
Entropy 2015, 17, 3319-3331; doi:10.3390/e17053319 
 

entropy 
ISSN 1099-4300 

www.mdpi.com/journal/entropy 

Article 

A Mean-Variance Hybrid-Entropy Model for Portfolio Selection 
with Fuzzy Returns 

Rongxi Zhou, Yu Zhan, Ru Cai and Guanqun Tong * 

School of Economics and Management, Beijing University of Chemical Technology,  

Beijing 100029, China; E-Mails: zrx103@126.com (R.Z.); 1990711zy@163.com (Y.Z.); 

cairu0404@sina.com (R.C.) 

* Author to whom correspondence should be addressed; E-Mail: tonggq@buct.edu.cn;  

Tel.: +86-10-6445-4290; Fax: +86-10-6443-8793. 

Academic Editor: Kevin H. Knuth 

Received: 4 February 2015 / Accepted: 20 April 2015 / Published: 14 May 2015 

 

Abstracts: In this paper, we define the portfolio return as fuzzy average yield and risk  

as hybrid-entropy and variance to deal with the portfolio selection problem with both 

random uncertainty and fuzzy uncertainty, and propose a mean-variance hybrid-entropy 

model (MVHEM). A multi-objective genetic algorithm named Non-dominated Sorting 

Genetic Algorithm II (NSGA-II) is introduced to solve the model. We make empirical 

comparisons by using the data from the Shanghai and Shenzhen stock exchanges in China. 

The results show that the MVHEM generally performs better than the traditional portfolio 

selection models. 

Keywords: portfolio selection; fuzzy returns; hybrid entropy; multi-objective genetic 

algorithm; Markov prediction 

 

1. Introduction 

The financial market is a complex system, in which investors need to make a tradeoff between 

return and risk in an uncertain environment. Modern portfolio theory was first proposed in 1952 by 

Markowitz [1], who put forward the classic mean-variance model (MVM) as also created a precedent 

for the use of quantitative methods in investment portfolio selection. MVM has been proved effective 

and useful, but its disadvantages such as “corner solutions”, low diversity and poor out-of-sample 
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performance should not be ignored. Many subsequent researchers have rewritten and developed the 

model with new methods or new elements to get better results. 

Recently, portfolio selection problems have been studied under fuzzy environment conditions. For 

example, Watada [2] proposed a portfolio selection model in which expected return and risk are 

objectives, and S-type membership functions characterize levels of satisfaction. Ostermark [3] applied 

the principle of fuzzy decision in portfolio objectives and constraints, and then proposed a similar 

dynamic portfolio management model. Li et al. [4] combined fuzzy simulation with hybrid intelligent 

algorithm, and solved the mean-variance-skewness model for a fuzzy environment scenario.  

Doumpos et al. [5] presented some fuzzy models for selecting portfolios considering different 

approaches for quantifying the uncertainty of future returns. Zhang et al. [6] proposed a new fuzzy 

programming approach for multi-period portfolio optimization subject to return demand and risk control. 

With regard to portfolio risk measurement, a number of portfolio models have been proposed, such 

as the semi-variance model (see Markowitz [7]), the absolute deviation model (see Konno [8]), the 

maximum loss minimization model (see Young [9]), the maximum absolute deviation model (see  

Cai [10]), the lower partial moment model (see Bawa [11]), the mean-variance-skewness model (see 

Jana [12]) and the like. Yu et al. [13] pointed out that different risk measurement models lead to 

significant different impacts on portfolio structures. Moreover, Zhou [14] found that entropy, as a valid 

measure of uncertainty, has been more and more widely used in the financial field, and its effectiveness 

in portfolio selection has also been confirmed by many scholars. Philippatos and Wilson [15] were the 

first to introduce the concept of entropy to portfolio selection. The mean-entropy model (MEM) and 

the mean relative-entropy model (MREM) they proposed have become the foundations for research in 

this area. Cheng [16] proposed a relative-entropy-based risk measurement. Ou [17] came up with an 

extension of entropy, which could describe the growth rate of the capital upon receiving new 

information, and obtain the optimal investment ratio. Bera [18] proposed to use cross entropy measure. 

Huang [19] developed a simple and effective algorithm for the calculation of MEM’s efficient 

boundaries and established a new model: fuzzy mean-entropy model. Usta and Kantar [20] compared 

the mean-variance-skewness-entropy model with the classic models, and found that the models with 

entropy factor performed the best in out-of-sample tests. De Luca and Termini were the first to come 

up with the concept of a hybrid entropy which was called total entropy. Based on hybrid entropy,  

Xu et al. [21] estimated asset risk resulting from joint randomness and fuzziness. Yu et al. [22] 

compared the mean–variance efficiency, realized portfolio values, and diversity of the models 

incorporating different entropy measures and found that Yager’s entropy yielded higher performance. 

Zhou [23] and Zhang [24] introduced other entropy-related models such as incremental 

entropy-skewness model and possibilistic mean semivariance-entropy model. 

In this paper, we propose the MVHEM based on fuzzy returns for portfolio selection in which we 

define portfolio return as fuzzy average yield and risk as mixed hybrid entropy and variance, 

respectively. Several empirical comparisons based on Chinese stock markets are given to illustrate the 

effectiveness of the proposed model. The rest of this paper is organized as follows: in Section 2, we 

first introduce some basic knowledge about fuzzy variables and hybrid entropy, then combine the 

MVM and MEM and propose the MVHEM. We also provide an algorithm to solve the optimization 

problem. Several empirical comparisons are given among the MVHEM, MVM and MEM in Section 3. 

Section 4 summarizes our work. 
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2. Mean-Variance Hybrid-Entropy Portfolio Optimization Model 

2.1. Fuzzy Returns Predicted by the Markov Method 

2.1.1. The Expected Value and Variance of the Triangular Fuzzy Returns 

Suppose that ξ = (a, b, c) is a triangular fuzzy variable with the following membership function: 

(ݔ)ߤ = ቐ(ݔ − ܽ) (ܾ − ܽ), if ܽ ≤ ݔ ≤ ܾ ݔ)⁄, − ܿ) (ܾ − ܿ)⁄ , if ܾ ≤ ݔ ≤ ܿ ,0, ݁ݏ݅ݓݎℎ݁ݐ݋  (1)

According to the Credibility Measure Theory (see Liu [25]), the expected value and variance of the 

triangular fuzzy returns of stocks are given by: ܧሾߦሿ = ܽ + 2ܾ + ܿ4  (2)

ܸሾߦሿ = 33αଷ + 21αଶβ + 11αβଶ − βଷ384α  (3)

where ߙ = max	ሼܾ − ܽ, ܿ − ܾሽ , β = minሼܾ − ܽ, ܿ − ܾሽ . Especially, if ܾ − ܽ = ܿ − ܾ , we have  ܸሾߦሿ = (௕ି௔)ଶ଺ . 

Based on the Zedeh Extension Principle, when ̃ݎ௜ = (ܽ௜, ,௜ݎ ܾ௜)	(݅ = 1,2, … , ݊) are all triangular 

fuzzy variables, ∑ ௜௡௜ୀଵݔ௜ݎ̃ = (∑ ௜௡௜ୀଵݔ ܽ௜, ∑ ௜௡௜ୀଵݔ ,௜ݎ ∑ ௜௡௜ୀଵݔ ܾ௜) are triangular fuzzy variables as well. 

Therefore, we get: ܧሾ̃ݎଵݔଵ + ଶݔଶݎ̃ + ⋯+ ௡ሿݔ௡ݎ̃ =෍ (ܽ௜ + ௜ݎ2 + ܾ௜)ݔ௜/4௡௜ୀଵ  (4)ܸሾ̃ݎଵݔଵ + ଶݔଶݎ̃ + ⋯+ =௡ሿݔ௡ݎ̃ 11(∑ ௜௡௜ୀଵݔ (ܾ௜ − ܽ௜))ଶ|∑ ௜௡௜ୀଵݔ ௜ݎ2) − ܽ௜ − ܾ௜)|192൫∑ ௜௡௜ୀଵݔ (ܾ௜ − ܽ௜) + |∑ ௜௡௜ୀଵݔ ௜ݎ2) − ܽ௜ − ܾ௜)|൯+ 2(8∑ ௜௡௜ୀଵݔ (ܾ௜ − ܽ௜) + 3|∑ ௜௡௜ୀଵݔ ௜ݎ2) − ܽ௜ − ܾ௜)|)(൫∑ ௜௡௜ୀଵݔ (ܾ௜ − ܽ௜)൯ଶ + (∑ ௜௡௜ୀଵݔ ௜ݎ) − ܽ௜))ଶ192൫∑ ௜௡௜ୀଵݔ (ܾ௜ − ܽ௜) + |∑ ௜௡௜ୀଵݔ ௜ݎ2) − ܽ௜ − ܾ௜)|൯  

(5)

2.1.2. Prediction of Stock Returns 

Taking randomness and fuzziness of stock price volatility into consideration, stock yields are  

set as triangular fuzzy random variables. Then let ̃ݎ௜ be the return rate of stock i, ̃ݎ௜ = (ܽ௜, ,௜ݎ ܾ௜), 	݅ = 1,2, … , ݊. Let ݎ௜ denote the mathematical expectation of the random variable of ̃ݎ௜; ܾ௜ and ܽ௜ 
are the ceiling return and the floor return, respectively. Hence, the membership function of ̃ݎ௜ is 

defined by the following functions: 

(ݔ)ߤ = ቐ(ݔ − ܽ௜) ௜ݎ) − ܽ௜), if ܽ௜ ≤ ݔ ≤ ݔ)⁄௜ݎ − ܾ௜) ௜ݎ) − ܾ௜)⁄ , if ௜ݎ ≤ ݔ ≤ ܾ௜0, otherwise  (6)

Next, we use the Markov method to predict the fuzzy returns of stock following steps as below: 
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Step 1. Collect the historical trading data in a sample period (in this paper, it is one year or  

three years), including the opening price ܴ௧ଵ, closing price ܴ௧ଶ, ceiling price ܴ௧ଷ and floor price ܴ௧ସ, ݐ = 1,2, … ,ܰ, where N is the number of sub-intervals. Then we calculate the possible average 

rates of returns ݎ௧௘ = ோ೟మିோ೟భோ೟భ , the highest possible rates of returns ݎ௧௛ = ோ೟యିோ೟భோ೟భ , and the lowest 

possible rates of returns ݎ௧௟ = ோ೟రିோ೟భோ೟భ . 

Step 2. Use the classic K-Means cluster analysis method to get the step transition matrix. We divide 

the range of rate of return into M intervals called state spaces and get mid-points ݀௜(݅ = 1,2, …  (ܯ,
and probability ݌௜௝(݅, ݆ = 1,2, …  that the return is in space j if it was in space i the last state. Then (ܯ,

form one step transition matrix by these probabilities: 

P = ൮ ଵଵ݌ ଵଶ݌ … ଶଶ݌	ଶଵ݌ଵெ݌ … ெଵ݌…ଶெ݌ ெଶ݌ … ெெ൲ (7)݌

Step 3. Develop the state transition equation. The probability of stock return in state space i can be 

calculated by: ࢞ = (8) ࢞ࡼ

where ݔ = ,ଵݔ) ,ଶݔ … , ,ଵݔ	,ெ)୘ݔ ,ଶݔ … , ெݔ ≥ 0,	∑ ௜ݔ = 1ெ௜ୀଵ . 

The unique solution of the equation is ࢞ = ,ଵ݌) ,ଶ݌ … ,  ெ)୘. Therefore the probabilities of the stock݌

return in state space i after a long enough time are ݌ଵ, …,ଶ݌ ,  .ெ݌

Step 4. Compute the prediction of the stock return by function ݎ = ∑ ௜݀௜ெ௜ୀଵ݌ . The highest possible 

rate of return ݎ௧௛ and lowest possible rate of return ݎ௧௟ can be calculated in the same way. That is 

how we get the value of the ceiling return ܾ௜ and the floor return ܽ௜. Hence, the prediction of our 

triangular fuzzy returns turns out to be ̃ݎ௜ = (ܽ௜, ,௜ݎ ܾ௜). 
2.2. Hybrid Entropy 

Hybrid entropy originated from Shannon entropy. Discrete Shannon entropy is referred to as the 

uncertainty of discrete random variable P in a probability space. That is: ܵ௡(ܲ) = −∑ ௜௡௜ୀଵ݌ ln ,௜݌ ∑ ௜௡௜ୀଵ݌ = 1 ௜݌ ≥ 0 (9)

Similarly, the uncertainty of discrete fuzzy random variable M in a fuzzy space can be expressed by 

De Luca-Termini [26] hybrid entropy as follows: ܪ௙(ܯ) = ,௙(μଵܪ μଶ, … , μ௡) = − 1݊෍ ሼμ௜ logଶ μ௜ + (1 − μ௜) logଶ(1 − μ௜)ሽ௡௜ୀଵ  (10)

Hybrid entropy is an effective tool to measure financial risk caused by both randomness and 

fuzziness simultaneously (Xu et al. [21]). The hybrid entropy is defined as: ܪ௛ = −෍ ሼ݌௜ߤ௜ log ௜μ௜݌ + ௜(1݌ − μ௜) log ௜(1݌ − μ௜)ሽ௡௜ୀଵ  (11)

This ܪ௛ should meet the following requirements:  
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௛ will reach its biggest value if and only if μ௜ܪ (1) = 0.5 and ݌௜ = 1/݊ (݅ = 1,2,… , ݊); 
௛ will reach its smallest value 0 if and only if μ௜ܪ (2) = 0	or	1	(݅ = 1,2, … , ௜݌ ,(݊ = 1, and 	݌௝ = 0(݆ ≠ ݅, ݅, ݆ = 1,2, … , ݊); 
(3) When randomness (ambiguity) disappears, hybrid entropy should be reduced to a normal 

probability entropy (fuzzy entropy). 

Taking both the randomness and fuzziness of stock returns into consideration, we choose the 

discrete hybrid entropy to measure the risk of stock return. 

2.3. Portfolio Optimization Model 

In this section, we present the well-known traditional portfolio selection models and also develop a 

mean-variance hybrid-entropy model with fuzzy returns. 

2.3.1. MVM and MEM 

Markowitz’s MVM was the first risk measurement model to apply the mathematical methods into 

portfolio selection. In this model, mean measures the expected return and variance measures the risk. 

The two objectives of the investors are getting higher returns and lower risk relatively. The model is 

given as follows: 

Min	ܺ୘ܺܥ	s. t. ۔ە
ۓ ෍ ௜ே௜ୀଵݎ௜ݔ ≥ ܿ෍ ௜ே௜ୀଵݔ = 1; ݅ = 1,2,… , n (12)

where the yield vector of N securities R = ,ଵݎ) ,ଶݎ … , ்(ேݎ ; the wealth fraction invested in the 

securities X = ,ଵݔ) ,ଶݔ … ,  .ே)்; C is the covariance matrix and c represents the given expected returnݔ

But only taking advantage of variance to measure risk is not sufficient. That is why many scholars 

put forward the MEM, which uses the entropy instead of variance to measure the portfolio’s risk. The 

MEM is given as follows: 

Max	݂(ݔ) =෍ ௜ே௜ୀଵݎ௜ݔ 	Min V(ݔ) =෍ ௜ℎ௜ே௜ୀଵݔ s. t. ቐ ෍ ௜ே௜ୀଵݔ	 = 10 ≤ ௜ݔ ≤ ,ߤ ݅ = 1,… , n (13)

where the yield vector of N securities ܴ = ,ଵݎ) ,ଶݎ … , ்(ேݎ , the wealth fraction invested in the 

securities ܺ = ,ଵݔ) ,ଶݔ … , ܪ ே)், and the risk vector of N securitiesݔ = (ℎଵ, ℎଶ, … , ℎே)். 

2.3.2. MVHEM 

We can see that the formula of hybrid entropy is improperly complex, and so is the hybrid entropy 

formula expressed by triangular fuzzy variables. The applicability will be greatly reduced if the model 

is too complex. Therefore, we use the approximate formula instead. The formula is: ܪሾ̃ݎଵݔଵ + ଶݔଶݎ̃ + ⋯+ ௡ሿݔ௡ݎ̃ =෍ ௜ே௜ୀଵݔ (14) (௜ݎ̃)௛ܪ
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Kalyagin et al. [27] once discussed the specifics of financial modeling and emphasized the 

multidimensional aspects of financial decisions, so here we choose multi-objective programming. This 

paper intends to measure the returns by the possibilistic mean of the fuzzy rate of return, and measure 

the risk by both variance and entropy, and thus form the mean-variance hybrid-entropy model for 

portfolio selection with fuzzy returns: Max		 ଵݔଵݎሾ̃ܧ + ଶݔଶݎ̃ + ⋯+ 		௡ሿ  Minݔ௡ݎ̃ ܸሾ̃ݎଵݔଵ + ଶݔଶݎ̃ + ⋯+ ଵݔଵݎ̃)ܪ				௡ሿ  Minݔ௡ݎ̃ + ଶݔଶݎ̃ + ⋯+ (௡ݔ௡ݎ̃ = ∑ ௜ே௜ୀଵݔ .s  (௜ݎ̃)௛ܪ t. ቐ ෍ ௜ே௜ୀଵݔ	 = ,ଵݔ1 ,ଶݔ … , ௡ݔ ≥ 0 

(15)

MVHEM is a multi-objective optimization model. We use the improved algorithm NSGA-II 

proposed by Deb [28] to solve this optimization problem, which can effectively reduce the 

computational complexity. 
Let X = ሼݔ|∑ ௜ݔ = 1, ௜ݔ ≥ 0, ݅ = 1,… , ݊௡௜ୀଵ ሽ ାܯ , = max௫∈௑ (ݔ)ܯ , ିܯ	 = min௫∈௑ (ݔ)ܯ ,  	ܸା = max௫∈௑ ିܸ	,(ݔ)ܸ = min௫∈௑ ାܪ	,(ݔ)ܸ = max௫∈௑ ିܪ	and (ݔ)ܪ = min௫∈௑  Then we could form a new .(ݔ)ܪ

multi-objective function as follows: 

Max 
ெ(௫)ିெషெశିெష   

Max 
௏(௫)ି௏శ௏షି௏శ   

Max 
ு(௫)ିுశுషିுశ   s. t. ቐ ෍ ௜ݔ = 1ே௜ୀଵݔଵ, ,ଶݔ … , ௡ݔ ≥ 0 

(16)

which can be solved directly by MATLAB. 

3. Empirical Comparisons 

3.1. Sample Data 

In order to avoid drastic fluctuations in portfolio returns which may result from industrial risk, we 

select 10 listed stocks from 10 different industries in Shanghai Stock Exchange (SHSE) and Shenzhen 

Stock Exchange (SZSE) in China, respectively. The original data obtained from the Straight Flush 

Software are one-year and three-year weekly data covering from 1 January in 2011 to 1 January in 

2014, from which weekly yields, the highest possible yields and the lowest possible yields can be 

calculated. According to the Markov Method mentioned above, we obtain the prediction of stock 

returns as shown in Tables 1 and 2. 

From Tables 1 and 2, we can observe that compared to the one-year fuzzy returns, most of the  

three-year results display a trend of convergence, which means less volatility with shorter distance 

between the left endpoint and right endpoint, and the three-year fuzzy returns’ center point is much 

closer to zero. 
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Based on the fuzzy returns calculated and the Formulae (6) and (8), we have the possibilistic mean and 

the value of hybrid entropy of the sample stocks. The computational results are shown in Tables 3 and 4. 

Table 1. The fuzzy returns of different sample period stocks in SHSE. 

Sample Period 
Stock Code 

One-Year Period Three-Year Period 

600100 (−0.0314, 0.0070, 0.0494) (−0.0398, −0.0042, 0.0391) 
600270 (−0.0411, 0.0095, 0.0583) (−0.0365, 0.0026, 0.4238) 
600109 (−0.0433, 0.0009, 0.0496) (−0.0441, 0.0027, 0.0464) 
600664 (−0.0382, 0.0008, 0.0349) (−0.0458, −0.0078, 0.0275) 
600060 (−0.0445, 0.0045, 0.0527) (−0.0418, 0.0018, 0.0450) 
600714 (−0.0392, −0.0065, 0.0399) (−0.0511, −0.0008, 0.0512) 
600886 (−0.0351, −0.0043, 0.0353) (−0.0321, −0.0025, 0.0277) 
600638 (−0.0357, 0.0057, 0.0420) (−0.0347, 0.0030, 0.0374) 
600778 (−0.0354, −0.0031, 0.0362) (−0.0414, −0.0009, 0.0389) 
600081 (−0.0409, 0.0058, 0.0527) (−0.0008, −0.0008, 0.0462) 

Table 2. The fuzzy returns of different sample period stocks in SZSE. 

Sample Period 
Stock Code 

One-Year Period Three-Year Period 

002186 (−0.0380, −0.0042, 0.0428) (−0.0312,−0.0015,0.0313) 
000791 (−0.0364, 0.0017, 0.0400) (−0.0403, 0.0012, 0.0446) 
002032 (−0.0329, 0.0031, 0.0444) (−0.0382, −0.0026, 0.0351) 
000002 (−0.0416, −0.0045, 0.0387) (−0.0346, 0.0004, 0.0338) 
000768 (−0.0357, 0.0045, 0.0513) (−0.0347, −0.0005, 0.0414) 
002226 (−0.0331, 0.0037, 0.0414) (−0.0416, −0.0024, 0.0373) 
300027 (−0.0598, 0.0284, 0.1017) (−0.0466, 0.0055, 0.0579) 
000088 (−0.0386, 0.0114, 0.0569) (−0.0357, 0.0017, 0.0361) 
300005 (−0.0531, 0.0025, 0.0549) (−0.0488, −0.0020, 0.0464) 
000001 (−0.0501, 0.0000, 0.0573) (−0.0338, 0.0001, 0.0343) 

Table 3. Expected values and hybrid entropy calculated from different sample period stocks 

in SHSE. 

Sample Period
Stock Code 

One-Year Period Three-Year Period 

Expected Value Hybrid Entropy Expected Value Hybrid Entropy 

600100 0.0079 0.6303 −0.0023 0.6237 
600270 0.0091 0.7088 0.0028 0.5525 
600109 0.0020 0.5320 0.0019 0.5852 
600664 −0.0004 1.0954 −0.0085 1.0520 
600060 0.0043 0.6288 0.0017 0.4766 
600714 −0.0031 0.6598 −0.0004 0.6944 
600886 −0.0021 0.6981 −0.0023 0.6944 
600638 0.0044 1.1528 0.0022 0.6767 
600778 −0.0014 0.6217 −0.0011 0.5536 
600081 0.0058 0.6796 0.0109 0.3789 
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Table 4. Expected values and hybrid entropy calculated from different sample period stocks 

in SZSE. 

Sample Period 
Stock Code 

One-Year Period Three-Year Period 

Expected Value Hybrid Entropy Expected Value Hybrid Entropy 

002186 −0.0009 1.1940 −0.0007 1.0360 
000791 0.0017 0.6555 0.0017 0.6981 
002032 0.0044 1.1211 −0.0020 0.9846 
000002 −0.0029 0.7656 0.0000 0.5124 
000768 0.0061 0.5451 0.0014 0.3668 
002226 0.0039 0.5890 −0.0023 1.1131 
300027 0.0247 0.6167 0.0056 0.7336 
000088 0.0103 1.1977 0.0009 0.7219 
300005 0.0017 0.6466 −0.0016 0.9808 
000001 0.0018 0.7208 0.0002 0.5996 

It can be seen from Tables 3 and 4 that the three-year means are all smaller than the one-year means 

both in the SHSE and SZSE. Not all of the three-year sample’s hybrid entropy are smaller than the  

one-year sample’s, and we attribute this to the lack of fuzziness of the three-year sample, which affects 

the magnitude of the hybrid entropy to some extent. 

3.2. The Empirical Comparisons among MVM, MEM and MVHEM 

On the basis of the real historical data in Tables 1 and 2, we develop a portfolio model composed by 

ten stocks. The essence of this model is multi-objective. By using the NSGA-II, we get several Pareto 

optimal solutions for the stock portfolio. These optimal solutions can be divided into two categories: 

one category is income-oriented and focused on the pursuit of higher yields, the other is risk-oriented 

and focused on pursuing low risks. We single out one group from each type (MVHEM-I is 

income-oriented, and MVHEM-II is risk-oriented) as representations, and we also list results of two 

other classic models (MVM and MEM) for comparison. The results are shown in Tables 5–8. 

The above results from Tables 5 to 8 show that we have constructed a portfolio with better 

dispersion compared to the other two portfolio selection models, that is, the results will not be skewed 

by one or two stocks. We also draw intuitive figures to display this characteristic (See Figures 1–4). 

The price data from 1 January to 1 July in 2014 of each stock mentioned above are used to predict the 

relative cumulative returns of each model.  

Table 5. The proportion of one-year period sample stocks in different portfolio selection 

models in SHSE. 

Stock Code 

Model 
600100 600270 600109 600664 600060 600714 600886 600638 600778 600081 

MVHEM-I 0.2402 0.1574 0.1222 0.0359 0.1590 0.0378 0.0529 0.0416 0.0997 0.0535 

MVHEM-II 0.0551 0.1067 0.0452 0.1804 0.2603 0.0544 0.0654 0.1907 0.0193 0.0220 

MVM  0.1500 0.7054 0.0189 0.0012 0.0246 0.0053 0.0004 0.0459 0.0209 0.0281 

MEM 0.9153 0.0019 0.0779 0.0002 0.0002 0.0005 0.0017 0.0002 0.0003 0.0008 
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Table 6. The proportion of three-year period sample stocks in different portfolio selection 

models in SHSE. 

Stock Code 

Model 
600100 600270 600109 600664 600060 600714 600886 600638 600778 600081 

MVHEM-I 0.0102 0.0916 0.0651 0.0231 0.0457 0.0741 0.0920 0.0690 0.0626 0.4650 

MVHEM-II 0.0022 0.0795 0.0450 0.0149 0.0372 0.0500 0.4470 0.0582 0.0553 0.2090 

MVM  0.0015 0.0294 0.0844 0.0000 0.1065 0.0003 0.0001 0.0272 0.0002 0.7490 

MEM 0.0069 0.0565 0.0146 0.0062 0.0412 0.0147 0.1096 0.0514 0.0306 0.6672 

Table 7. The proportion of one-year period sample stocks in different portfolio selection 

models in SZSE. 

Stock Code 

Model 
002186 000791 002032 000002 000768 002226 300027 000088 300005 000001 

MVHEM-I 0.0218 0.0485 0.0369 0.0248 0.2721 0.2360 0.1991 0.0205 0.0697 0.0698 

MVHEM-II 0.0551 0.1067 0.0452 0.1804 0.2603 0.0544 0.0654 0.1907 0.0193 0.0220 

MVM  0.1500 0.7054 0.0189 0.0012 0.0246 0.0053 0.0004 0.0459 0.0209 0.0281 

MEM 0.9153 0.0019 0.0779 0.0002 0.0002 0.0005 0.0017 0.0002 0.0003 0.0008 

Table 8. The proportion of three-year period sample stocks in different portfolio selection 

models in SZSE. 

Stock Code  

Model 
002186 000791 002032 000002 000768 002226 300027 000088 300005 000001 

MVHEM-I 0.0002 0.0544 0.0182 0.0687 0.6542 0.0016 0.0948 0.0239 0.0231 0.0456 

MVHEM-II 0.1518 0.0463 0.0116 0.0533 0.4074 0.0147 0.2351 0.0196 0.0203 0.0398 

MVM  0.0153 0.0533 0.0037 0.0384 0.4796 0.0102 0.2885 0.0161 0.0183 0.0772 

MEM 0.2690 0.0125 0.0302 0.0050 0.0138 0.0394 0.5278 0.0689 0.0008 0.0329 

 

Figure 1. The relative cumulative returns of one-year period sample stocks in SHSE. 
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Figure 2. The relative cumulative returns of one-year period sample stocks in SZSE. 

Figures 1 and 2 show the relative cumulative returns of sample stocks in the Shanghai and 

Shenzhen stock exchange markets generated from the one-year sample period. Although there are a 

few flaws such as the returns of MVHEM are not always the highest, it can be seen from the figures 

above that when the sample period is short (such as one year), the MVHEM portfolio optimization 

model can help investors earn higher revenue or reduce investment risk most of the time. Besides, the 

model we proposed may balance the returns and risk more comprehensively, and thus allocate the 

proportion more properly. 

The following Figures 3 and 4 show the relative cumulative returns of sample stocks in Shanghai 

and Shenzhen stock exchange market generated from the three-year sample period. Figure 4 shows the 

same features as Figure 1 (even better than Figure 1), but compared with Figure 4, Figure 3 seems a 

little bit unusual, because the relative cumulative returns generated from the MVHEM are lower than 

those of the other two models except for the two points in the end. We attribute this to the market 

volatility, which may affect the results significantly. 

 

Figure 3. The relative cumulative returns of three-year period sample stocks in SHSE. 

In all, the MVHEM we propose generates higher cumulated returns and smaller volatilities than the 

MVM and MEM. Besides, when we use the one-year sample, the MVHEM obtains an even more 

favorable effect, which is consistent with the Markov method’s feature of being more suitable for 

short-term data. 
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Figure 4. The relative cumulative returns of three-year period sample stocks in SZSE. 

4. Conclusions 

This paper considers stock yields as triangular fuzzy random variables, and uses the Markov 

method to predict stock returns. Then we measure the portfolio income by fuzzy average yield and the 

portfolio risk by hybrid entropy and variance, on the basis of which we build a mean-variance 

hybrid-entropy portfolio optimization model. This model measures the risk of local deviation from the 

mean as well as the risk of overall deviation from the uniform distribution, and turns out to be more 

comprehensive and effective than other classic models. Besides, taking the randomness and fuzziness 

of financial systems into consideration, we fuzzify the investment target and use linear membership 

functions to measure degree of satisfaction. To solve the proposed model, a multi-objective genetic 

algorithm is employed. Future work could consider transaction costs as well as investors’ trade-off 

between low-risk and high return objectives in the research. 
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