ · (M2 · v)

Since M2 · v is non-zero, it is an eigenvector of M2 ·M1 with the same eigenvalue that M1 ·M2 had.

In this case, λ would also be a root of M2 ·M1’s characteristic polynomial. Conversely, if λ is a root of

CPM2·M1(x), then it also is a root of M1 ·M2’s characteristic polynomial by the same method. Therefore,

two characteristic polynomials are the same.

This theorem means that the characteristic polynomials of a circular multiplication for given matrices

are the same. Hence, if the clock-controlling LFSR and switching index is fixed, then the switching

generator has the maximum period independent of the initial vector for the clock-controlling LFSR.

4.3. Choice of the Switching Index

There are many candidates for the switching index. If we can choose this index considering the same

number of XOR operations on two matrices (Mi)
i and (M2)

j , the switching generator has resistance to

the side channel attack. By using Example 1, we describe this process of choosing a good switching

index. We already found indexes, such as (1, 6), (6, 1), (2, 3), (3, 2), (4, 5) and (5, 4). For each index,

we compare the number of XOR operations. The comparison results are listed in Table 3.
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Table 3. The comparison results of the number of XOR operation.

SI (i, j) (M1)
i

No. of

XORs: (a)
(M2)

j
No. of

XORs: (b)

difference between

(a) and (b)

(1, 6)







0 0 1

1 0 1

0 1 0






1







0 1 0

1 0 1

1 0 0






1 0

(6, 1)







1 1 0

0 0 1

1 0 0






1







0 0 1

1 0 0

0 1 1






1 0

(2, 3)







0 1 0

0 1 1

1 0 1






2







1 1 1

0 1 1

1 1 0






4 2

(3, 2)







1 0 1

1 1 1

0 1 1






4







0 1 1

0 0 1

1 1 1






3 1

(4, 5)







0 1 1

1 1 0

1 1 1






4







1 0 1

1 1 0

0 1 0






2 2

(5, 4)







1 1 1

1 0 0

1 1 0






3







1 1 0

1 1 1

1 0 1






4 1

Using the comparison results in this table, we can choose the good switching index as (1, 6) or (6, 1)

from six candidates.

4.4. Period and Linear Complexity [36]

By the definition of switching index, the period of the switching generator is (2m − 1) · (2n − 1). The

generator’s linear complexity LC is shown in Theorem 2.

Theorem 2. For the given switching generator consisting of two LFSRs of length m and n, if m divides

n, then this generator has the linear complexity as follows:

LC = n · (2m − 1)

Proof. In paper [37], Chambers et al. have considered a type of BRM (binary rate multiplier) whose

control and generating registers, A and B, are primitive LFSRs of periods 2m − 1 and 2n − 1. They have

shown that its output sequence has linear complexity n · (2m − 1) under two conditions as follows:

1. every prime factor of 2m − 1 divides 2n − 1.

2. GCD(αBRM , 2n−1) = 1, where αBRM is the number of clocks applied to Register B after clocking

A 2m − 1 times.

This result is able to be applied into a switching generator directly. If m divides n, then every prime

factor of 2m − 1 divides 2n − 1 [38]. Since the characteristic polynomial of the switching matrix (SM)

is a primitive polynomial for a given switching index (i, j), the integers αS.G and 2n − 1 are relatively

prime, where αS.G is the number of clocks applied to Register B after clocking A 2m − 1 times for the

switching generator. Therefore, the linear complexity of this generator is n · (2m − 1).
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Additionally, the minimal polynomial of the output sequence of the switching generator is exactly

fSM(x(2m−1)). In Example 1, since fSM(1,6)
= x3 + x2 + 1, the minimal polynomial of the output

sequence is fSM(1,6)
(x3) = (x3)3 + (x3)2 + 1 = x9 + x6 + 1

4.5. Algebraic Properties

At clock t, the internal state Bt of the data-generating LFSR is updated according to the bit

information of the clock-controlling LFSR and two companion matrices M1 and M2. This process is

represented as Example 2 in detail.

Example 2. We use characteristic polynomials for clock-controlling and data-generating LFSRs, defined

in Example 1. Then, the switching index is “(1,6)”, and the switching matrix SM is as follows:

SM = (M2)
6 · (M2)

6 ·M1 = (M2)
12 ·M1

Let the initial state of the data generating LFSR be (0,0,1). the internal states Bt are as follows:

(0, 0, 1)
M1−→ (1, 1, 0)

(M2)6

−→ (1, 1, 1)
(M2)6

−→ (1, 0, 1)

M1−→ (1, 0, 0)
(M2)6

−→ (0, 1, 1)
(M2)6

−→ (1, 1, 0)

M1−→ (0, 1, 1)
(M2)6

−→ (1, 1, 0)
(M2)6

−→ (1, 1, 1)

M1−→ (1, 0, 1)
(M2)6

−→ (0, 0, 1)
(M2)6

−→ (0, 1, 0)

M1−→ (0, 0, 1)
(M2)6

−→ (0, 1, 0)
(M2)6

−→ (1, 0, 0)

M1−→ (0, 1, 0)
(M2)6

−→ (1, 0, 0)
(M2)6

−→ (0, 1, 1)

M1−→ (1, 1, 1)
(M2)6

−→ (1, 0, 1)
(M2)6

−→ (0, 0, 1)

We can represent the update process for these internal states as the matrix product of some copies of

the matrix M1 or M2. The number of copies is defined as exponents. The exponents for each matrix

M1 or M2 are listed in Table 4. In this table, we can notice that the exponents are not constant for

each bit “0” or “1” of the clock controlling LFSR. This is due to the following mathematical property:

for two companion matrix M1 and M2 of two distinct primitive polynomials, the matrix M1 cannot be

represented as the matrix product of some copy of the matrix M2. This explains that the switching

generator cannot be implemented as the stop and go generator. Thus, the algebraic attack applied to the

stop and go generator cannot be applied to the switching generator.

In Section 3.2, we presented that there are many candidates for the switching index. Additionally, we

described that this switching index is considered as a part of the key. This condition is used to guarantee

that the switching generator has resistance against the algebraic attack. Even though attackers assume the

clock-controlling LFSR, they cannot find the exact switching index among many candidates. Therefore,

they cannot construct algebraic equations for the target generator easily.
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Table 4. The exponents for each matrix (the period is 21).

M1

Case

state (0,0,1) (1,1,0) (1,1,1) (1,0,1) (1,0,0) (0,1,1)

exponent - 1 2 1 1 4

state (1,1,0) (0,1,1) (1,1,0) (1,1,1) (1,0,1) (0,0,1)

exponent 5 1 6 2 1 2

state (0,1,0) (0,0,1) (0,1,0) (1,0,0) (0,1,0) (1,0,0)

exponent 6 1 6 6 1 6

state (0,1,1) (1,1,1) (1,0,1) (0,0,1) - -

exponent 3 1 1 3 - -

M2

Case

state (0,0,1) (1,1,0) (1,1,1) (1,0,1) (1,0,0) (0,1,1)

exponent - 3 6 6 4 6

state (1,1,0) (0,1,1) (1,1,0) (1,1,1) (1,0,1) (0,0,1)

exponent 6 1 6 6 6 6

state (0,1,0) (0,0,1) (0,1,0) (1,0,0) (0,1,0) (1,0,0)

exponent 6 1 6 6 1 6

state (0,1,1) (1,1,1) (1,0,1) (0,0,1) - -

exponent 6 5 6 6 - -

Attackers have to be able to construct algebraic equations for the target algorithm to attack this

algorithm with the basic algebraic attack. If they can attack, then they can apply other advanced algebraic

attacks, such as fast algebraic attacks [13] and higher order algebraic attacks [39]. However, they cannot

construct any algebraic equations in our generator.

4.6. Other Security Evaluation

In clock-controlled generators, the basic idea of guess-and-determine attacks is to guess m bits of the

clock-controlling LFSR state and derive other n bits through the relationship between the keystream bits

and the internal state bits. The time complexity is (2m − 1)× O(n3), where O(n3) is the complexity of

the Gaussian elimination method for n× n matrix [40].

When the keystream bits in the given generator have a significant correlation with the output bits

of some LFSRs, we can apply the correlation attacks. Our generator is derived from the alternating

step generator. The best time complexity of a correlation attack against the alternating step generator is

O(n2 × 2n) [41]. The switching generator is more robust than the alternating step generator, because

attackers cannot know the exact switching index, even though they can know all primitive polynomial

for all LFSRs. Therefore, we can argue the complexity for being dominated by the time complexity of

the alternating step generator. If we can choose the two parameters m and n, such that (2m − 1)× n ≤

n2 × 2n, namely n ≤ m ≤ n× (log2n), then the complexity against these attacks is more than the linear

complexity. Therefore, the time complexity against all basic attacks is dominated by the time complexity

of the linear complexity.
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5. Conclusions

The appearance of fast and efficient block ciphers has caused a diminishing of the importance of

stream ciphers due to the convenience of the use of block ciphers in various applications. Therefore,

researchers of stream ciphers reviewed some area where stream ciphers would survive: very high speeds

in communication links or compact in constrained devices. In the area of constrained devices, LFSRs are

used to construct stream ciphers. It has, however, been well known that LFSR-based systems, well suited

to low-end hardware implementations, are very vulnerable to algebraic attacks. Furthermore, irregular

clock-controlled generators were highly vulnerable against side channel attacks.

In this paper, we proposed a new clock-controlled generator: the switching generator. This generator

preserved both the security and efficiency of existing clock-controlled generators. In addition, this

system could be resistant to algebraic attacks, because determinate equations for this generator, relating

the output bits to the internal state bits for this generator, could not be produced. Especially, we could

guarantee the resistance against side channel attacks by choosing a good switching index.
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