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Abstract: This paper studies consensus and H∞ consensus problems for heterogeneous

multi-agent systems composed of first-order and second-order integrator agents. We first

rewrite the multi-agent systems into the corresponding reduced-order systems based on

the graph theory and the reduced-order transformation. Then, the linear matrix inequality

approach is used to consider the consensus of heterogeneous multi-agent systems with

time-varying delays in directed networks. As a result, sufficient conditions for consensus and

H∞ consensus of heterogeneous multi-agent systems in terms of linear matrix inequalities

are established in the cases of fixed and switching topologies. Finally, numerical simulations

are given to illustrate the effectiveness of the theoretical results.
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1. Introduction

In recent years, the consensus control of multi-agent systems has attracted much attention, due to

its broad applications in communication, system control theory, applied mathematics, design of sensor

networks, computer science, and so on. Up to now, many researchers have made great achievements

for the consensus problem of multi-agent systems by using the method of graph theory, matrix theory,

the frequency-domain analysis method, the Lyapunov direct method, etc. [1–5]. Consensus seeking
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has been analyzed mainly for first-order multi-agent systems modeled by a single integrator [6–11] and

second-order multi-agent systems modeled by double integrators [12–14], respectively.

Most multi-agent systems considered in the literature are homogeneous, that is all of the agents

have the same dynamics behavior. However, the dynamics of the agents is quite different because of

various restrictions or the common goals with mixed agents in practical systems. Therefore, it is natural

to consider heterogeneous multi-agent system. Compared with the first-order and the second-order

integrator multi-agent systems, the study of heterogeneous multi-agent systems composed of both

first-order and second-order integrator agents seems to be more complicated. So far, there are very

few results on the consensus of heterogeneous multi-agent systems, except Zheng and Wang [15–17],

where consensus problems of a heterogeneous multi-agent system were studied by applying the graph

theory and the Lyapunov direct method.

Furthermore, in many practical applications involving multi-agent systems, the communication

delay [18–23], leader-following networks [24–26], discrete-time [27–29], as well as H∞ consensus

problems [30–32] should be considered in the consensus of multi-agent systems. Therefore, in this

work, we investigate the consensus and H∞ consensus problems for heterogeneous multi-agent systems

in fixed and switching topologies with a time delay.

Because of the complexity of the heterogeneous multi-agent system with time-delays, many

existing methods for the consensus of the first-order and the second-order multi-agent systems become

invalid. Therefore, the purpose of this paper is to establish consensus and H∞ consensus criteria

for heterogeneous multi-agent systems by applying the linear matrix inequality technique. We first

rewrite the heterogeneous multi-agent system into a reduced-order system by using a reduced-order

transformation. Then, by choosing an appropriate Lyapunov functional, sufficient conditions for

consensus are derived in the cases of fixed and switching topologies by using the linear matrix

inequality method.

The paper is organized as follows. In Section 2, some preliminaries on graph theory, model

formulation and the reduced-order transformation of the heterogeneous multi-agent system are given.

In Section 3, sufficient conditions in terms of linear matrix inequalities are established for consensus and

H∞ consensus of the heterogeneous multi-agent system with time-varying delay. In Section 4, some

simulation results are presented. The conclusion is given in Section 5.

The following notations are used throughout this paper. In = {1, 2, · · · , n} is an index set. AT

means the transpose of the matrix A. In is an n × n-dimensional identity matrix. am = (a, a, · · · , a)T

is an m-dimensional column vector with a ∈ R. We say X > Y if X − Y is positive-definite, where

X and Y are symmetric matrices of same dimensions. We use an asterisk ∗ to represent a term that is

induced by symmetry, and diag{· · · } stands for a block-diagonal matrix. L2[0,∞) denotes the space of

square-integrable vector functions over [0,∞).

2. Preliminaries

Throughout this paper, we denote a weighted digraph by G = (V, E , A), where V={1, 2, · · · , n} is

the set of nodes with n ≥ 2; node i represents the i-th agent; E ⊆ V ×V is the set of edges; an edge of G

is denoted by an order pair (i, j), and (i, j) ∈ E if and only if aji > 0; A=[aij] is an n× n-dimensional
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weighted adjacency matrix with aii = 0. If (i, j) is an edge of G, node i is called the parent of node j. A

directed tree is a directed graph, where every node, except one special node without any parent, which is

called the root, has exactly one parent, and the root can be connected to any other nodes through paths.

The Laplacian matrix L = [lij] of digraph G is defined by lii =
∑n

j=1 aij and lij = −aij for i 6= j,

i, j ∈ In.

Suppose that the heterogeneous multi-agent system consists of both first-order and second-order

integrator agents, and the number of first-order integrator agents is m (m < n). Then, the heterogeneous

multi-agent system is given as follows:







ẋi = ui, i ∈ Im,

ẋi = vi, v̇i = ui, i ∈ In/Im = {m+ 1, m+ 2, · · · , n},
(1)

where xi ∈ R for i ∈ In and vi ∈ R for i ∈ In/Im are the state of agent wi, and ui ∈ R for i ∈ In is the

control input of agent wi, which is also called a protocol throughout this paper.

Consider the following linear protocol:

ui =























n
∑

j=1

aij(xj(t− τ(t))− xi(t− τ(t))), i ∈ Im,

n
∑

j=1

aij(xj(t− τ(t))− xi(t− τ(t)))− kivi(t), i ∈ In/Im,

(2)

where ki > 0, i ∈ In/Im, are the feedback gains. The time-delay τ is the piecewise-continuous function

satisfying:

(H1) 0 ≤ τ(t) ≤ h and τ̇ (t) ≤ d for t ≥ 0, where h > 0 and 0 ≤ d < 1 are constants.

(H2) 0 ≤ τ(t) ≤ h for t ≥ 0, where h > 0 is a constant.

Denote x(t) = (xT
(1)(t) xT

(2)(t))
T with x(1)(t) = (x1(t), · · · , xm(t))

T , x(2)(t) =

(xm+1(t), · · · , xn(t))
T and v(t) = (vm+1(t), · · · , vn(t))

T . Substituting Protocol (2) into System (1),

we get the following matrix form of System (1):



















ẋ(1)(t) = −L1x(t− τ(t)),

ẋ(2)(t) = v(t),

v̇(t) = −L2x(t− τ(t))−Kv(t),

(3)

where K = diag{km+1, km+2, · · · , kn}, L = (LT
1 , L

T
2 )

T and matrix L1 and L2 are m × n-dimensional

and (n−m)× n-dimensional, respectively.

We introduce the reduced-order transformation as follows:

yj(t) = xj+1(t)− x1(t), j ∈ In−1. (4)

By the straightforward computation, we get:

y(1)(t) = Ex(1)(t), x(t) = x1(t)1n + Fy(t),
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where E = (−1m−1 Im−1) and F = (0n−1 In−1)
T are (m − 1) × m-dimensional and

n × (n − 1)-dimensional matrices, respectively, and y(t) = (yT(1)(t) yT(2)(t))
T with y(1)(t) =

(y1(t), · · · , ym−1(t))
T and y(2)(t) = (ym(t), · · · , yn−1(t))

T .

Note that with the fact L1n = 0, we can obtain from (3) that:

ẏ(1)(t) = Eẋ(1)(t) = −EL1Fy(t− τ(t)).

If i ∈ In−1/Im−1, we have:

ẏi(t) = vi+1(t)−

n
∑

j=2

a1jyj−1(t− τ(t)).

Therefore,

ẏ(2)(t) = v(t)−

n
∑

j=2

a1jyj−1(t− τ(t)),

and:

v̇(t) = −L2Fy(t− τ(t))−Kv(t).

Let z(t) = (yT (t) vT (t))T ; we have the following reduce-order system in matrix form:

ż(t) = Bz(t) + Cz(t− τ(t)), (5)

where:

B =







0 0

0 In−m

0 −K






, C =







−EL1F 0

A 0

−L2F 0






,

A = (a, a, · · · , a)T is a (n−m)× (n− 1)-dimensional matrix with (n− 1)-dimensional column vector

a = (−a12,−a13, · · · ,−a1n)
T .

When the heterogeneous multi-agent system involves disturbance input, we consider the following

protocol of the form:

ui =























n
∑

j=1

aij(xj(t− τ(t))− xi(t− τ(t)) + wij(t)), i ∈ Im,

n
∑

j=1

aij(xj(t− τ(t))− xi(t− τ(t))− kivi(t) + wij(t)), i ∈ In/Im,

(6)

where wij(t) ∈ L2[0,∞) are disturbance inputs.

Denote the i-th row of the matrix A by αi, Σ1 = diag{α1, α2, · · · , αm}, Σ2 = diag{αm+1, · · · , αn},

wi(t) = (wi1(t), · · · , win(t))
T , w(t) = (wT

(1)(t), w
T
(2)(t))

T with w(1)(t) = (wT
1 (t), · · · , w

T
m(t))

T and

w(2)(t) = (wT
m+1(t), · · · , w

T
n (t))

T .

The matrix form of the heterogeneous multi-agent System (1) with Protocol (6) takes the form:



















ẋ(1)(t) = −L1x(t− τ(t)) + Σ1w(1)(t),

ẋ(2)(t) = v(t),

v̇(t) = −L2x(t− τ(t)) + Σ2w(2)(t)−Kv(t).

(7)
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By using the reduced-order transformation (4), we can get the following reduce-order system:

ż(t) = Bz(t) + Cz(t− τ(t)) + Σ̃w(t), (8)

where z(t) is defined above, Σ̃ =







EΣ1 0

Λ 0

0 Σ2






, Λ = (−an−m, 0) with an−m=(α1, α1, · · · , α1)

T the

(n−m)×m-dimensional matrix.

Definition 1. Say System (3) achieves consensus asymptotically, if for any x(0) = x0 and v(0) = v0; we

have:
lim
t→∞

|xi(t)− xj(t)| = 0, i, j ∈ In, i 6= j,

lim
t→∞

vi(t) = 0, i ∈ In/Im.

Definition 2. Say System (7) achieves H∞ consensus asymptotically if System (3) achieves consensus

asymptotically, and there exists a constant γ > 0, such that:

∫

∞

0

zT (t)z(t)dt ≤ γ

∫

∞

0

wT (t)w(t)dt (9)

holds for all nonzero w ∈ L2[0,∞) under zero initial condition, where z(t) = (yT (t), vT (t))T .

3. Main Results

The following two lemmas are required.

Lemma 1. [33] (Schur complement). Let M , P , Q be given matrices, such that Q > 0. Then:

(

P M

MT −Q

)

< 0 ⇐⇒ P +MQ−1MT < 0.

Lemma 2. [20] For any real differentiable vector function x(t) ∈ Rn and any n × n-dimensional

constant matrix W = W T > 0, the following inequality holds:

[x(t)− x(t− τ(t))]TW [x(t)− x(t− τ(t))] ≤ h

∫ t

t−τ(t)

ẋT (s)Wẋ(s)ds, t ≥ 0.

where 0 ≤ τ(t) ≤ h.

Theorem 1. Assume that (H1) holds for given h > 0 and 0 ≤ d < 1. The heterogeneous multi-agent

System (3) achieves consensus asymptotically if there exist positive definite matrices P , Q and R of

appropriate dimensions, such that:







BTP + PB −Q+R PC +Q hBTQ

∗ −Q− (1− d)R hCTQ

∗ ∗ −Q






< 0. (10)
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Proof. Based on the reduced-order transformation, it is sufficient to show that System (5) is

asymptotically stable. By Lemma 1, we see that (10) is equivalent to:

Ψ =

(

BTP + PB −Q+R PC +Q

∗ −Q− (1− d)R

)

+ h2(B,C)TQ(B,C) < 0. (11)

Take a Lyapunov functional as follows:

V (t) = zT (t)Pz(t) + h

∫ t

t−h

(s− t+ h)żT (s)Qż(s)ds+

∫ t

t−τ(t)

zT (s)Rz(s)ds. (12)

Denote ηT (t) = (zT (t), zT (t− τ(t))). By (5) and Lemma 2, we have:

V̇ (t) ≤ zT (t)(BTP + PB)z(t) + 2zT (t)PCz(t− τ(t))

+h2ηT (t)(B,C)TQ(B,C)η(t)

−[z(t) − z(t− τ(t))]TQ[z(t)− z(t− τ(t))]

+zT (t)Rz(t)− (1− d)zT (t− τ(t))Rz(t− τ(t))

= ηT (t)Ψη(t).

By (11), we have that there exists a constant α > 0, such that V̇ (t) ≤ −α||z(t)||. Therefore, the

reduced-order System (5) is asymptotically stable, which implies that the heterogeneous multi-agent

System (3) achieves consensus asymptotically.

When nothing is known about the derivative, we use the following Lyapunov functional:

V1(t) = zT (t)Pz(t) + h

∫ t

t−h

(s− t + h)żT (s)Qż(s)ds. (13)

Similar to the proof of Theorem 1, we can easily obtain the following corollary.

Corollary 1. Assume that (H2) holds for given h > 0. The heterogeneous multi-agent System (3)

achieves consensus asymptotically if there exist positive-definite matrices P and Q of appropriate

dimensions, such that:







BTP + PB −Q PC +Q hBTQ

∗ −Q hCTQ

∗ ∗ −Q






< 0. (14)

Remark 1. For the particular case when τ(t) = 0, we have that System (3) achieves consensus

asymptotically, if and only if there exists a positive-definite matrix P ∈ R
(2n−m−1)×(2n−m−1), such that

(B + C)TP + P (B + C) < 0. That is, the (2n−m− 1)× (2n−m− 1)-dimensional matrix (B +C)

is Hurwitz.

Remark 2. Similar to the analysis given in [12], the assumption that G has a spanning tree is only

necessary, but not sufficient, for the consensus of System (3). Generally speaking, the consensus of

System (3) not only depends on the Laplacian matrix L(G), but also depends on the gain matrix K.
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The method used in Theorem 1 can also be applied to the H∞ consensus problem of the heterogeneous

multi-agent System (7).

Theorem 2. Assume that (H1) holds for given h > 0 and 0 ≤ d < 1. If there exist positive definite

matrices P , Q and R of appropriate dimensions, constants α > 0 and β > 0, such that:











∆ PC + Q P Σ̃ hBTQ

∗ −Q− (1− d)R 0 hCTQ

∗ ∗ −βIn hΣ̃TQ

∗ ∗ ∗ −Q











< 0, (15)

where ∆ = BTP + PB − Q + R + αI2n−m−1, then the heterogeneous multi-agent System (7)

asymptotically achieves H∞ consensus with γ = β/α.

Proof. Choose the Lyapunov functional defined by (12). Firstly, (15) implies that (10) holds. By

Theorem 1, System (7) with w = 0 achieves consensus asymptotically. Next, we show that (9) holds

with γ = β/α for all nonzero w ∈ L2[0,∞) under zero initial condition. In fact, similar to the analysis

given in Theorem 1, we have:

V̇ (t) ≤ zT (t)(BTP + PB)z(t) + 2zT (t)PCz(t− τ)

+2zT (t)P Σ̃w(t) + h2żT (t)Qż(t)

−[z(t)− z(t− τ)]TQ[z(t) − z(t− τ)]

+zT (t)Rz(t) − (1− d)zT (t− τ(t))Rz(t − τ(t)),

which implies that:

V̇ (t) + αzT (t)z(t)− βwT (t)w(t) ≤ ξT (Ω̃ + h2Φ̃TQΦ̃)ξ, (16)

where ξ = (zT (t), zT (t− τ(t)), wT (t))T ,























Φ̃ = (B,C, Σ̃),

Ω̃ =







∆ PC +Q P Σ̃

∗ −Q− (1− d)R 0

∗ ∗ −βIn






.

(17)

By (15), (16) and (17), we have that:

V̇ (t) + αzT (t)z(t)− βwT (t)w(t) < 0, t ≥ 0. (18)

Integrating (18) from zero to ∞ under zero initial condition, we get:

∫

∞

0

zT (t)z(t)dt ≤
β

α

∫

∞

0

wT (t)w(t)dt.

We obtain the following corollary if nothing is known about the derivative of τ(t).
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Corollary 2. Assume that (H2) holds for given h > 0. If there exist positive-definite matrices P , Q of

appropriate dimensions, constants α > 0 and β > 0, such that:











∆̃ PC + Q P Σ̃ hBTQ

∗ −Q 0 hCTQ

∗ ∗ −βIn hΣ̃TQ

∗ ∗ ∗ −Q











< 0, (19)

where ∆̃ = BTP +PB−Q+αI2n−m−1, then the heterogeneous multi-agent System (7) asymptotically

achieves H∞ consensus with γ = β/α.

Remark 3. Unlike most of the consensus analysis for multi-agent systems, it does not require that aij ≥

0 for all i 6= j in the proofs of Theorems 1, 2 and Corollaries 1, 2. Therefore, even when aij < 0 for

some i 6= j, System (7) can also achieve H∞ consensus asymptotically under appropriate conditions.

We now extend the aforementioned results to the following dynamic protocol with switched

topologies:

ui =























n
∑

j=1

a
σ(t)
ij (xj(t− τ(t))− xi(t− τ(t))), i ∈ Im,

n
∑

j=1

a
σ(t)
ij (xj(t− τ(t))− xi(t− τ(t)))− kivi(t), i ∈ In/Im,

(20)

where t ≥ 0, σ(t) : [0,∞) → Γ = {1, 2, · · · , p} is a switching signal that determines which subsystem

is active at time t; akij ≥ 0, i, j ∈ In, k ∈ Γ, are entries of the weighted adjacency matrix Ak. When

σ(t) = k ∈ Γ, we denote the involved digraph by Gk = (V, Ek,Ak).

Under the transformation (4), System (1) with Protocol (20) can be described by the following

switched system:

ż(t) = Bkz(t) + Ckz(t− τ(t)), (21)

where z is defined above, Bk =







0 0

0 In−m

0 −K






, Ck =







−ELk
1F 0

Ak 0

−Lk
2F 0






,

Ak =













−ak12 −ak13 · · · −ak1n
−ak12 −ak13 · · · −ak1n

...
...

. . .
...

−ak12 −ak13 · · · −ak1n













,

Lk
1 , Lk

2 and Ak are defined as L1, L2 and A, respectively. Let the Lyapunov functionals defined by (12)

and (13) be the common Lyapunov functional for the switched System (21), respectively. Then, similar

to the analysis in Theorem 1 and Corollary 1, we get the following consensus results for the case of

switching topology.
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Theorem 3. Assume that (H1) holds for given h > 0 and 0 ≤ d < 1. The heterogeneous multi-agent

System (1) with Protocol (20) can asymptotically achieve consensus under arbitrary switching if there

exist positive-definite matrices P , Q and R of appropriate dimensions, such that:







BT
k P + PBk −Q +R PCk +Q hBT

k Q

∗ −Q− (1− d)R hCT
k Q

∗ ∗ −Q






< 0, k ∈ Γ. (22)

Corollary 3. Assume that (H2) holds for given h > 0. The heterogeneous multi-agent System (1) with

Protocol (20) asymptotically achieves consensus under arbitrary switching if there exist positive definite

matrices P and Q of appropriate dimensions, such that:







BT
k P + PBk −Q PCk +Q hBT

k Q

∗ −Q hCT
k Q

∗ ∗ −Q






< 0, k ∈ Γ. (23)

Consider the following dynamic protocol with disturbance input:

ui =























n
∑

j=1

a
σ(t)
ij (xj(t− τ(t))− xi(t− τ(t)) + wij(t)), i ∈ Im,

n
∑

j=1

a
σ(t)
ij (xj(t− τ(t))− xi(t− τ(t))− kivi(t) + wij(t)), i ∈ In/Im.

(24)

Similar to the proof of Theorem 2, we have the following H∞ consensus results.

Theorem 4. Assume that (H1) holds for given h > 0 and 0 ≤ d < 1. The heterogeneous multi-agent

System (1) with Protocol (24) asymptotically achieves H∞ consensus with γ = β/α under arbitrary

switching if there exist positive-definite matricesP , Q, R of appropriate dimensions and constantsα > 0,

β > 0, such that:










∆k PCk +Q P Σ̃k hBT
k Q

∗ −Q− (1− d)R 0 hCT
k Q

∗ ∗ −βIn hΣ̃T
kQ

∗ ∗ ∗ −Q











< 0, k ∈ Γ,

where ∆k = BT
k P + PBk −Q+R + αI2n−m−1, Σ̃k is defined as Σ̃; Bk and Ck are defined above.

Corollary 4. Assume that (H2) holds for given 0 ≤ d < 1. The heterogeneous multi-agent System (1)

with Protocol (24) asymptotically achieves H∞ consensus with γ = β/α under arbitrary switching, if

there exist positive-definite matrices P and Q of appropriate dimensions and constants α > 0, β > 0,

such that:










∆̃k PCk +Q P Σ̃k hBT
k Q

∗ −Q 0 hCT
k Q

∗ ∗ −βIn hΣ̃T
kQ

∗ ∗ ∗ −Q











< 0, k ∈ Γ.

where ∆̃k = BT
k P + PBk −Q+ αI2n−m−1, Σ̃k is defined above.
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Remark 4. In this paper, by introducing a reduced-order transformation, the consensus of

heterogeneous multi-agent systems is transformed into the stability of the corresponding delay systems.

Therefore, we can derive some other less conservative LMIcriteria by choosing different Lyapunov

functionals and using some improved integral inequalities, such as in [34–36].

4. Numerical Examples

Consider the following four digraphs with six vertices shown in Figure 1, where Vertices 1–4 denote

first-order integrators, Vertices 5–6 denote second-order integrators and the weights associated with the

edges shown by solid lines and dashed lines are one and −0.5, respectively. For the sake of convenience,

we let K = 2I2.
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Figure 1. Four digraphs: (a) Ga; (b) Gb; (c) Gc; (d) Gd.

When G = Ga, we have that (14) is feasible for given 0 < h ≤ 0.3690. By Corollary 1, System (3)

achieves consensus asymptotically. The state trajectory under the stochastic initial condition is shown in

Figure 2.
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Figure 2. State trajectory of System (3) with G = Ga.
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In Remark 3, we show that Corollary 1 can also be applied to the extreme case when parts of weights

aij are negative. For example, if G = Gb, we have that (14) is still feasible for given 0 < h ≤ 0.3703.

Therefore, System (3) also achieves consensus asymptotically, even thought there exist negative weights

a51 = a53 = −0.5. The corresponding state trajectory under the stochastic initial condition is shown in

Figure 3.
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Figure 3. State trajectory of System (3) with G = Gb.

For the case of disturbance input, assume that G = Gc and wij(t) = wj(t) for i, j ∈ In. Therefore,

(ΣT
1 ΣT

2 )
T = A. For given h = 0.3763, we get from (15) that γ = 2.1073. By Corollary 2, we have that

System (7) achieves H∞ consensus with γ = 2.1073. If we let:

w(t) =







(0.1 sin t)1, 0 ≤ t ≤ 30,

0.0, otherwise,

the trajectory of System (7) under a stochastic initial condition is shown in Figure 4.
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Figure 4. State trajectory of System (7) with G = Gc and given disturbance.
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For the case of switching topologies {Gc,Gd}, we have that (23) is feasible for given 0 < h ≤ 0.4252.

By Corollary 3, System (1) with Protocol (20) achieves consensus for 0 < h ≤ 0.4252 under an

arbitrary switching signal. The state trajectories of the system are shown in Figure 5, where the initial

condition is stochastic, and the switching signal is periodic, which switches every T = 1 second

according to Gc → Gd → Gc.
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Figure 5. State trajectories of agents under the switching topology.

5. Conclusions

In this paper, by using the linear matrix inequality method, we consider the consensus and H∞

consensus problems for heterogeneous multi-agent systems with fixed and switching topologies, as well

as time-varying delays. By transforming the heterogeneous multi-agent system into a reduced-order

system, sufficient conditions for consensus and H∞ consensus are established in terms of linear matrix

inequalities. Finally, simulations are given to illustrate the theoretical results.
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