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Abstract: Recently, sparse adaptive learning algorithms have been developed to exploit 

system sparsity as well as to mitigate various noise disturbances in many applications. In 

particular, in sparse channel estimation, the parameter vector with sparsity characteristic 

can be well estimated from noisy measurements through a sparse adaptive filter. In 

previous studies, most works use the mean square error (MSE) based cost to develop 

sparse filters, which is rational under the assumption of Gaussian distributions. However, 

Gaussian assumption does not always hold in real-world environments. To address this 

issue, we incorporate in this work an l1-norm or a reweighted l1-norm into the minimum 

error entropy (MEE) criterion to develop new sparse adaptive filters, which may perform 

much better than the MSE based methods, especially in heavy-tailed non-Gaussian 

situations, since the error entropy can capture higher-order statistics of the errors. In 

addition, a new approximator of l0-norm, based on the correntropy induced metric (CIM), 

is also used as a sparsity penalty term (SPT). We analyze the mean square convergence of 

the proposed new sparse adaptive filters. An energy conservation relation is derived and a 

sufficient condition is obtained, which ensures the mean square convergence. Simulation 

results confirm the superior performance of the new algorithms. 
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1. Introduction 

In recent years, sparsity aware learning methods have received a lot of attention due to their broad 

applicability. In sparse channel estimation, the goal is usually to estimate a parameter vector of an 

unknown channel with most zero tap under noise disturbances. So far many sparsity aware adaptive 

filtering algorithms have been developed to solve the problem of sparse channel estimation. In general, 

a sparse adaptive filtering algorithm can be derived by incorporating a sparsity penalty term (SPT), 

such as the l0-norm, into a traditional adaptive algorithm. Typical examples of sparse adaptive filtering 

algorithms include sparse least mean square (LMS) [1–4], sparse affine projection algorithms (APA) [5], 

sparse recursive least squares (RLS) [6], and their variations [7–12]. 

However, there are some limitations of the existing sparse adaptive filters. Specifically, when data 

are non-Gaussian (especially when data are disturbed by impulsive noise or containing large outliers), 

they may perform very poorly. The main reason for this is that most of the existing algorithms are 

developed based on the well-known mean square error (MSE) criterion, which relies heavily on the 

assumption of Gaussian distributions. This assumption does not always hold, particularly in most 

practical applications. For instance, different types of artificial noise in electronic devices, atmospheric 

noises, and lighting spikes in natural phenomena, can be described more accurately using  

non-Gaussian noise models [13,14]. When sparse filters are applied in such situations, the performance 

will become much worse due to the sensitivity to the impulsive noises or outliers [15]. 

Information theoretic learning (ITL), on the other hand, provides a nice approach for dealing with 

non-Gaussian signal processing [16,17]. The minimum error entropy (MEE) [18–27] criterion in ITL 

was successfully used in adaptive filtering to improve the learning performance in non-Gaussian 

noises. Basically, the MEE aims at minimizing the entropy of the training error such that the adaptive 

model becomes as close as possible to the unknown system. Since the MEE can capture higher-order 

statistics and information content of signals rather than simply their energy, it is particularly useful for 

non-Gaussian machine learning and signal processing. In this work, we will use the MEE instead of 

the MSE to develop sparse adaptive filtering algorithms. The new adaptive filters are very robust to 

impulsive noises.  

As an important part, the SPT in sparse adaptive filters enables them to fit well the sparse structures 

of the unknown systems. Finding the sparsest solution leads to the l0-norm minimization, which is an 

NP-hard problem. In existing methods, the l1-norm and reweighted l1-norm are frequently used as the 

SPT. As a nice approximator of the l0-norm, the Correntropy Induced Metric (CIM) can also be used as 

a sparsity penalty term in sparse channel estimation [28,29]. In the present paper, we will incorporate 

the above-mentioned SPTs into the sparsity aware MEE algorithms, and develop three sparse MEE 

algorithms, namely the sparse MEE with zero-attracting (l1-norm) penalty term (ZAMEE), sparse 
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MEE with the logarithmic (reweighted l1-norm [30]) penalty term (RZAMEE), and sparse MEE with 

the CIM penalty term (CIMMEE). 

The organization of the rest of the paper is as follows. In Section 2, we briefly introduce the MEE 

criterion and the CIM. In Section 3, we derive the ZAMEE, RZAMEE and CIMMEE algorithms. In 

Section 4, we establish an energy conservation relation and derive a sufficient condition that ensures 

the mean square convergence of the sparse MEE algorithms. In Section 5, we present simulation results 

to demonstrate the performance of the developed methods. Finally in Section 6, we give the conclusion. 

2. MEE and CIM 

2.1. Minimum Error Entropy Criterion 

Figure 1 shows a general scheme of adaptive system training under MEE criterion. As entropy 

measures the average uncertainty or diversity of a random variable, minimizing the error entropy will 

make the error distribution more concentrated (usually with higher peaks), and the discrepancy between 

the unknown system and adaptive model will be minimized. In supervised learning, the error signal is, 

in general, defined as the difference between the outputs of unknown system and adaptive model. 

 

Figure 1. Adaptive system training under minimum error entropy (MEE) criterion. 

Consider a linear channel model, where the input vector  at time n  is 

sent over an FIR channel with parameter vector * * * *
1 2[ , , , ]T

MW w w w=   ( M  is the size of the channel 

memory). Assume that the channel parameters are real-valued, and most of them are zero. The desired 
signal ( )d n  is then 

*( ) ( ) ( )Td n W X n v n= +  (1)

where ( )v n  denotes an interference noise. Let 1 2( ) [ ( ), ( ), , ( )]T
MW n w n w n w n=   be the weight vector of 

an adaptive filter. The instantaneous error can be calculated as ( ) ( ) ( ) ( )Te n d n W n X n= − . Assume that 

the error ( )e n  is a random variable with probability density function (PDF) ( )ef e . Let ˆ ( )ef e  be an 

estimator of ( )ef e  based on a set of error samples. Then an estimator of Renyi’s quadratic entropy for 

the error signal can be expressed as [16,17] 

2
2

ˆ( ) log ( ) log ( )R eH e f d V eξ ξ= − −  =  (2)
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where 2ˆ(e) ( )eV f dξ ξ=   is called the information potential (IP) [16–18]. Based on Parzen window 

approach, the probability density function of the error takes the following form [16,17]  

1

1ˆ ( ) ( ( )),
N

e
i

f e e e i
N σκ

=

= −  (3)

where N  is the samples number, ( )σκ ⋅  denotes a kernel function with bandwidth σ , and the N  error 

samples are { (1), (2), , ( )}e e e N . The Gaussian kernel function is one of the most popular kernels, 

which is given by 

2

2

1
( ) exp( ).

22

x
xσκ

σσ π
= −  (4)

In this work, without mentioned otherwise, the kernel function is a Gaussian kernel. Combining (2) 

and (3), one can derive 

2
2

2

1

2
1 1

2 2
1 1

ˆ( ) log ( )

1
log ( ( ( )))

1
log ( ( )) ( ( ))

1
log ( ( ) ( )).

R e

N

i

N N

i j

N N

i j

H e f e de

e e i de
N

e e i e e j de
N

e i e j
N

σ

σ σ

σ

κ

κ κ

κ

=

= =

= =

= −

− −

− − −

− −









            =

            =

            =

 (5)

It follows easily that 

2 2
1 1

1
( ) ( ( ) ( )).

N N

i j

V e e i e j
N σκ

= =

= −  (6)

Obviously, minimizing the error entropy is equivalent to maximizing the information potential [31,32]. 

Thus, the optimization criterion for MEE training can be  

max ( ).MEE
W

J V e=  (7)

From (7), a steepest ascent algorithm for estimating the weight vector can be derived as 

( 1) ( ) ( ( )),W n W n V e nη+ = + ∇  (8)

where η  denotes a step size, and ( ( ))V e n∇  stands for the gradient of the information potential with 

respect to the weight vector, expressed as 

2 2
1 1

2 2 2
1 1

( ( )) 1
( ( )) ( ( ) ( ))

( ) ( )

1 ( ) ( )
( ( ) ( ))( ( ) ( )) ,

2 ( ) ( )

N N

i j

N N

i j

V e n
V e n e i e j

W n W n N

y i y j
e i e j e i e j

N W n W n

σ

σ

κ

κ
σ

= =

= =

 ∂ ∂∇ = = − ∂ ∂  
  ∂ ∂− − −  ∂ ∂  



                 =
 (9)

where ( )y i  and ( )y j  denote the outputs of the system at i  and j  time, respectively.  
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2.2. Correntropy Induced Metric 

Correntropy is a novel nonlinear similarity measure between two random variables, quantifying 

how similar two random variables in a neighborhood of the joint space [28,33,34]. Given two vectors 

of samples: [ ]1, ,
T

NX x x=  , [ ]1, ,
T

NY y y=  , a sample mean estimator of the correntropy between 

X  and Y  is defined by 

1

1
V̂( , ) ( ).

N

i i
i

X Y x y
N σκ

=

= −  (10)

In order to find the sparsest vector (minimum l0-norm) satisfying a series of linear constrains, one 

can use the CIM as an approximation of the l0-norm. Based on the correntropy, the CIM is defined as [28] 

( )1/2ˆ(X, ) (0) ( , ) ,CIM Y V X Yκ= −  (11)

which is a metric in sample space and satisfies 

(1) Non-negativity: ( , ) 0CIM X Y ≥ . 

(2) Identity of indiscernible: ( , ) 0CIM X Y =  if and only if X Y= . 

(3) Symmetry: ( , ) ( , )CIM X Y CIM Y X= . 

(4) Triangle inequality: ( , ) ( , ) ( , )CIM X Z CIM X Y CIM Y Z≤ + . 

The CIM provides a nice approximation for the l0-norm. Given a vector [ ]1, ,
T

NX x x=  , the  

l0-norm of X  can be approximated by [28,29] 

2
2

0 2
1

(0)
|| || (X,0) (1 exp( )).

2

N
i

i

x
X CIM

N

κ
σ=

= − −  (12)

Figure 2 shows the contours of the CIM in a 3-D space, from which one can observe that this metric 

divides the space in three regions, namely Euclidean region, Transition region and Rectification 

region. The CIM behaves like an l2-norm (convex function) in the Euclidean region, like an l1-norm in 

the Transition region and like an l0-norm (non-convex function) in the Rectification region. It can be 
shown that if ix δ> , 0ix∀ ≠ , then as 0σ → , one can get a solution arbitrarily close to that of the  

l0-norm, whereδ is a small positive number (see [29] for details). Therefore, with a smaller kernel 

width, the CIM will favor sparsity and can be used as a penalty term in sparse channel estimation.  
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Figure 2. Contours of (X,0)CIM  in 3-D space (where kernel size is 0.4). 
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3. Sparse MEE Algorithms  

3.1. Sparse MEE with Zero-Attracting (l1-norm) Penalty Term (ZAMEE) 

To develop a sparse MEE algorithm with zero-attracting (l1-norm) penalty term [4], we introduce 

the cost function 

1
12 2

1 1

1
( ) ( ) ( ) ( ( ) ( )) || W(n) || ,

n n

ZAMEE MEE ZA
i n L j n L

J n J n J n e i e j
L σλ κ λ

= − + = − +

= − + = − − +   (13)

where 1(n) || W(n)) ||ZAJ =  denotes the l1-norm of the estimated parameter vector, L  is the sliding data 

length, and 1σ  is the kernel width in MEE. In (13), the MEE term is robust to impulsive noises, and the 

ZA penalty term is a sparsity inducing term, and the two terms are balanced by a weight factor 0λ ≥ . 

Based on the cost function (13), one can derive the following adaptive algorithm: 

[ ]

[ ]

1

1

2 2 2
1 11

2 2 2
1

( )
( 1) ( )

( )

1 ( ) ( )
( ) ( ) ( ) ( ( ) ( )) (W(n))

2 (n) (n)

( ) ( ) ( ) ( ( ) (
2

ZAMEE

n n

i n L j n L

J n
W n W n

W n

y i y j
W n e i e j e i e j sign

L W W

W n e i e j e i e
L

σ

σ

η

η κ λ
σ

η κ
σ

= − + = − +

∂+ = −
∂

   ∂ ∂= − − − − − +   ∂ ∂    

= + − −

               

              [ ]
1 1

)) ( ) ( ) (W(n)),
n n

i n L j n L

j X i X j signρ
= − + = − +

 − −  

 
(14)

where ρ ηλ=  is the zero-attractor control factor, and ( )sign ⋅  is a component-wise sign function [2–4], 

with ( ) 1sign x =  for 0x > , ( ) 1sign x = −  for 0x < , and ( ) 0sign x =  for 0x = . The algorithm (14) is 

referred to as the ZAMEE algorithm. 

3.2. Sparse MEE with the Logarithmic Penalty Term (RZAMEE) 

In this part, we derive a sparse MEE algorithm with a logarithmic penalty term [1,2], which can also 

generate a zero attractor. The corresponding cost function is given by 

12 2
1 1 1

( ) ( ) ( )

1
( ( ) ( )) log(1 | ( ) | / ),

RZAMEE MEE RZA

n n M

i
i n L j n L i

J n J n J n

e i e j w n
L σ

λ

κ λ δ
= − + = − + =

= − +

= − + +                  
 (15)

where the log-sum penalty 
1

log(1 | w ( ) | / )
M

i
i

n δ
=

+  behaves more similarly to the l0-norm than the  

l1-norm ||W||1 , and δ  is a positive number. Then, a gradient-based adaptive algorithm can be easily 

derived as 

[ ] [ ]

[ ]

1

1

2 2 2
1 11

2 2 2
1

( )
( 1) ( )

( )

sign( (n))1
( ) ( ) ( ) ( ( ) ( )) ( ) ( )

2 1 | (n) |

( ) ( ) ( ) ( ( ) ( )) ( ) (
2

RZAMEE
i i

i

n n
i

i
i n L j n L i

i

J n
w n w n

w n

w
w n e i e j e i e j X i X j

L w

w n e i e j e i e j X i X
L

σ

σ

η

η κ λ
σ δ

η κ
σ

= − + = − +

∂+ = −
∂

 
= − − − − − + ′+ 

= + − − −

              

             [ ]
1 1

sign( (n))
)

1 | (n) |

n n
i

i n L j n L i

w
j

w
ρ

δ= − + = − +

 −  ′+ 

 
(16)
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where 
1

'δ
δ

= . This algorithm is referred to as the RZAMEE algorithm.  

3.3. Sparse MEE with CIM Penalty Term (CIMMEE) 

One can also employ the CIM as a sparsity penalty term to develop a sparse MEE algorithm. A new 

cost function can be defined by 

1

2

2 22
1 1 1 22

( ) ( ) ( )

( )1 1
( ( ) ( )) (1 exp( )),

22

CIMMEE MEE CIM

n n M
i

i n L j n L i

J n J n J n

w n
e i e j

L Mσ

λ

κ λ
σσ π= − + = − + =

= − +

= − − + − −                  
 (17)

where 2σ  denotes the kernel width in CIM. The second term (i.e., the CIM) with a smaller kernel 

width will become a sparsity inducing term. Based on the new cost function of (17), we derive a 

gradient-based adaptive algorithm: 

[ ] [ ]

[ ]

1

1

2 2 22 3
1 11 22

2 2 2
1

( )
( 1) ( )

( )

1 1 ( ).* ( )
( ) ( ) ( ) ( ( ) ( )) ( ) ( ) ( ).*exp( )

2 22

( ) ( ) ( ) ( ( ) ( ))
2

CIMMEE

n n

i n L j n L

J n
W n W n

W n

W n W n
W n e i e j e i e j X i X j W n

L M

W n e i e j e i e j X
L

σ

σ

η

η κ λ
σ σσ π

η κ
σ

= − + = − +

∂+ = −
∂

 
= − − − − − + − 

 

= + − −

              

             [ ] 23
1 1 22

1 ( ).* ( )
( ) ( ) ( ).*exp( ),

22

n n

i n L j n L

W n W n
i X j W n

M
ρ

σσ π= − + = − +

− − − 

 
(18)

where .*  denotes element-wise product. The above algorithm is referred to as the CIMMEE algorithm. 
The kernel width 2σ  is a key parameter in the penalty term. A proper kernel width will make the CIM 

approximate well the l0-norm.  

The derived sparsity aware MEE algorithms can be written in a unifying form: 

( ( ))
( 1) ( ) ( ( ))

( )

( ) ( ) ( ( )) ( ( ))

MEE

T

J e n
W n W n G W n

W n

W n n h e n G W n

η

ηχ

∂+ = − −
∂

= + −             



 
 (19)

where ( ) [ ( 1), ( 2), , ( )]Te n e n L e n L e n= − + − +


  is an 1L×  error vector, χ(n) = [X(n – L + 1),  

X(n – L + 2), …, X(n)]T is an L M×  input matrix, 1 2( ( )) [ ( ( )), ( ( )), , ( ( ))]T
Lh e n h e n h e n h e n=

    
 , in which 

( ( ))
( ( ))

( )
MEE

i

J e n
h e n

e n L i

∂=
∂ − +


 (20)

and ( ( ))G W n  is the derivative of the sparsity penalty term with respect to ( )W n , which is an 1M ×  

vector. For ZAMEE, RZAMEE and CIMMEE, ( ( ))G W n  can be expressed respectively as G(W(n)) = 

ρsign(W(n)), 
sign( ( ))

( ( ))
1 | ( ) |

W n
G W n

W n
ρ

δ
=

′+
 and 

23
22

1 ( ).* ( )
( ( )) ( ).*exp( )

22

W n W n
G W n W n

M
ρ

σσ π
= − . 

4. Mean Square Convergence Analysis 

Now we analyze the mean square convergence of the algorithm (19). For simplicity and rigorous 



Entropy 2015, 17 3426 
 

 

analysis, we only consider the case in which 
23

22

1 ( ).* ( )
( ( )) ( ).*exp( )

22

W n W n
G W n W n

M
ρ

σσ π
= − . 

First, we derive a fundamental energy conservation relation [24,35,36]. 

4.1. Energy Conservation Relation 

In order to presenting a unifying formulation for the sparsity under MEE criterion, we rewrite 
( ) ( ) ( ) ( )Te n d n W n X n= −  as follows 

( ) ( ) ( ) ( ),e n d n n W nχ= −


 (21)

where ( ) [ ( 1), ( 2), , ( )]Td n d n L d n L d n= − + − +


  is the 1L×  desired signal vector. From (1), we derive 

*( ) ( ) ( ),d n n W v nχ= +
 

 (22)

where ( ) [ ( 1), ( 2), , ( )]Tv n v n L v n L v n= − + − +


  is the noise vector. Obviously, combining (21) and (22), 

the error vector ( )e n


 can be expressed as 

( ) ( ) ( ) ( ),e n n W n v nχ= +
   (23)

where *( ) ( )W n W W n= −  is the weight error vector. Let us define the a priori error vector (n)ae


 and  

a posteriori error vector (n)pe


 as follows: 

( ) ( ) ( )

( ) ( ) ( 1)
a

p

e n n W n

e n n W n

χ
χ

 =
 = +

 
 

 
(24)

In addition, (n)ae


 and (n)pe


 have the following relationship: 

( ) ( ) ( )( ( 1) ( ))

( ) ( )( ( 1) ( )).

p a

a

e n e n n W n W n

e n n W n W n

χ
χ

= + + −

= − + −        

   
  (25)

To simplify the analysis, here we assume L M= . Then, combining (19) and (25), we have 

1 1

1

1

( ) ( ) ( )( ( ) ( ( )) ( ( )))

( ) ( ) ( ( ) ( ( )) ( ) ( ( )))

( )( ( ) ( )) ( ( ( )) ( ) ( ) ( ( )))

( ) ( )( ( ) ( )) ( ( 1) ( ))

( ) ( )

T
p a

p a

p a

T
p a

T

e n e n n n h e n G W n

e n e n n h e n n G W n

n e n e n h e n n n G W n

n n e n e n W n W n

n n

χ ηχ

η χ

η χ

χ

χ

− −

−

−

= − −

 − = − ℜ −

ℜ − = − + ℜ

 ℜ − = − + −

 ℜ

     
  

  

  

 

( ( ) ( )) ( 1) ( ),p ae n e n W n W n− = + −
   

 (26)

where ( ) ( ) ( )Tn n nχ χℜ =  is an L L×  -dimensional symmetric matrix and is assumed to be invertible. 

Therefore, we have 
1( 1) ( ) ( ) ( )( ( ) ( )).T

p aW n W n n n e n e nχ −+ = + ℜ −
    (27)

Squaring both sides of (27), we obtain 
1 1( 1) ( 1) [ ( ) ( ) ( )( ( ) ( ))] [ ( ) ( ) ( )( ( ) ( ))].T T T T

p a p aW n W n W n n n e n e n W n n n e n e nχ χ− −+ + = + ℜ − × + ℜ −
       (28) 

After some simple manipulations, we derive  
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1 1

2 2 22

( ) ( )
( 1) ( ) ( ) ( ) ,a pn n

W n e n W n e n− −ℜ ℜ
+ + = +

    (29)

where 
2

( ) ( ) ( )TW n W n W n=   , 1

2 1

( )
( ) ( ) ( ) ( )T

a a an
e n e n n e n−

−
ℜ

= ℜ
  

 and 
1

2 1

( )
( ) ( ) ( ) ( )T

p p pn
e n e n n e n−

−

ℜ
= ℜ

  
. 

Taking the expectations of the both sides of (29), we have 

1 1

2 2 22

( ) ( )
( 1) ( ) ( ) ( )a pn n

E W n E e n E W n E e n− −ℜ ℜ
      + + = +           

    (30)

where [ ]E   denotes the expectation operator, 
2

( )E W n 
  
  is the weight error power (WEP) at 

iteration n .  

Remark: Equation (30) is referred to as the energy conservation relation for the proposed sparsity 

aware MEE algorithms, which is, interestingly, the same as the energy conservation relation derived 

in [24]. In fact, the sparsity penalty terms have no influence on the energy conservation relation. Similar 

extensions of the energy conservation relation to multi-dimensional error can be found in [37,38]. 

4.2. Sufficient Condition for Mean Square Convergence 

Based on the energy conservation relation (30), a sufficient condition can be derived that ensures 

the mean square convergence. By substituting ( ) ( ) ( ( ) ( ( )) ( ) ( ( )))p ae n e n n h e n n G W nη χ= − ℜ −
  

 into (30), 

we obtain 

2 2 2

1

( 1) ( ) 2 (n) ( ( )) ( ( )) ( ) ( ( ))

( ( ) ( ( )) 2 (n) ( ) ( ) ( ( ))

2 ( (

T T
a

T T
a

T

E W n E W n E e h e n E h e n n h e n

E G W n G W n E e n n G W n

E h e n

η η

χ

η

−

       + = − + ℜ          
   − ℜ   

+

                           +

                          

      



 
)) ( ) ( ( ))n G W nχ 

 

 (31)

Before evaluating the expectations ( ( )) ( ( ))TE G W n G W n   , 1(n) ( ) ( ) ( ( ))T
aE e n n G W nχ− ℜ 


, 

(n) ( ( ))T
aE e h e n 

 
 

, ( ( )) ( ) ( ( ))TE h e n n G W nχ 
 
 

, and ( ( )) ( ) ( ( ))TE h e n n h e n ℜ 
  

, we give the following 

assumptions. 

Assumptions: 

(A) The noise { ( )}v n  is independent, identically distributed, and independent of the input { ( )}X n . 

(B) The a priori error vector ( )ae n


 is jointly Gaussian distributed. 

(C) The input vectors { ( )}X n  are zero-mean independent, identically distributed. 

(D) , { 1, , }i j n L n∀ ∈ − +  , , ( )i j nℜ  is independent of { ( ), ( )}e i e j . 

(E) The vectors { ( ( ))}G W n  are zero-mean independent, identically distributed, and independent of 

the input { ( )}X n . 

Remark: The assumptions (A), (B), (C) and (D) are commonly used in the literature [35,36]. In this 

work, the unknown system is assumed to be a sparse system, of which most coefficients are zero or 
close to zero, so the weight vector ( )W n  of the adaptive filter is also sparse, especially at the final 

stage of convergence when the filter gets very close to the unknown system. Since ( )W n  is sparse, the 
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vector 
23

22

1 ( ).* ( )
( ( )) ( ).*exp( )

22

W n W n
G W n W n

M
ρ

σσ π
= −  will be close to a null vector, because we 

have 
2

23
22

1
( ) exp( ) 0

22

x
x x

M
φ ρ

σσ π
= − ≈  when x  is very close to or far from zero. Thus, for the 

CIMMEE, the assumption (E) is reasonable. 

If the above assumptions hold, in a similar way to [24,35], one can derive 

2 2(n) ( ( )) ( ) ( ( ))T
a GE e h e n n nγ θ γ  = 

 
 (32)

22( ( )) ( ) ( ( )) ( ( )) ( )T
IE h e n n h e n n E X nθ γ   ℜ =   

  
 (33)

where 2 2( ) [( ( )) ]an E e n L iγ = − + , 2( ( ))G nθ γ  and 2( ( ))I nθ γ  denote two functions of 2 ( )nγ . The subscript G  

in Gθ  points to the fact that the Gaussian assumption (B) is the main assumption for the Equation (32) 

and the subscript I  in Iθ  indicates that the independence assumption (D) is the major assumption 

leading to the expression (33). For more details about (32) and (33), interested readers are referred to [24]. 

By assumption (E), it follows easily that  

[ ]
[ ]

1 1(n) ( ) ( ) ( ( )) (n) ( ) ( ) ( ( )) 0

( ( )) ( ) ( ( )) ( ( )) ( ) ( ( )) 0

T T
a a

T T

E e n n G W n E e n n E G W n

E h e n n G W n E h e n n E G W n

χ χ

χ χ

− −    ℜ = ℜ =   
    = =    

 

    (34)

Let the variance of { ( ( ))}G W n  be 2ς . Then we derive 

2( ( )) ( ( ))TE G W n G W n ς  =   (35)

Substituting (32), (33), (34) and (35) into (31), we obtain 

2 2 22 2 2 2 2( 1) ( ) 2 ( ) ( ( )) ( ( )) ( ) +G IE W n E W n n n n E X nηγ θ γ η θ γ ς     + = − +        
   (36)

From (36), we observe 

2 2 22 2 2 2 2( 1) ( ) ( ( )) ( ) 2 ( ) ( ( ))+ 0I GE W n E W n n E X n n nη θ γ ηγ θ γ ς     + ≤ ⇔ − ≤        
   (37)

Since ( )nℜ  is assumed to be invertible, we have 

22( ( )) ( ) 0I n E X nθ γ   >   (38)

Thus, to make the weight error power monotonically decreased (hence converge), the step size η  

should satisfy the following inequality: 

2 2 2 2

2 22 2

( ) ( ( )) ( ) ( ( ))

( ( )) ( ) ( ( )) ( )

G G

I I

n n n n

n E X n n E X n

γ θ γ γ θ γη
θ γ θ γ

− ϒ + ϒ≤ ≤
   
   

 (39)

where 
22 2 2 2 2( ( ) ( ( ))) ( ( )) ( )G In n n E X nγ θ γ θ γ ς ϒ = −   . As 0η > , the above inequality implies 

2( ( )) 0G nθ γ >  (40)
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0ϒ ≥  (41)

Therefore, a sufficient condition for the mean square convergence will be 

2

2 2 2 2

2 22 2

( ( )) 0

( ) ( ( )) ( ) ( ( ))

( ( )) ( ) ( ( )) ( )

0

G

G G

I I

n

n n n n

n E X n n E X n

θ γ
γ θ γ γ θ γη
θ γ θ γ

 >
 − ϒ + ϒ ≤ ≤

       
ϒ ≥

,         n∀  (42)

Remark: It is worth noting that the sufficient condition of (42) does not ensure that the WEP will 

converge to zero. Actually, for a stochastic gradient-based algorithm, there are always misadjustments. 

Even so, the derived condition will guarantee the monotonic decrease of WEP and ensure that the 

algorithm does not diverge. 

5. Simulation Results 

In this section, we perform simulations on time-varying channel estimation to demonstrate the 

performance of the proposed sparse aware MEE algorithms (ZAMEE, RZAMEE, and CIMMEE), 

compared with several other algorithms, including least absolute deviation (LAD) [39], MEE, 

ZALMS, and RZALMS, in a sparse system identification setting. In all the simulations, the 

performance measure adopted is the mean square deviation (MSD), defined as 

2*MSD= ( )E W W n −  
 (43)

5.1. Experiment 1 

In the first experiment, in order to identify the sparsity of the system, we use a filter of 20 

coefficients in the time varying system. The parameter vector of the unknown channel is assumed to be  

*

[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 2000

[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] 2000 3000

[1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1] 3000

n

W n

n

≤
= < ≤
 − − − − − − − − − − <

 (44)

In (44), the channel memory size, M, is 20. The channel model has a sparsity of 1/20 during 1 to 2000 

iterations, while the sparsity changes to 1/4 when the iteration is from 2000 to 3000, and it is  
non-sparsity after 3000 iterations. The input signal { }( )x n  is a white Gaussian random sequence with 

zero mean and unit variance. Simulation results below are obtained by averaging over 100 independent 

Monte Carlo runs, and each run has 5000 iterations. 

We employ the alpha-stable distribution [40] as impulsive noise model, which has been widely 

applied in the literature [41–43]. The characteristic function of the alpha-stable distribution is given by  

( ) exp{j | | [1 j sgn( )S( , )]}f t t t t tαδ γ β α= − +  (45)

in which 
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tan 1
2S( , )

2
log | | 1

if
t

t if

απ α
α

α
π

 ≠= 
 =


 (46)

where (0,2]α ∈  is the characteristic factor, δ−∞ < < +∞  is the location parameter, [ 1,1]β ∈ −  is the 

symmetry parameter, and 0γ >  is the dispersion parameter. Such a distribution is called a symmetric 

alpha-stable ( S Sα ) distribution when 0β = . We define the parameters vector as ( , , , )V α β γ δ= . 
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Figure 3. Tracking and steady-state behaviors of 20-order adaptive filters. 

First, we investigate the convergence behaviors of the proposed methods in impulsive alpha-stable 
noise, where the noise parameters vector is (1.2,0,0.2,0)V = . The sliding data length for MEE is  

L = 20. The step size is set at 0.03 for all algorithms. The kernel widths in MEE and CIM are 2.0 and 
0.04, respectively. For all sparse aware algorithms, ρ  is set at 0.0001. The parameter 'δ  for RZALMS 

and RZAMEE is 10. The average convergence curves in terms of the MSD are shown in Figure 3. As 

one can see from the MSD results, when the channel system is very sparse (before the 2000th 

iteration), the sparse aware MEE achieve faster convergence rate and better steady-state performance 

than the other robust algorithms (LAD, MEE), while ZALMS and RZALMS work poorly, as they are 

sensitive to the impulsive noises. Thus, we only consider the MEE, LAD algorithms comparing with 

the proposed algorithm in the next experiment case. In addition, CIMMEE achieves lower MSD than 

ZAMEE and RZAMEE, since the CIM provides a nice approximation for the l0-norm. After the 2000th 

iteration, as the number of non-zero taps increases to ten, the performance of the ZAMEE and 

RZAMEE deteriorates while the CIMMEE maintains the best performance among all the sparse aware 

filters. After 3000 iterations, the sparse aware MEE algorithms still perform comparable with the 

MEE, even though the system is now completely non-sparse.  

Second, we conduct the simulation with different γ (0.2, 0.4, 0.6, 0.8, 1) and α (1, 1.2, 1.3, 1.4, 1.5, 

1.6, 1.7) to further demonstrate the performance of the proposed method. In this simulation, we mainly 

focus on the fully sparse channel system in the first stage of the proposed model. The step size is set at 

0.02 for all algorithms, and other parameter settings are the same as in the previous simulation for all 

algorithms. The MSD, versus different γ and α, are illustrated in Figures 5 and 6, respectively. 

Evidently, the sparse aware MEE algorithms perform well with the different parameter of the 

impulsive noise model. Moreover, we see that the CIMMEE achieves much lower MSDs in all the 
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cases. Simulation results confirm that the proposed sparse aware MEE algorithms, especially 

CIMMEE, can efficiently estimate a sparse channel in impulsive noise environment. 
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Figure 4. Steady-state mean square deviation (MSD) versus different values of γ . 
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Figure 5. Steady-state mean square deviation (MSD) versus different values of α . 

Third, we perform simulations to investigate how the kernel width 1σ affects the performance, which 

is an important parameter for the sparse aware MEE. Here, the steady-state MSDs of the CIMMEE 
with different 1σ  (0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5) and different α  (1, 1.2, 1.4, 1.6, 1.8, and 2) 

are computed. Other parameters are set as: 1γ = , 0.01η = , 0.0001ρ = , 2 0.04σ =  and ' 10δ = . The 

results are given in Figure 6. One can see that the CIMMEE achieves different MSDs with different 1σ  

and under different noise distributions. In this example, the lowest MSD will be obtained around 

1 1.5σ = . From the simulation results, we may conclude that the kernel width in MEE has a significant 

influence on the performance.  
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Figure 6. Steady-state mean square deviation (MSD) of sparse minimum error entropy 

(MEE) with the correntropy induced metric (CIM) penalty term (CIMMEE) with different 
kernel size 1σ  for different α . 
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5.2. Experiment 2 

In the second experiment, the system is the same as the first experiment, except for the switching 

times. The parameter vector of the unknown channel is assumed to be  

*

[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 5000

[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] 5000 10000

[1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1] 10000

n

W n

n

≤
= < ≤
 − − − − − − − − − − <

 (47)

and the channel memory size, M, is 20. The input signal { }( )x n  is now a correlated signal generated 

by the process ( )( ) 0.8 ( 1) ( )x n x n v n= − +  and then normalized to variance 1, where ( )v n  is a white 

Gaussian process. The observed noise is the same noise assumed in the first experiment with the same 

parameters. All simulation results are obtained by averaging over 100 independent Monte Carlo runs, 

and each run performs 15,000 iterations. The sliding data length is L = 20. The step size is set at 0.04 

for all algorithms. The kernel widths in MEE and CIM are 3.0 and 0.05, respectively. For all sparse 
MEE algorithms, ρ  is set at 0.0001. The parameter 'δ  for RZAMEE is 10. Figure 7 shows the 

average MSD estimate of the three sparse MEE filters. As seen from the MSD results, similar 

performance trends are observed as in the first experiment. When the system is very sparse, the 

CIMMEE achieves better steady-state performance than ZAMEE and RZAMEE. As the number of 

non-zero taps increases to 10, even 20 (completely non-sparse), the CIMMEE algorithms still performs 

better than the other sparse MEE filters because the CIM has a nice approximation for the l0-norm. 
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Figure 7. Tracking and steady-state behaviors of 20-order adaptive filters with correlated 

input. 

Second, we perform simulations to investigate how the kernel width 1σ  and the characteristic factor 

α  affect the performance, which are important parameters for the sparse aware MEE. Here, the 
steady-state MSDs of the CIMMEE with different 1σ  (1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5) and different 

α  (1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9) are computed. Other filter parameters are set as: 1γ = , 

0.01η = , 0.0001ρ = , 2 0.05σ =  and ' 10δ = . Figure 8 shows the simulation result in 3-D space. As 

one can observe clearly, the best performance of the CIMMEE can be obtained at about 1 3σ = . If 1σ  

is too small or too large, the convergence performance will become worse. However, the MSD is little 



Entropy 2015, 17 3433 
 

 

affected by the characteristic factor α . This implies that the MEE is an extremely robust principle in 

impulsive non-Gaussian noises. 
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Figure 8. Steady-state mean square deviation (MSD) of sparse minimum error entropy 

(MEE) with the correntropy induced metric (CIM) penalty term (CIMMEE) with different 
kernel size 1σ  and different α  in 3-D space. 

5.3. Experiment 3 

In the third experiment, we demonstrate the performance when the input signal is a fragment of 2 s 

of real speech, sampled at 8kHZ [4,8]. Figure 9 shows an acoustic echo path of a 1024-tap system with 

52 non-zero coefficients, which can be considered to be very sparse and is used in the simulation. The 
output is still disturbed by an alpha-stable noise and the noise parameters vector is (1.4,0,0.2,0)V = . 

All simulation results are obtained by averaging over 100 independent Monte Carlo runs. The sliding 
data length is L = 20. The other parameters are set as: 0.0015η = , 0.0001ρ = , 1 1.0σ = , 2 0.05σ =  and 

' 10δ = . The convergence curves for the sparse MEE algorithms are shown in Figure 10. Compared 

with the ZAMEE and RZAMEE, the CIMMEE algorithm achieves a smaller MSD. 
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Figure 9. Acoustic echo path with length M = 1024. 
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Figure 10. Convergence behaviors with speech signal input. The speech signal is shown in 

the upper plot. 

6. Conclusion  

The MEE, as an adaptation criterion, has been successfully applied in many fields because of its 

desirable performance in non-Gaussian situations. In this work, we develop several sparsity aware 

MEE algorithms, including ZAMEE, RZAMEE, and CIMMEE, which are derived by incorporating 

different sparsity penalty terms into the MEE criterion. The mean square convergence properties of the 

proposed algorithms have been analyzed. Based on an energy conservation relation, we derive a 

sufficient condition that guarantees the mean square stability. Simulation results show that the new 

algorithms can achieve excellent performance, especially when the measurements are disturbed by 

impulsive non-Gaussian noises. How to select proper parameters, such as the kernel bandwidth, is an 

important issue. This will be an interesting topic for future study. 
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