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Abstract: We present a theoretical study of new families of stochastic complex information 

modules encoded in the hypergraph states which are defined by the fractional entropic 

descriptor. The essential connection between the Lyapunov exponents and d-regular 

hypergraph fractal set is elucidated. To further resolve the divergence in the complexity of 

classical and quantum representation of a hypergraph, we have investigated the notion of 

non-amenability and its relation to combinatorics of dynamical self-organization for the case 

of fractal system of free group on finite generators. The exact relation between notion of 

hypergraph non-locality and quantum encoding through system sets of specified  

non-Abelian fractal geometric structures is presented. Obtained results give important 

impetus towards designing of approximation algorithms for chip imprinted circuits in 

scalable quantum information systems. 

Keywords: non-Abelian group; hypergraph state; topological system; non-locality; 

geometry information  

 

1. Introduction 

The field of algebraic topology has passed an essential evolution in attaching algebraic objects to 

topological spaces starting from the simple graph models associated to vertices and edges in terms of 

Laplacian matrices, leading to higher-order dimensional structures modified through simplices or 

cliques, finalizing with an elegant mature representation of non-local hypergraph states [1]. From the 

aspect of the algebraic topology, the dimension of the specific measure for the hypergraph (set system) 
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is a function of the corresponding metric [2]. As a natural extension former implicates that for algebraic 

dynamical system the entropy of the measure depends on set system evolution process upon its metric 

spaces [3], i.e., the metric space represents the natural constituent assembly of the set system dimension 

in dynamical framework. Moreover, for algebraic dynamical systems the dimension directly relates to 

entropy via geometric concept of the Lyapunov exponents [4,5], which can be successfully applied to 

quantify the set system complexity in a sense of the topological [6,7] as well as the metric entropy [8]. 

In general sense the topological entropy represents quantitative measure of complexity for continuous 

map defined on compact metric spaces of dynamical system [2]. While the metric entropy quantifies the 

number of typical orbits, the topological entropy represents the exponential growth rate of the number 

of orbit segments that are distinguishable with finite resolution. Hence, dynamical property of the maps 

is regulated by the topological entropy, i.e., between distinguishable orbits it measures growth rate of 

the number of different orbits of length n in infinite limit. Specifically, topological entropy as a non-

causal measure of exponential increase of the number of maximal intervals of monotonicity is introduced 

for a piecewise interval monotone map [9,10]. 

Important feature of the set system topological entropy is its close relation to periodic orbits. For each 

periodic orbit P of continuous map f [11] given on the interval I, it can be assigned a corresponding 

“local pointwise” topological entropy h(P) [12] representing the connection map between distinct points 

of periodic orbit [13], and at the same time representing the infimum of the entropies of all corresponding 

maps which display orbits of the same configuration as P. On the other hand, for the piecewise monotone 

interval, the entropy of each continuous map f corresponds to the supremum of the number h(P), relating 

in that way to sum of all periodic orbits P of f [14]. 

In this study we introduce certain situations where the non-local correlations arise from the non-

Abelian structure of topological algebraic set systems, addressing at the same time the divergence in 

dimension and complexity measures of classical and quantum hypergraph representation. In particular, 

connection between the periodic orbits and the topological entropy for continuous maps on specific 
fractal hypergraph sets, realized by the action of the free group on two generators 2F  [15,16], is analyzed 

in Section 2. Geometric measure of exponential divergence between nearby orbits of 2F  free group is 

represented via fractional entropic descriptor [17] where action of two generators on a free group 

corresponds to iteration on two Lyapunov scales. In Section 3, we further exploit generalization of the 

Shannon measure entropy in order to assess relation between the Lyapunov exponents and the Rényi 

entropy [18], addressing at the same time some of the unique properties of the presented fractal set. The 

Rényi entropy as a measure of complexity of dynamical system is analyzed in a sense of correlation of 

probability distribution function to its local expansion rate, defined by the Lyapunov exponents. 

Dynamical features of trajectory based metric are further compared to topological entropy equivalent in 

order to fully quantify the parameters of complexity and characterize combinatorics of dynamical  

self-organization for the case of fractal system of free group on finite generators. Finally, in Sections 4 

and 5, using the underlying fractal structure of the free group on two generators we construct the quantum 

hypergraph state [1] and demonstrate essential relation between its non-local correlations and the system 

complexity. Using the stabilizer formalism, the hypergraph states are defined as a class of multiqubit 

quantum states which generalizes graph states [19]. Obtained results allow efficient mapping of the quantum 

hypergraph states into corresponding logic circuits. Namely, in scope of the stabilizer formalism [20], in 
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terms of a group theory, it is possible to efficiently implement topological logic gates [21],  

using operations, such as controlled-NOT, Phase, Hadamard gates. In particular, a stabilizer code on n  

qubits (a quantum error-correcting code [22]) uses Pauli operators as stabilizer generators. For instance, 

in order to stabilize a subspace of 2s  dimension which belongs to the 2n  dimensional Hilbert space, in 

total s  stabilizer generators are required. In that case,  -k n s=  logical qubits will be encoded into -2n s  

dimensional logical subspace. The space stabilized by the generators does not necessarily have to form 

an Abelian subgroup of the Pauli group over qubits [23]. In particular case of generators, where  

non-Abelian group is of size 2s e n k+ = −  ( k  is notation of the number of qubits, codeword length is 

denoted as n ; e denotes ebits and s  denotes the code ancilla qubit) the non-Abelian subgroup can be 

decomposed into two subgroups: the commuting isotropic group and the entanglement subgroup with 

anticommuting pairs [24]. 

2. Non-Abelian Statistics over Hypergraph Fractal Set  

As we introduce some of the basic notations related to the hypergraph based fractal set, without loss 

of generality we assume topology embedded in 3 , where a hypergraph [25] represents a compact 
connected Hausdorff space represented by a subset ( ),G V E  of vertex elements { }1 2, ,..., nV v v v=  and 

edges ,  0,E V E⊂ ≠ /  where { }1 2, ,..., mE e e e= . Considering a point ,x V∈  the number of edges which 

contain x will be denoted as the valence, v , of x. In case of a tree configuration where 2v ≥ , we have 
the set of branching points ( )B G which coincide with the spatial hypergraph coordinates.  

We shall first introduce some basic definitions related to group-theoretic construction of the specific 

graph sets. Thus, important property relating to the topological entropy of the special class of 

hypepergraphs, introduced as a generalization of graphs in which infinite number of infinite clusters 
appears, is presented. Such geometric structure is the Cayley fractal set ,G HΓ = Γ  obtained by action of 

the free group G  on finite generators, H G⊆ .  

Let G  be a finitely generated group with the finite generating set { }1,..., nH e e= , where H G⊆ . 

Then, the vertices ( )( ),  px u G∈Γ ∈  of corresponding sub-graph pΓ , the set of edges { }1,..., nG e e× and 

corresponding mapping functions o  and t  where ( ),o x e v=  and ( ),t x e x e= ⋅ , are all denoted by ,G HΓ . 

Action of the generator elements ie H∈ over G  connects vertices by inserting weighted edges  

ih g e= ⋅  [26]. 

Consequently, a rank two free group, e.g., a free groupG  on two generators ( )1 1,  ,  H a b H G± ±= ⊆ , 

forms a 4-valent tree. Detaching any edge from such 4-valent structure parts the underlying graph pΓ  

into disjoint connected sets, resulting in infinitely many self-similar clusters for any p , where parameter 

[ ]0,  1p∈  determines connectivity of each edge of pΓ , i.e., to be open with probability p  and closed 

with probability 1 p− . Uniqueness of the infinite cluster only appears when 1p =  and this property is 

connected to notion of the non-amenability [27], which directly relates to the non-Abelian statistics [28]. 

Hence, amenability in terms of a group structure directly influences power to determine a specific 

probability measure on G  that is left invariant on subsets of G . Latter gives a clear relation between 

non-amenability and uniqueness of the fractal set, seen as an infinite cluster, which can be quantitatively 

assessed from the line of topological entropy and geometric concept of Lyapunov.  
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Example: Let ,G HΓ = Γ  be a Cayley tree where pΓ ⊂ Γ  is its underlying graph structure. As a boundary 

of pΓ  we determine the edge-set p∂Γ  which represents the number of edges leaving Γ  where

( ){ }, ,  p p pe x u x u∂Γ = ∈ | ∈ Γ ∈ Γ Γ\ . 

Definition 1: Amenability [29], in the scope of the set theory, represents a property of possessing an 

invariant mean for the equivalence classes on almost all scale dimensions with respect to a given 

measure. 

Definition 2: By the Følner condition [30] a set system defined on Cayley tree ,G HΓ  is amenable if and 

only if: 

( ) inf 0
p

H
p

h G
⊂Γ

∂Γ
= =

Γ
,  (1)

where   ⋅  denotes the related set cardinality, pΓ ⊂ Γ  are finite subsets on a finitely generated group G , 

and p∂Γ  is the edge-set representing the boundary of pΓ  in reference to a given set of generators acting 

on G. 

Definition 3—Dirichlet’s principle [31]: For each eventual partition of a set X  (consisting of n

elements, associated to positive integers) there exists a subset ,  x X x N⊆ = , where N  is a positive 

integer which corresponds to n , such that the mapping :П X X→  restricted to the subset x  is either a 

constant or a 1-1 correspondence.  

The above definition addresses existence and important relation of topological conjugacy between 

the set-system partitions and the elements of underlying subset. 

Example: Let ( ),T X E be a tree with vertex set ( )X T and edge set ( )E T . Partitioning of ( ),T X E  into 
( ) ( ) ( ){ }1 2, ,..., nP X T X T X T=  corresponds to n  sub-trees defined on a subset ,  x X x N⊆ = , where the 

number of spanning trees ( )iX T on N elements i ix X⊆  is given by a constant 2NN −  [32]. 

Proposition 1: In case of a free group on two generators obtained tree structure ,G HΓ  is non-amenable, 

i.e., ( ) 0h G ≠  [33], because every step of selection over the tree (vertex) set ( ) { } , 1,...,  iV T X i n= =  

(in order to form a connected sub-graph pΓ ) always generates the same number of boundary edges as 

vertices (due to the self-similar fractal property), i.e., any additional vertex element being appended to a 
connected sub-graph will create 2≥  additional edges p∂Γ .  

Proof: (Erdos-Rado Canonization Lemma [31]) For each iX ∈  which is the generator of the ith tree 

on a sub-graph pΓ , let the corresponding sub-graph vertex set ( ) ( ){ }1,...,p i i i Nx x X x x xΓ = ⊆ ∈  be 

labeled with { } { } { }1 21 ,  1,  2 ,...,  1,  2,...,Nx x x N= = = . The order of pΓ  is x N= ; it is associated to the 

number of ix  elements, which conform with the length-N Cayley permutation (C-permutation) p  [34] 

of ordered set { }1,..., Nx x x= , where 1 2 ... Nx x x< < < . Then, for every :xp x N=  it follows that: 

x N

x
x

x

T
p

T
=

=


,  (2)
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converges to a positive limit, where xp  is the weight probability distribution of each edge-set: 

( ){ }, ,  ,p i i i i p i pe x u x u∂Γ = ∈ | ∈ Γ ∈ Γ Γ\ where two successive elements from x  appear in  

C-permutation, defined for a stochastic sequence: { }
1
,n

n
p

∞

=
 ( )1 2, ,...,n n n n

Np p p p= , and / x
xT eλ τ=  is the 

probability distribution of the set { }ix x=  on specified hypergraph partition, where xx N
T

=  represents 

a cluster sum of distinguishable hypergraph partitions { }: xx N
П T

= [35]. xT  is assigned on time 

interval: 0 xτ< ≤ ∞  which defines exponential growth where xτ τ∗ <  is the time of each vertex 

generation. xT  must be non-negative for each possible sequence of x . Thus, the random variable must 

have a positive value within the sequence of all x N= possible values which are normalized to 

probability one, i.e., xT  must sum to one (directly addressing that ( ) 0h G ≠ ). 

Consequently, the sequence { }, : max := =n max
xp p x N  converges to a positive limit, 

straightforwardly based on the stronger conjecture: 
,n maxp  converges to a positive limit with probability one, where: 

{ },
max :

=

=
=


xn max

xx N

T x N
p

T
,  (3)

is the weight probability distribution of each edge-set: ( ){ }, ,  ,p i i i i p i pe x u x u∂Γ = ∈ | ∈ Γ ∈ Γ Γ\  where 

two successive elements from x  appear in N-th level C-permutation for which: if =x N  (where x  is 

associated to the number of ix  elements), then the probability / x
xT eλ τ=  is in total − N

 measurable 

(the sum is implicitly over all possible ix ) and as a result the denominator converges to a positive limit 

with probability one, 1xx N
T

=
= . Likewise, the numerator :xT x N=  must converge to a positive limit 

with probability one for the maximal time interval xτ → ∞ , where / 1x
xT eλ τ == .    

We focus next on a connection between uniqueness of the ,G HΓ  free group fractal set and the 

topological entropy, introducing a key role of non-amenability notion which is a prime characteristic of 

non-Abelian group topology [36]. Assuming a continuous map f of a compact metric space  , the 

topological entropy represents the supremum of the metric entropy, where supremum is taken over all f-

invariant Borel probability measures μ  [37,38] on a topological space. 

This property of the topological entropy can be easily extended for an arbitrary function ( ),  a t⋅  which 

represents a scale if it is expanding for all intervals t  and ( )lim ,t a s t→∞ = ∞  for all scale parameters s . 

Hence, the topological entropy for a given growth scale a  is: 

( ) ( )supa a
toph f h fμ

μ
= ,  (4)

where supremum is taken over all localization parameters represented by the probability measures μ  

[39]. Now, for N-level Cayley tree ,G HΓ , where pΓ ⊂ Γ  is its underlying graph structure, we define an 

f -invariant Borel probability measure μ  on the finite generating set :ix x N= , i px ∈Γ (where 

( ){ }1,...,i i i Nx x X x x x= ⊆ ∈ and x  represents the number of ix  elements, which give raise to the 

length-N Cayley permutation), as: 
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{ }( ) : xxμ = Δ ,  (5)

where 0 0/Δ >  and 
1 k

N

x xk =
Δ = Δ  are the probability distributions which denote the occurrences of the 

set system finite spatial partitions. 

Example: Let mapping :f M M→ define the metric space where 1 2 kλ λ λ> > >  are the Lyapunov 

exponents of ( ),f μ  and kE  are the linear subspaces corresponding to exponents kλ  so that the 

dimension D  of kE  corresponds to multiplicity of kλ . For a hypergraph based fractal set of rank two 

free group, periodic orbits are defined on a hyperbolic 0ε =  space (due to a tree structure). In particular, 

geometric measure of the exponential divergence between nearby orbits of given sets is represented by 

the Lyapunov exponents, which can be successfully embedded into probabilistic framework in the 

following way. 

Action of two generators on a free group corresponds to iteration of two scales which form the fractal 

set [40,41]. Correspondingly, two scales produce a spectrum of Lyapunov exponents: in this case for the 

symmetric map, ( ) ( )ln 1 ln ,  λ = + −x x xp p a p b with ;  ,= ∈x

m
p m n

n
  varying from 0 to 1 in the range: 

0 1xp≤ ≤ ( ) ( ) ( )( )max0 1 ,x x xp p pλ λ λ= ≤ ≤ =  where ( )0 ln ;xp bλ = =  and ( )1 lnxp aλ = = . 

In presence of the infinite sequences of intervals, which are defined by two scales ,
m n m

m nl a b− − +=  

where = m
x

n
 is fixed, and n takes { }1

∞
n values, we have ( )max 2λ = n

nN  defined intervals and 

correspondingly ( ) ( )min !/ ! !λ = −mN n m n m  such defined intervals that determine the fractal dimension

( )λkD [17,40] as: 

( )λ−= kD
m kN l .  (6)

Here λ−= kk
kl e  relates directly to Lyapunov coefficients λk . 

For the rank two generators { }1 1
2  ,F a b± ± action on a free group G , the corresponding Lyapunov 

coefficients are 1 1ln ln  λ ± ±−= +k

m n m
a b

n n
. Then, the entropic descriptor [17], i.e., a measure of 

complexity associated to the fractal dimension ( )λkD :  

( ) logλ =k mH N  (7)

quantifies the number of unique sequences produced by the ratio = m
x

n
. Thus ( )ix x=  (according to 

1,...,i N=  iterations) determines a periodic point [14] for the shift σ , where for each 1≥n , there are 

2n  points per period n for σ ; this specific property and its relation to topological entropy we discuss in 

the next section.  
Now, the entropy nH  of the probability measure μ , which is defined on the finite (or countable) 

generating set { }:iH x x N= , H G⊆  (where ( ) ( ){ }1 ,...,p i p Nx x xΓ ⊂ Γ Γ ∈  and x  is the number of ix  

elements, i.e., the order of pΓ ) for a Cayley fractal tree ,G HΓ = Γ  obtained after k permutations over 

elements of N th− sequence ( Nx ), is given by: 
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( )

1

/ /

1

/

1

log

     log

     / ,

N N

N

k x k x

N

k x

N

k

n x x
x

k

x

k

k x
x

H

e e

e

λ τ λ τ

λ τλ τ

=

=

=

= − Δ Δ

= −

= −







  
(8)

where 
1 NN

k

xx =
Δ are the probabilities for occurrence of the partitions: { }=k xx N

П T
= that are produced 

by the generating set of H G⊆ , where /k x
xT eλ τ=  is the probability operator acting over the specified 

generating set and λk  is the Lyapunov coefficient .  

2.1. Topological Entropy and Periodic Orbit Growth for Hypergraph Fractal Set 

Without loss of generality, topological entropy is defined as a measure of maximal complexity of 

dynamical system.  

Definition 4: Let   be the finite set of n  elements (alphabet), describing the discrete topology [42]. 

The dynamical system consisting of the sets of all bi-infinite symbol sequences 

( ){ }:    ;  1,...,i ii
x x x for all i i n

∈
= = ∈ ∈ = 


  represents the full -shift over a finite alphabet , 

where the shift map :σ →    shifts all sequences ix ∈  to the left, ( ) 1ii
x xσ += .  

Theorem 1: (Hasselblatt and Katok [43]) Topological entropy and periodic orbit growth coincide for shifts. 

Proof: Let :
k k

σ →  be a bilateral k-shift, acting on sequence{ }1,...,k , and [ ] [ ]{ }1 ,..., kα =  be a 

topological generator which transfers the spatial partitions of 
k into closed cylinders of length 1. 

Correspondingly, 
1

0
V
n

i

i

σ α
−

−

=
 denotes transformation of spatial partition of 

k into nk  cylinders of 

length n. As a result we have: 

( ) ( )
1

0

,

1
            = lim

1
             = lim log ,

            

V

top top

n
i

topn
i

n

n

h h

H
n

k
n

σ σ α

σ α
−

−

→∞ =

→∞

=

 
 
   (9)

where for 1n → straightforwardly topological entropy for bilateral k-shift coincides with the logarithm 

of k sequences: 

( ) = log .toph kσ   (10)

Extension: ( ) ( ) logtop k kh p kσ σ= =  stems from the restriction of the bilateral k-shift over invariant 

subset of k sequences, with a property of symbolic system [44].   

The above can be easily explained using the following coin experiment. 
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Example: Let σ , { } { }0 0: M , M ,H T H Tσ ∞ ∞→  be the twofold-switch operator acting over all spatial 

elements of 0M∞ { },H T which denote the symbolic system (subshift) [44], where this operator 

determines the outcomes of an infinite series of trials (measurements). Then, considering that the sum 
of all possible outcomes in n trials is given by 2n

n

N = , the topological entropy is defined as 

( ) log2toph σ = .  

Thus, specifying the outcomes as ( )P H p= and ( ) 1P T p= − in fact determines the metric entropy 

( ) log (1 ) log(1 )h p p p pμ σ = − − − − . In case when the output is biased ({ },H T represents the full shift), 

the number of typical outcomes in n trials is nhe∼ for log 2h < , representing in that way the inequality 

relation between the topological ( )toph fσ  and the metric entropy ( )h fσ
μ :  

( ) ( )suptoph f h fσ σ
μ

μ
≤ .  (11)

Lemma 1: Extending relation (10) to a hypergraph subset ( ),G V H  for a finite type subshift [44]: 

, ,
:

i i i iM m
σ →  where M is irreducible n n×  transition matrix with entries in { }0,  1 , under condition 

that the largest eigenvalue is always real by the Perron-Frobenius theorem [45], results that the 
topological entropy ( ) toph σ  is equal to the largest positive eigenvalue of matrix M. 

Proof: Let [ ] [ ]{ }1 ,..., nα =  be a topological generator which induces partitions
1

0
V
n

i

i

σ α
−

−

=
 of space 

,i iM
into a closed cylinders of length n, where σ  is a subshift of finite type, and resulting topological entropy 
coincides with the number of cylinders of length n in 

,i iM  

{ }
,

1

0

log .      V
i i

n
i

top M
i

H card no of cylinders of length n inσ α
−

−

=

  = 
 

 ,  (12)

where cylinder set  of  length n  is  defined on space [ ]
,

0 1,..., 0
i i

n M
i i − ∩ ≠/  i f  and only i f 

0 1 1 2, , 2, 1 1i i i i in inM M M − − =  and the number of length-n cylinders that overlap space
,i iM  is nM . 

As a result, the connection between the topological entropy and the transition matrix [15] is given by: 

( ) ( )
1

0

max

,

1
            =

1
             =

             = log

V

top top

n
i

top
i

n
top

i

h h

H
n

H M
n

σ σ α

σ α

λ

−
−

=

=

 
 
 

,                   

  (13)

where the topological entropy equals to the logarithm of the largest eigenvalue of the transition matrix 

(spectral radius) [46]. 
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2.1. Relations between Lyapunov Spectrum, System Dimension and Measure Entropy for Hypergraph 

Fractal Set 

In case of the systems with infinite degrees of freedom (e.g., the presented fractal system of the free 

group on two generators, where applies notion of the non-amenability given by Equation (1)) assuming
d -dimensional system of linear size dL , it is possible to establish relation between Lyapunov spectrum, 

dimension of the system and measure entropy. The first step towards such relation is to resolve the case 

of 'thermodynamic' limit, L → ∞ , for the Lyapunov spectrum, which can be assessed by analyzing 
whether ratio [ ]:  ,  0,  1i dx i L xλ = ∈ , converges to a density function ( )i xλ = Λ  as L → ∞ .  

Starting from the Pesin formula [47], where θ  is the Heaviside function: 

( )i i
i

h λθ λ= ,  (14)

which infers that the Kolmogorov-Sinai entropy [48,49] is in this case proportional to the maximum 

Lyapunov exponent 
1

p

i
i

h λ
=

= . Thus, there is only one positive Lyapunov exponent, as the system size 

approaches thermodynamic limit L → ∞ . 
Local entropy lh  follows from Equation (14); it is defined for each degree of freedom for the system 

of linear size dL , as:  

( ) ( ) ( )
1

0

lim ,  l iL
d

h
h x dx x

L
θ λ

→∞
= = Λ Λ = Λ ,  (15)

where after setting the existence of bound: ( )i xλ = Λ  as L → ∞ , total entropy h  is directly related to 

the dimension of the system. Indeed, using the Kaplan and Yorke formula [50], the fractal dimension D 

can be estimated from the Lyapunov spectrum as: 

1

1

p

ii

p

D p
λ

λ
=

+

= + .  (16)

Also, under condition: 0
p

iλ > , the dimension of the attractor, Dλ , is proportional to dL  leading 

to the existence of inherent dimension density λ
λδ =

d

D

L
 per system degree of freedom. 

Now we are ready to elucidate the essential connection between the Lyapunov exponents iλ  and d-

regular hypergraph fractal set. We use the set-theoretic approach, starting from the structure of the 
Cayley tree. The Cayley tree on a free group G  generated by the finite set H G⊆  is represented by the 

graph with vertex set V G∈  and the edge set ( ){ },  ,  a b a b H∈ . Let G  be a free group on two 

generators where ( )2L G is the function space on G , then ( )2L G  can be decomposed into subspaces: 

( )2
1

r

i
i

L G E
=

= ⊕  meaning that it has the value 1 on the i-th vertex of a set G  and 0 otherwise. 

Proposition 2: Assume that the Cayley set satisfies relation: 1H H −= . This condition as a result infers 

existence of orthogonal set of eigenvectors and eigenvalues belonging to the adjacency matrix A. 
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Under constraint that the eigenvalues of A, i.e., 1,..., idλ λ  are bounded by corresponding vector subspaces 

iE , the norm of the F -uniform, d-regular (each vertex has degree d) Cayley hypergraph on n vertices is 

defined as ( ) ( )2 2max i
i

i

n
F

d
λ

 
− 

 
 where ( ) , ,max i i i i i

i

d
M

n
λ λ∈ = , and ,i iM  is a diagonal matrix. 

Proof: We first demonstrate that 1H H −=  property directly implies that M  as a symmetric and a real 

matrix can be diagonalized by a set of eigenvectors in dR . Namely, if H  is a Hermitian matrix, then 
HH UMU= , where U  is unitary matrix and M  is a diagonal matrix (and as such also a symmetric 

matrix) with real entries .iλ  Therefore: ( ) ( )1 11 1 1 1 ,H H HH UMU U M U UM U
− −− − − −= = = since 1 HU U− = . 

Here 1M −  is a diagonal matrix with corresponding elements 1/ .iλ  Likewise, 1H −  is also a Hermitian 

matrix where ( ) ( ) ( )1 1 1 1 1H H HH H HH UM U U M U UM U H− − − − −= = = = . Now, let A and F  be the 

adjacency matrix and generating function of the Cayley hypergraph, respectively. A and F  are bounded 
on the vector subspace iE  corresponding to the d  dimensional state ρ  (where the coefficients of { },i jρ
are given with respect to elements of the basis iE ) as:  

( ) ( ) ( ) ( )1
, , , ,

,
i j k l i j k l

x y H g G

x y g g hρ ρ ρ ρ −

∈ ∈

=  ,  (17)

leading to: 

( ) ( ) ( ) ( ), , , , ,
1

d

i j l m m k i k j l
g G m

n
g g h h

d
ρ ρ ρ δ ρ

∈ =

 =  
 

 ,  (18)

where ,i kδ is the Kronecker delta function, ensuing that generating function satisfies: 

( ), , , , , , , ,, ,
, , ,

,i j i j k l k l i j k l i k j li j k l
i j k l

F Mα ρ β ρ α β δ=   ,  (19)

where ,j lM  are elements of the diagonal matrix: 

( )
h H

n
M h

d
ρ

∈

 =  
 

 .  (20)

M  acts as a diagonal matrix by extending these eigenvectors to the complex basis of dC . Consequently, 

as the normalization for each ,i jρ  element is given by n d  it follows that for each ,i j  the coefficients

,i jρ  represent eigenvectors of the adjacency matrix A with eigenvalue 0 if i j≠ , and eigenvalue

, ,i i i i

d
M

n
λ =  if i j= .  

Now we can easily generalize the concept of the Cayley ,G HΓ = Γ  graph to the corresponding 

hypergraph set. 

Proposition 3: The eigenvalues of the d-regular Cayley hypergraph can be determined from the 

,G HΓ = Γ  subgraph and from the ( )2L G decomposition. 

Proof: Let H  be the symmetric set of generators with the vertex set assigned on a finite group G , then 

the d-regular Cayley hypergraph on G  and H  is composed of edges ( ){ }1 1,..., :d dE e e e e H= ∈ . 
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Because of its tree character, d-regular Cayley hypergraph has intrinsic Markov property and it can be 

analyzed in terms of a piecewise linear Markov map f [51] according to the spectral radius of matrix M 

(whose elements are {0, 1}). Direct consequence is that the topological entropy corresponds to the 

maximal eigenvalue of the matrix M as it is already shown by Equation (13).   

Moreover, taking into account the bound ( )i xλ = Λ  as L → ∞  where max ,maxi i i
i

n

d
λ λ= , it follows 

that Lyapunov spectrum equals to the maximal Lyapunov exponent ( ) ,
1

lim max
p

i i iL i
i

n
x

d
λ λ

→∞ =

Λ = = . As 

a result the Kolmogorov-Sinai entropy in case of d-regular Cayley hypergraph is proportional to: 

,
1

max
p

i i i
i

i

n
h

d
λ λ

=

= = .  (21)

3. Rényi Topological Entropy and Lyapunov Exponents for Non-Abelian Fractal Set 

Assume that the fractal set is partitioned into distinguishable clusters of size r. In order to localize a 

point with a precision r one must determine the partition which contains the point and quantify average 

data on particular partition. For this one can use the Shannon information formula, and also the 
topological Rényi entropy of order q , which is directly related to the generalized dimension [52]: 

0 0

log log
1

lim lim
log 1 log→ →

= =
−

  q
i i i

i i
q

r r

P P P
D

r q r
, (22)

where iP  is the probability measure of the ith partition.  

Now, let П  be a partition assigned by a free group G  on rank two generators H G⊆  where ( ){ }π n
i

are the elements of partitions nП  obtained under measure preserving transformation [53]: 

( )
1

0
V
n

i
n

i

П f П
−

−

=
= .  (23)

The Rényi entropy of order q  is the supremum over all distinguishable partitions nП : 

( ) ( )( )
П

1 1
H sup lim ln

1

q
n

in
i

q П
q n

μ
→∞

 
 =  −  

 .  (24)

Next step establishes relation between the topological Rényi entropy of order q  and the generalized 

Lyapunov exponents Λ . By assigning the probability distribution function ( )0 1x np i i −  to the 

occurrence of distinguishable partitions nП  that are specified in time steps: 

( ) ( ) ( )0 1 10 ,  1 , , 1ni t i t i t n−= = = −  as ( )( )
0 1

0 1

n

q

x n
i i

p i i
−

−


 for which: 

( ) ( )( )
0 1

0 10

1 1
H limlim ln

1
n

q

x nn
i i

q p i i
q nε

−

−→ →∞
=

− 


 ,  (25)
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and using the generalized measure ( )Λ ki  which represents the average expansion rate of information 

given by the building block ki  of dimensionε  which constituents each partition iП ; the initial building 

block 0i  is defined by the corresponding Lyapunov spectrum ( )0 .iΛ  After the initialization is performed, 

the Lyapunov spectrum is given by: ( ) ( ) ( )0 1 1, , −Λ Λ Λ ni i i  from which we obtain the probability rate 

for the expansion of the spatial partitions building blocks:  

( ) ( )
( ) ( )

0 1

0
0 1

0 1n

x n
i i n

i
p i i

i i

μ

−

−
−

=
Λ Λ





.  (26)

Substitution of Equation (26) into Equation (25) gives: 

( ) ( )
( ) ( )

0

0
0 1

1 1
H lim lim ln

1

q

n
n

n

i
q

q n i iε

μ
α

→ →∞
−

   =    − Λ Λ  


,  (27)

where αn  is obtained from the normalization: ( )
0 1

0 1 1
n

x ni i
p i i

−
− = 

  and represents the number of 

various distinguishable clusters (blocks) of length n. Now, from Equation (27) follows the measure: 

( ) ( )
( ) ( )

( )
( ) ( )

1

0 0

0
0 1 0 1

1 1
H lim lim ln

1

q

n
n n

i i
q

q n i i i iε

μ μ
−

→ →∞
− −

   =    − Λ Λ Λ Λ  
 

,  (28)

which establishes the correlation between the topological Rényi entropy of order q  and the generalized 

Lyapunov exponents ( )Λ ki , for the limit n → ∞  this correlation reads: 

( ) ( ) ( )
2

0
0

1 1
H limlim ln exp 1 ln

1

n

kn
k

q q i
q nε

−

→ →∞ =

 = − Λ −  
 .  (29)

Example: Let ( ),G V H  be a hypergraph defined on a free group G  on finite generators H , where 

vertex set: { }1 2 1
, ,..., ,

n

i nV x x x G= ∈ ,H G⊆  and topological order coefficients: ( )1,...,i nq q q= , 1
i

i
x H

q
∈

≥ , 

are assigned on all local partitions iП , such that: 

{ }( )1 21 1 1
, ,..., ,

n

n

x x xq П p p p→ { }( ) { }( )1 2 1 22 1 21 1
, ,..., , ,..., ,...,

n n

n n

x x x x x xq П p p p П p p p→ ⋅  

{ }( ) { }( ) { }( )1 2 1 2 1 21 21 1 1
, ,..., , ,..., , ,...,

n n n

n n n

n x x x x x x n x x xq П p p p П p p p П p p p→ ⋅  , 

and defined on a metric space xM  with probability measure ,μ  where a nonnegative function

:
i

i xx H
f M

∈
→∏ R  is associated to each generator set iH . Then, under constraint of integrability [38]: 

1
i

i

i i

q
q

i x i x
i x V i x H

f d f dμ μ
∈ ∈

 
≤   

 
∏ ∏ ∏ ∏  ,  (30)

and according to Equation (24) where the Rényi entropy of order q  is the supremum over all 

distinguishable hypergraph partitions, it follows the expression for the fractional Rényi entropy of order 

q  for a hypergraph defined on a free group G  with respect to the generator set iH G⊆ : 
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( ) 11
H log

1

i

i

i

q
q

i xx
i x H

q f d
q

μ
∈

 
=   −  

∏ ∏  .  (31)

In particular case of two generators, the Rényi’s entropy dependence from the probability measure 

xμ , and the probability rate for the expansion of the spatial partitions (Equation (31)), for different values 

of order q , is presented in Figure 1 and Figure 2, respectively. Figure 3 shows the maximum allowed 

correlation between the topological Rényi entropy of order q  and the generalized Lyapunov exponents 

( )Λ ki  for the partitioned hypergraph fractal set (Equation (24) obtained by action of the rank -2 free 

group on finite generators [26].  

 

Figure 1. Topological Rényi entropy as a function of the probability measure xμ  over 

hypergraph fractal set of free group on finite generators, according to equation (31), and 

order: q = 0.4 (dash-dotted), q = 5 (dashed) and q = 1 (full line). 
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Figure 2. Plot of the output entropies as functions of probability rate for the expansion of 

the spatial partitions (Equation (31)) for different input order parameters (designated by solid 

lines): q = 0.2 (blue), q = 0.4 (yellow), q = 0.5 (dark cyan), q = 0.8 (dark yellow). 

4. Underlying Non-Locality of 2F —Hypergraph State  

In this section we present a more structural understanding of non-locality [54] of a hypergraph state 
which is obtained by action of the rank two free group, called 2F . In particular, we show that intrinsic 

non-local character of the non-Abelian actions [55] of the free group on two generators is closely tied to 

notion of the non-amenability. 
We consider the algebraic topological structure obtained via generating set { }1 1 1U ,  : , ,H H H a b− ± ±=  

where a ; b  denote basis of the free group 2F  on two generators{ }1 1,a b± ±  which realize an infinite  

4-regular tree represented as the undirected Cayley set. In this case, the infinite 4-regular structure gives 
a hypergraph based covering space for the wedge of two circles 1 1^H H , ( )1 1 1 1± ±

± = + =H a b  which 

has fundamental ( )0δ = hyperbolic group 2F ≅ ∗  where ( ) ( ) ( )1 1 1 1
1 1 1^ ,0 ,0  ,0H H H Hπ π π≅ ∗   . 

Definition 5: Group G  is amenable if and only if it does not produce paradoxical decomposition [43]. 

From the constraint of amenability and Equation (1) it follows that a rank two free group 
1 1

2 , , , ,− −= ∈F a a b b a b H  of ( )3SO  is non-amenable and as a result it is non-Abelian [27] (see 

fundamental theorem of finitely generated Abelian groups), and there exists a countable subset H  on 

the sphere S  such that the decomposition −S H  is F -paradoxical [56,57]; a straight repercussion is 
that ( )3SO  is paradoxical too. Thus, the elements of the free group of two generators ( )2 3F SO∈  are 
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distance preserving as operators on 3 , where they represent a group of nontrivial, independent 

rotations of the sphere about axis that passes through the sphere center. 

 

Figure 3. Maximum allowed correlation between the topological Rényi entropy of order q  

and the generalized Lyapunov exponents ( )Λ ki obtained for the supremum output entropy 

conjecture over all distinguishable partitions (Equation (24)). The x-y axes are the average 

expansion rate of information given by the building block ki  of dimensionε  on N intervals 

and input order parameters q, respectively. 

Likewise, there are rotations Ra , Rb  of the unit sphere in 3  that generate exactly the free group on 

two generators. To prove that let us define a group of rotations ( ) ( )( ),R Ra bϕ ϕ for ( )1 3arccosϕ =  

about orthogonal axes: 

( ) ( )
1 3 2 2 3 0 1 0 0

2 2 3 1 3 0 ,   0 1 3 2 2 3

0 0 1 0 2 2 3 1 3

R Ra bϕ ϕ

 −  
   

= = −   
   
    

.  (32)

In this case elements of a group: Ra ; Rb ; 1
Ra − ; 1

Rb −  map vector basis ( )1,0,0  to a basis ( ), 2, 3nx y z , 

where ,x ,y  and z  as integers, 0,≠y  and n  is the length of the information string. 

Proposition 4: Let : ,  :R Rf a a f b b→ → , then for a generating set { }: ,H a b we can define a rank 2 free 

group 1 1
2 , , , ,− −= ∈F a a b b a b H , which determines paradoxical decomposition of −S H , manifesting in 
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this way intrinsic non-local feature of the hypergraph fractal state based on 2F  free group. In particular 

this means that ( )2 3F SO∈  is partitioned into five parts where only four are needed to establish two 

exact copies of the original sphere S , i.e., to perform the paradoxical decomposition. 

Proof: The natural decomposition of ( )2 3F SO∈  is given by: 

 { } ( ) ( ) ( ) ( )1 1
2 U U U UF e a a b bω ω ω ω− −= ,  (33)

where for all disjoints sets, ( )ω ⋅  denotes all possible information strings starting with ( )⋅ .  

The following relations establish correlation between information strings and the set of free group on 

two generators: 

( ) ( )( )
( ) ( )( )

1 1
2

1 1
2

,

.

a a F a

b b F b

ω ω

ω ω

− −

− −

=

=

\

\
 (34)

But, another decomposition yields the following property: 

( ) ( ) ( ) ( )1
2 = U U ,   

c
F a a a a aω ω ω ω −=   (35)

where ( )cω ⋅ is the complement of the corresponding set ( )ω ⋅ , and where actual multiplying ( )1aω −  by 

a  acts like translation over ( )bω  and ( )1bω − . Here ( )2h F aω∈ \ , then ( )1 1a h aω− −∈ , and 

( ) ( )1 1h a a h a aω− −= ∈ .  

Correspondingly, the third decomposition of 2F  is given by:  

( ) ( ) ( ) ( )1
2 = U U

c
F b b b b bω ω ω ω −=  . (36)

Now, in order to demonstrate notion of the non-amenability which directly implicates non-locality of 
the hypergraph quantum states based on the free group 2F , one can start by assigning the mean 

probability distribution ( )2m 1F =  that maps subsets of 1 1
2 , , , ,F a a b b a b H− −= ∈ to the unit interval 

[ ]0,  1  as following: 

( ) ( )( ) ( )( )
( )( ) ( )( )

1
2

1

m 1 m  + m

                m  + m ,

F a a a

a a

ω ω

ω ω

−

−

= =

=
  (37)

likewise: 

( )
( )( ) ( )( )

2

1

m 1

          m  + m .

F

b bω ω −

=

=
  (38)

Then, from Equation (33) we have: 

( ) { }( ) ( )( ) ( )( ) ( )( ) ( )( )1 1
2m m 1 + m + m + m + mF a a b bω ω ω ω− −= .  (39)

Comparison of previous relation with Equations (37) and (38) directly gives: 
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{ }( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

1 1

1 1 .

   m 1 + m + m + m m

m + m + m + m

a a b + b

b b a a

ω ω ω ω

ω ω ω ω

− −

− −≥
 

(40)

From Equations (37), (38) and (40) we have: 

( )( ) ( )( ) ( )( ) ( )( )
{ }( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )

1 1

1 1 1

m  + m m  + m

m 1 + m + m  + m m 2 m  + m .

a a b b

a a b + b b b

ω ω ω ω

ω ω ω ω ω ω

− −

− − −

= 

≥
 (41)

 

 Taking into account equation (40), latter also holds for: 

{ }( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

1 1

1 1

  

 

   m 1 + m + m + m m

m + m + m m .

a a b + b

b b a a

ω ω ω ω

ω ω ω ω

− −

− −−≥
 (42)

Thus, from Equations (37), (38) and right side of Equation (42), directly follows 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )21 1  m + m + m m 2b b a a aω ω ω ω ω− − ≤− ,  (43)

finally, by inserting into Equation (43) the relations which address the mean probability distribution of

2F : 

( ) ( ) ( )1
2 1   1 ,F a a p pω ω −= = + ⇔ + −  

where: 

( ) ( )
( )

1       1 ,

                1 1 ,

a a

p

ω ω −= −

= + −
 

we obtain the characteristic inequality relation for the free group 2F  set corresponding to CHSH 

inequality [58]: 

( ) ( )( ) ( )( )2 2

2 2 2 1 1 ,  0 1.
N

CHSH
CHSH m F a p pω= ≤ ≈ + − ≤ ≤   (44)

where N  is the number of sequences of intervals corresponding to the fractal dimension (see Figure 4.) 
where uniqueness of the infinite cluster only appears when 1p = . Analogue inequality relation can be 

obtained for all corresponding decomposition elements of ( )2 3 .F SO∈ Former contraintuitive inequality 

[54,58] directly provides the resource for analysis of the non-local properties of the hypergraph quantum 
states [1], defined in this case on the 4-regular subset 1 1, , , ,a a b b a b H− − ∈  of the free group, 2F . 

Correlation over the elements of the mean probability distribution of 2F  corresponds to operations of 

translation and inversion between information strings starting with: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1 1 1, ,  ,,  , ,  ,C a b C a b C a b C a bω ω ω ω ω ω ω ω− − − − . In that context, bound 1p =  

on ( )2 CHSH
m F  (Equation (44)) establishes demarcation line between the complexity of the classical 

(local realism) and the quantum counterpart [59] of system state.  
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5. Quantum Hypergraph State  

First step towards obtaining the quantum hypergraph state [1, 19, 60] from a mathematical hypergraph 

( ),G V H  based on the free group 2F , is to assign qubits to a vertex set elements, { }1 2, ,..., nV x x x= , and 

next is to perform initialization of qubits into +  state [60, 61]. Subsequent control and manipulation 

over qubit states is achieved through hyperedge controlled-Z operations [1, 60] between specified qubits, 
which position coincides with underlying geometry of the free group- 2F  fractal set. G  is the free group 

on two generators which form a set ( )1 1, ,  H a b H G± ±= ⊆ , where every element g G∈  can be obtained 

by the action 1UH H − . As a result, a 4-valent hypergraph is generated by action H G× . Qubit states are 

assigned as: 

{ } { } { } { }1 1, 0 0 , 1 0 ,  , 0 0 , 1 0 ,a a b b− −= =   (45)

where measurement basis is specified in exact correspondence to a rank two generating set on a free 
group 1 1

2 , , , , ,F a a b b a b H− −= ∈  where four basis states are: { }00 , 01 , 10 , 11O = . 

 

Figure 4. Maximum violation of ( )2 CHSH
m F  inequalities obtained for max 2.82S ≈  and 

0p ≥  versus number of interval sequences N (Equation (44)), corresponding to CHSH 

inequality [58,59], plotted for four order parameters (designated by solid squares): q = 0.2 

(blue), q = 0.4 (dark yellow), q = 0.5 (dark cyan), q = 0.8 (cyan).  

The main prerequisite for encoding is to perform the initialization of the system with probabilities 

{ } ( )4

0 1 2 3 4 1
=1

1000, 0100, 0010, 0001 ,  1
n

kk ii

e p p p p p
=

= = = = = =   . 
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In the first iteration, the probability distribution arising from the corresponding set of measurements

1  over the Cayley subset { } { } { } { }{ }1 1 1 1, , , , , , ,a b a b a b a b− − − −  is given by: 

{ } { } { } { }{ }
{ } { } { } { }{ }

1 1 1 1

1

1

, , , , , , , :

0000,0100,1000,1100 , 0001,0101,1001,1101 , 0010,0110,1010,1110 , 0011, 0111,1011,1111 ,
i

a b a b a b a b− − − −

=±

=
 

where action of the measurement is determined by the projective measurement operator XPi X X=  

over a given generating set (see Equation (46)), producing in that way the state ρ  which possesses non-

local correlations, representing at the same time the topological state. In particular, the symmetry of the 

underlying topology is efficiently captured and corresponds exactly to the symmetry of the joint 
probabilities for each measurement, see Figure 5. In this case the tensor algebra ( ) 0

i
iT V V ⊗
≥= ⊕  is 

represented on a k-module V of a vertex set elements, which is an associative k-algebra spanned by 

1 2 1 2... :n nx x x x x x= ⊗ ⊗ ⊗ , where n∈  and 1 2..., nx x x V∈ . Multiplication is utilized by a k-linear 

map ( )1 2 1 2 1 2 1 2... ... : ... ...n m n mm x x x x x xω ω ω ω ω ω⊗ =  for all ,n m∈  and 1 2 1 2, ..., , , ...,n mx x x ω ω ω  in V . 

1 1

1

1

00 00 01 00 00 01 01 010 0
  

10 00 11 00 10 01 11 011 0
0 0 1 0 0 1 1 1

0 1 00 10 01 10 00 11  01 11
 

1 1 10 10 11 10 10 11  11 11

b a

a b

a

b b

a − −

−

−

⊗ =

 
 
       
 
  

  (46)

 

(a) (b) 

Figure 5. (a) Geometrical-representation of a rank-2 free group 1 1
2 , , , ,F a a b b a b H− −= ∈ , 

where H G⊆  is a generating set. (b) Scheme of the hypergraph state quantum correlations 

[1,60,62] that reflect exact symmetry of the underlying 1 1
2 , , , ,− −= ∈F a a b b a b H  topology, 

(Equation (46)). 
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Likewise, due to a self-similar property, in each subsequent action performed over d-dimensional 
Cayley fractal structure that corresponds to a rank-d generating set on a free group dF , probability 

distributions arising from the corresponding set of measurements determined by the subset H are 

{ } { } { } { }{ }
{ } { } { } { }{ } ,

, , , , , , , :

0000,0100,1000,1100 , 0001,0101,1001,1101 , 0010,0110,1010,1110 , 0011,0111,1011,1111

n n n n n n n n
n

i n

a b a b a b a b− − − −

=±

=
 

Bounds of non-local correlations [63] are closely assessed by determination of observables that 
influence the maximum of , max~ i iI λ  where ( )I Tr ρ=  [62] with  denoting the Bell operator, and by 

eigenvalues , maxi iλ  which determine violation of Bell inequality for the concrete joint probabilities.  

{ }
kAa


, { }
kBb


, { }1

kAa− , { }1

kBb −


 are the orthonormal eigenvectors of the corresponding observables 

{ }1,..., nA A  and { }1,..., nB B  defined on a vertex set { }1 2, ,..., nV x x x= of the free group ( ),G V H on two 

generators, 2F . Consequently, for the d-regular hypergraph state on n vertices, the maximal value for I 

is bounded with the maximal eigenvalue max ,maxi i i
i

n

d
λ λ=  of the corresponding diagonal element of 

d d× matrix U ρ :  

0,0 0, 1

1,0 1, 1

    

           

   

d

d d d

Uρ

λ λ

λ λ

−

− − −

 
 =  
 
 


  


,  (47)

obtained with operator ( ) ( ) ( ), , , ,

2 1 1

0 1 0

λ σ λ λ
− − −

= = + =

    =     
    

∏ ∏ ∏j j i i j i j k k k

d d d
iP i iP

i j i k

U e e e , where ,i j i i j i j iσ = − + , and 

off-diagonal elements ,i jλ , ,j iλ denote rotation and a phase shift, respectively. For the case when 

( ) ( )1 11 1
, , , ; 1,...,

2 2
    k i k j k i j k i jA A B B k nσ σ σ σ σ σ− −= = = + = − = , Bell operator,  , corresponds 

to 2n  of the ( )2 i i j jσ σ σ σ⊗ + ⊗  eigenvalues; as a result, ( )TrI ρ= ∼ 2 2, 0, 2 2  λ = + −  with 

multiplicities: 1/4, 1/2, and 1/4, respectively. Labeling states of 1,..., k n=  vectors from basis sets: 

{ }
kAa


, { }
kBb


, { }1

kAa− , { }1

kBb −


in two dimensional space as Ф
k±  and 

k±Ψ , after initialization from 

Equation (46), we obtain: 

( )

( )

1 1

1 1

1
Ф 0 0 0 0 0 0 1 0 1 ,

2
1

0 0 0 0 1 0 1 0 0 ,
2

k b a b

k b a b

a

a

k k k k

k k k k

− −

− −

±

±

= ⊗ ± ⊗

Ψ = ⊗ ± ⊗
  (48)

where for 
k±Ψ states the corresponding eigenvalues are 2 2kλ = ± , respectively (with maximal 

eigenvalue being max 2 2kλ = + ). For all Ф
k± states eigenvalues are zero, 0λ = . Consequently, the 

maximal violation of CHSH inequality is obtained for combinations of 
k±Ψ  states which yield also 

maximal value for ( )TrI ρ=  [62] equivalent to the maximal eigenvalue ,max 2 2kλ = + . This result is 
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in agreement with Equation (44) for p = 0, with direct repercussion to notion of the non-local  
correlations [55] based on non-Abelian set of rank two free group 2F . 

6. Conclusions 

A major advance towards the characterization of complexity of dynamical systems has affected 

communication complexity as well, offering new paths towards successful implementation of quantum 

information processing, especially in the field of topological insulators. In particular, the topological 

Rényi entropy has qualified as a good probe of the topological order, where the amount of fractal 

distribution present in the system and its scaling are essential for distinguishing between different phases 

of matter. In addition to former, wide-range implications of here presented results include the 

fundamental result about distribution and presence of quantum correlation and non-locality in hypegraph 

state based on free group on two generators, proceeding to direct implementations of underling topology 
of the free group 2F  fractal sets in chip integrated circuits for quantum computing. We have defined the 

fractional Rényi entropy of order q  for the hypergraph fractal sets based on a (non-Abelian) free group 

on finite generators and shown that intractability of the fractal dynamical processes can be efficiently 

bypassed using the geometrical concept of Lyapunov, which has proved to be the most viable method 

for the investigation of the complexity evolution, having its intrinsic relation to the topological and the 

metric (information) entropy. 
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