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Abstract: In this paper, the exp-function method is improved to construct exact solutions
of non-linear lattice equations by modifying its exponential function ansätz. The improved
method has two advantages. One is that it can solve non-linear lattice equations with variable
coefficients, and the other is that it is not necessary to balance the highest order derivative
with the highest order nonlinear term in the procedure of determining the exponential
function ansätz. To show the advantages of this improved method, a variable-coefficient
mKdV lattice equation is considered. As a result, new exact solutions, which include
kink-type solutions and bell-kink-type solutions, are obtained.
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1. Introduction

The work of Fermi, Pasta and Ulam in the 1950s [1] has attached much attention on exact solutions of
non-linear lattice equations arising different fields which include condensed matter physics, biophysics,
and mechanical engineering. In the numerical simulation of soliton dynamics in high energy physics,
some non-linear lattice equations are often used as approximations of continuum models. In fact,
the celebrated Korteweg–de Vries (KdV) equation can be considered as a limit of the Toda lattice
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equation [2]. Non-linear lattice equations can provide models for non-linear phenomena such as wave
propagation in nerve systems, chemical reactions, and certain ecological systems (for example, the
famous Volterra equation). Unlike difference equations which are fully discretized, lattice equations are
semi-discretized with some of their spatial variables discretized while time is usually kept continuous.
In the past several decades, many effective methods for constructing exact solutions of non-linear partial
differential equations (PDEs) have been presented, such as the inverse scattering method [3], Bäcklund
transformation [4], Hirota’s bilinear method [5], homogeneous balance method [6], tanh-function
method [7], Jacobi elliptic function expansion method [8], Lucas Riccati method [9], differential
transform method [10], and others [11–17]. Generally speaking, it is hard to generalize one method
for non-linear PDEs to solve non-linear lattice equations because of the difficulty in finding iterative
relations from indices n to n ± 1(here n denotes an integer). When the inhomogeneities of media and
non-uniformities of boundaries are taken into account, the variable-coefficient equations could describe
more realistic physical phenomena than their constant-coefficient counterparts [18], such as seen, e.g., in
the super-conductors, coastal waters of oceans, blood vessels, space and laboratory plasmas and optical
fiber communications [19]. Therefore, how to solve non-linear lattice equations with variable coefficients
is worth studying.

Recently, He and Wu proposed exp-function method [20] to solve non-linear PDEs. It is shown
in [20–31] that the exp-function method or its improvement is available for many kinds of nonlinear
PDEs, such as Dodd–Bullough–Mikhailov equation [20], sine-Gorden equation [21], combined
KdV-mKdV equation [23], Maccari’s system [24], variable-coefficient equation [25], non-linear lattice
equation [26], stochastic equation [27], and generalized Klein–Gordon equation [31]. For some recent
applications of the method itself, we can refer to Fitzhugh–Nagumo equation [32], extended shallow
water wave equations [33] and generalized mKdV equation [34]. In [35–37], there are two remarkable
developments of the exp-function method. One is that the exp-function method with a fractional complex
transform was generalized to deal with fractional differential equations [35,36], and the other is that
the method was hybridized with heuristic computation to obtain numerical solution of generalized
Burger–Fisher equation [37]. On the other hand, it is necessary to check the solutions obtained
by the exp-function method carefully [38] because some authors have been criticized for incorrect
results [39,40]. Besides, for a given non-linear PDEs with independent variables t, x1, x2, · · · , xs and
dependent variable u:

F (u, ut, ux1 , ux2 , · · · , uxs , ux1t, ux2t · · · , uxst, utt, ux1x1 , ux2x2 , · · · , uxsxs , · · · ) = 0, (1)

the exp-function method can also be used to construct different types of exact solutions. This is due to
its exponential function ansätz:

u(ξ) =

∑g
n=−f an exp(nξ)∑q
m=−p bm exp(mξ)

, ξ =
s∑
i=1

kixi + wt, (2)

where an, bm, ki andw are undetermined constants, f , p, g and q can be determined by using Equation (2)
to balance the highest order non-linear term with the highest order derivative of u in Equation (1). It is He
and Wu [20] who first concluded that the final solution does not strongly depend on the choices of values
of f , p, g and q. Usually, f = p = g = q = 1 is the simplest choice. More recently, Ebaid [41] proved
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that f = p and g = q are the only relations for four types of nonlinear ordinary differential equations
(ODEs) and hence concluded that the additional calculations of balancing the highest order derivative
with the highest order non-linear term are not longer required. Ebaid’s work is significant, which makes
the exp-function method more straightforward. The present paper is motivated by the desire to prove that
f = p and g = q are also the only relations when we generalize the exp-function method [20] to solve
non-linear lattice equations. Thus, the exp-function method can be further improved because it is not
necessary to balance the highest order derivative with the highest order non-linear term in the process of
solving non-linear lattice equations.

The rest of this paper is organized as follows. In Section 2, we generalize exp-function method to
solve non-linear lattice equations with variable coefficients. In Section 3, a theorem is proved and then
used to improve the generalized exp-function method in determining its exponential function ansätz of
non-linear lattice equations. In Section 4, we take a variable-coefficient mKdV lattice equation as an
example to show the advantages of the improved exp-function method. In Section 5, some conclusions
are given.

2. Generalized Exp-Function Method for Non-Linear Lattice Equations

In this section, we outline the basic idea of generalizing the exp-function method [20] to solve a given
non-linear lattice equation with variable coefficients, say, in three variables n, x and t:

P (unt, unx, untt, unxt, · · · , un−1, un, un+1, · · · ) = 0, (3)

which contains both the highest order nonlinear terms and the highest order derivatives of dependent
variables. Here P is a polynomial of un, un−θ(θ = ±1,±2, · · · ) and the various derivatives of un.
Otherwise, a suitable transformation can transform Equation (3) into such an equation.

Firstly, we take the following transformation:

un = Un(ξn), ξn = dn+ c(x, t) + ω, (4)

where d is a constant to be determined, c(x, t) is the undetermined function of x and t, and ω is the
phase. Then, Equation (3) can be reduced to a non-linear ODE with variable coefficients:

Q(U ′n, U
′′
n , · · · , Un−1, Un, Un+1, · · · ) = 0. (5)

Secondly, we suppose that the ansätz of Equation (5) can be expressed as:

Un =

∑g
N=−f aN(x, t) exp(Nξn)∑q

M=−p bM exp(Mξn)
=
a−f (x, t) exp(−fξn) + · · ·+ ag(x, t) exp(gξn)

b−p exp(−pξn) + · · ·+ bq exp(qξn)
. (6)

Thirdly, we substitute Un and Un−θ(θ = ±1,±2, · · · ) determined by Equation (6) into Equation (5) and
then balance the highest order derivative with the highest order nonlinear term in Equation (5) to obtain
the integers f , p, g and q. Finally, we determine the coefficients a−f (x, t), · · · , ag(x, t), b−p, · · · , bq, d
and c(x, t) by solving the resulting equations from the substitution of Un and Un−θ(θ = ±1,±2, · · · )
along with the obtained values of f , p, g, q into Equation (5).
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In order to identify the highest order nonlinear term, we define in this paper the negative order N(·)
and the positive order P (·) of ansätz (6) as follows:

N(Un) = −f − (−p) = p− f, P (Un) = g − q (7)

under the condition that the functions a−f (x, t) and ag(x, t), and the constants b−p and bq are all nonzero
coefficients. Therefore, we can easily obtainN(Un−θ) = p−f and P (Un−θ) = g−q. For the derivatives
of Un, we have a general formula:

U (r)
n =

τr(x, t) exp[−(f − p+ 2rp)ξn] + · · ·+ σr(x, t) exp[(g − q + 2rq)ξn]

δr exp[(−2rp)ξn] + · · ·+ ςr exp[(2rq)ξn]
, (8)

where τr(x, t) and σr(x, t) are functions of x and t, δr and ςr are constants, and r ≥ 1 is an integer. If
τr(x, t), σr(x, t), δr and ςr are nonzero coefficients, then N(U

(r)
n ) = p− f and P (U (r)

n ) = g − q.
Since

N(Un) = N(Un−θ), P (Un) = P (Un−θ), (9)

we define the product

Uh
nU

i1
n−1U

j1
n+1U

i2
n−2U

j2
n+2 · · ·U iz

n−zU
jz
n+z(U

′
n)
l1(U ′′n)

l2 · · · (U (s)
n )ls (10)

as the highest order nonlinear term of Equation (5). Here h, i1, j1, i2, j2, · · · , iz, jz, l1, l2, · · · , ls are
nonnegative integers which satisfy

h+ i1 + j1 + i2 + j2 + · · ·+ iz + jz + l1 + l2 + · · ·+ ls ≥ 2. (11)

With above preparations, we can see that Equations (8) and (10) include all possibilities of the highest
order derivative and the highest order nonlinear term of Equation (5). In what follows, we shall proof
that f = p and g = q are the only relations when using the exponential function ansätz (6) to balance the
highest order derivative (8) with the highest order nonlinear term (10).

Remark 1. If we let a−f (x, t), · · · , ag(x, t) be nonzero constants and take c(x, t) as a linear function
kx+ lt, k and l are undetermined constants, then the generalized exp-function method described in this
section is also effective for non-linear lattice equations with constant coefficients. So the starting point of
this paper is to generalize the exp-function method [20] to solve Equation (3) with variable coefficients.
In the next section, we shall further improve this generalized exp-function method.

3. Theorem and Improvement

Theorem 1. Suppose that Equations (8) and (10) are respectively the highest order derivative and
the highest order nonlinear term of Equation (5), then the balancing procedure using the exponential
function ansätz (6) leads to f = p and g = q.

Proof. By contradiction, we suppose that f 6= p and g 6= q. Then a computation shows that τr(x, t),
σr(x, t), δr, and ςr in Equation (8) are all nonzero coefficients. Using Equations (6) and (8), we have

Uh
n =

ah−f (x, t) exp(−hfξn) + · · ·+ ahg(x, t) exp(hgξn)

bh−p exp(−hpξn) + · · ·+ bhq exp(hqξn)
, (12)
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U i
n−θ =

ai−f (x, t) exp(−ifξn) exp(ifdθ) + · · ·+ aig(x, t) exp(igξn) exp(−igdθ)
bi−p exp(−ipξn) exp(ipdθ) + · · ·+ biq exp(iqξn) exp(−iqdθ)

, (13)

(U (r)
n )l =

τ lr(x, t) exp[−l(f − p+ 2rp)ξn] + · · ·+ σlr(x, t) exp[l(g − q + 2rq)ξn]

δlr exp[(−2rlp)ξn] + · · ·+ ς lr exp[(2
rlq)ξn]

. (14)

With the help of Equations (12)–(14), the left hand side and the right hand side of Equation (8) can
be respectively written as:

ϑ(x, t) exp{−[f(h+ i1 + j1 + · · ·+ iz + jz) + l1(f + p) + · · ·+ ls(f − p+ 2sp)]ξn}+ · · ·
κ exp[−p(h+ i1 + j1 + · · ·+ iz + jz + 2l1 + · · ·+ 2sls)ξn] + · · ·

, (15)

· · ·+ µ(x, t) exp{[g(h+ i1 + j1 + · · ·+ iz + jz) + l1(g + q) + · · ·+ ls(g − q + 2sq)]ξn}
· · ·+ λ exp[q(h+ i1 + j1 + · · ·+ iz + jz + 2l1 + · · ·+ 2sls)ξn]

, (16)

with nonzero coefficients

ϑ(x, t) = ah+i1+j1+···+iz+jz−f (x, t)τ l11 (x, t) · · · τ lss (x, t) exp[(i1−j1+2i1−2j1+ · · ·+ziz−zjz)fd], (17)

µ(x, t) = ah+i1+j1+···+iz+jzg (x, t)σl11 (x, t) · · ·σlss (x, t) exp[−(i1−j1+2i1−2j1+· · ·+ziz−zjz)gd], (18)

κ = bh+i1+j1+···+iz+jz−p δl11 · · · δlss exp[(i1 − j1 + 2i1 − 2j1 + · · ·+ ziz − zjz)fd], (19)

λ = bh+i1+j1+···+iz+jzq ς l11 · · · ς lss exp[−(i1 − j1 + 2i1 − 2j1 + · · ·+ ziz − zjz)gd]. (20)

Multiplying Equations (15) and (16) by

δr exp[(−2rp)ξn] + · · ·+ ςr exp[(2
rq)ξn]

δr exp[(−2rp)ξn] + · · ·+ ςr exp[(2rq)ξn]
,

we have

ϑ(x, t)δr exp{−[f(h+ i1 + j1 + · · ·+ iz + jz) + l1(f + p) + · · ·+ ls(f − p+ 2sp) + 2rp]ξn}+ · · ·
κδr exp[−p(h+ i1 + j1 + · · ·+ iz + jz + 2l1 + · · ·+ 2sls + 2r)ξn] + · · ·

,

(21)
· · ·+ µ(x, t)ςr exp{[g(h+ i1 + j1 + · · ·+ iz + jz) + l1(g + q) + · · ·+ ls(g − q + 2sq) + 2rq]ξn}

· · ·+ λςr exp[q(h+ i1 + j1 + · · ·+ iz + jz + 2l1 + · · ·+ 2sls + 2r)ξn]
.

(22)
We further use

κ exp[−p(h+ i1 + j1 + · · ·+ iz + jz + 2l1 + · · ·+ 2sls)ξn] + · · ·

+λ exp[q(h+ i1 + j1 + · · ·+ iz + jz + 2l1 + · · ·+ 2sls)ξn]

to multiply the numerator and denominator of Equation (8), then the left hand side and the right hand
side of Equation (8) can be respectively written as:

κτr(x, t) exp{−[p(h+ i1 + j1 + · · ·+ iz + jz + 2l1 + · · ·+ 2sls) + (f − p+ 2rp)]ξn}+ · · ·
κδr exp[−p(h+ i1 + j1 + · · ·+ iz + jz + 2l1 + · · ·+ 2sls + 2r)ξn] + · · ·

, (23)

· · ·+ λσr(x, t) exp{[q(h+ i1 + j1 + · · ·+ iz + jz + 2l1 + · · ·+ 2sls) + (g − q + 2rq)]ξn}
· · ·+ λςr exp[q(h+ i1 + j1 + · · ·+ iz + jz + 2l1 + · · ·+ 2sls + 2r)ξn]

. (24)
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Balancing the lowest order of the exponential function in Equations (21) and (23) and the highest
order of the exponential function in Equations (22) and (24) yields

(p− f)(h+ i1 + j1 + · · ·+ iz + jz + l1 + · · ·+ ls − 1) = 0, (25)

(q − g)(h+ i1 + j1 + · · ·+ iz + jz + l1 + · · ·+ ls − 1) = 0. (26)

It is easy to see from Equation (11) that

h+ i1 + j1 + · · ·+ iz + jz + l1 + · · ·+ ls − 1 6= 0, (27)

then Equations (25) and (26) give f = p and g = q. This contradicts with our assumption that f 6= p

and g 6= q. Thus we complete the proof of Theorem 1.

Theorem 1 shows that f = p and g = q are the only relations when using the exponential
function ansätz (6) to balance the highest order derivative (8) with the highest order nonlinear term
(10). Therefore, the simplest choice f = p = g = q = 1 is often selected so that some additional
calculations in determining the exponential function ansätz (6) are not longer required. Thus, Theorem 1
improves the generalized exp-function method described in Section 2.

4. Application

To give a concrete application of our improved exp-function method in Sections 2 and 3, we consider
in this section the mKdV lattice equation with variable coefficient [42]:

dun
dt

= [α(t)− u2n](un+1 − un−1), n ∈ Z, (28)

where un = u(n, t), α(t) is an arbitrary differentiable function of t. When α(t) = 0, 1, α(const.),
Equation (28) can give three known constant-coefficient versions of the mKdV lattice equation.

Using the transformation
un = Un(ηn), ηn = dn+ c(t) + η0, (29)

where d is a constant to be determined, c(t) is the undermined function of t, and η0 is the phase, we
transform Equation (28) into

dc(t)

dt
U ′n = [α(t)− U2

n](Un+1 − Un−1). (30)

According to the exp-function method improved in Sections 1 and 2, we directly suppose that:

Un =
a−1(t) exp(−ηn) + a0(t) + a1(t) exp(ηn)

b−1 exp(−ηn) + b0 + b1 exp(ηn)
, (31)

Un−1 =
a−1(t) exp(d) exp(−ηn) + a0(t) + a1(t) exp(−d) exp(ηn)

b−1 exp(d) exp(−ηn) + b0 + b1 exp(−d) exp(ηn)
, (32)

Un+1 =
a−1(t) exp(−d) exp(−ηn) + a0(t) + a1(t) exp(d) exp(ηn)

b−1 exp(−d) exp(−ηn) + b0 + b1 exp(d) exp(ηn)
, (33)

Substituting Equations (31)–(33) into Equation(30), and using Mathematica, equating the coefficients
of all powers of exp(jηn)(j = 0,±1,±2,±3) to zero yields a set of equations for a1(t), a0(t), a−1(t),
b1, b0, b−1 and c(t). Solving the system of equations by the use of Mathematica, we have:

a0(t) = 0, a1(t) = ±b1
√
α(t) tanh(d), a−1(t) = ∓b−1

√
α(t) tanh(d), (34)
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b0 = 0, c(t) = 2 tanh(d)

∫
α(t)dt, (35)

and
a0(t) = ±2

√
−b1b−1α(t) tanh(

d

2
), a1(t) = ±b1

√
α(t) tanh(

d

2
), (36)

a−1(t) = ∓b−1
√
α(t) tanh(

d

2
), b0 = 0, c(t) = 4 tanh(

d

2
)

∫
α(t)dt, (37)

where b1 and b−1 are arbitrary constants.
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Figure 1. Spatial structures of solution (38) with (+) branch: (a) n ∈ [−10, 10], t ∈
[−10, 10]; (b) n = −10, t ∈ [−10, 10]; (c) n = 0, t ∈ [−10, 10]; (d) n = 10, t ∈ [−10, 10];
(e) n ∈ [−10, 10], t = 0; (f) n ∈ [−10, 10], t = 2.



Entropy 2015, 17 3189

-10

-5

0

5

10

n
-10

-5

0

5

10

t
-2
-1
0
1
2

un
-10

-5

0

5

10

n

-10 -5 5 10
t

-2

-1

1

2

un

(a) (b)

-10 -5 5 10
t

-3

-2

-1

1

2

3

un

-10 -5 5 10
t

-2

-1

1

2

un

(c) (d)

-10 -5 0 5 10
n

-2

-1

0

1

2

3

4

u n

-10 -5 0 5 10
n

-2

-1

0

1

u n

(e) (f)

Figure 2. Spatial structures of solutions (39) with (+,+) branch: (a) n ∈ [−10, 10], t ∈
[−10, 10]; (b) n = −10, t ∈ [−10, 10]; (c) n = 0, t ∈ [−10, 10]; (d) n = 10, t = [−10, 10];
(e) n ∈ [−10, 10], t = 0; (f) n ∈ [−10, 10], t = 2.

We, therefore, obtain from Equations (29), (31), (34) and (35) a pair of new kink-type solutions of
Equation(28):

un = ±
√
α(t) tanh(d)

b1 exp(ηn)− b−1 exp(−ηn)
b1 exp(ηn) + b−1 exp(−ηn)

, (38)

where ηn = dn + 2 tanh(d)
∫
α(t)dt + η0. If set b1 = 1, then solutions (38) become the known

solutions [42].
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With the help of Equations (29), (31), (36) and (37), we obtain two pairs of new bell-kink-type
solutions of Equation(28):

un = ±
√
α(t) tanh(

d

2
)
b1 exp(ηn)± 2

√
−b1b−1 − b−1 exp(−ηn)

b1 exp(ηn) + b−1 exp(−ηn)
, (39)

where ηn = dn+ 4 tanh(d
2
)
∫
α(t)dt+ η0.

In Figure 1, the spatial structures of solutions (38) with (+) branch are shown, where the parameters
are selected as α(t) = 1 + 0.5sintsecht, b1 = −1.5, b−1 = −2, d = 1, η0 = 0. Figs. 1(a)–(d) show that
the amplitude of wave changes periodically in the process of propagation. It is shown in Figure 1c that
the “breather”-like phenomena has occurred at the location n = 0. In Figure 2, we show the structures
of solutions (39) with (+,+) branch, where α(t) = 1+ secht, b1 = 1.5 and the other parameters are same
as those in Figure 1. From Figure 2c, we can see that u0 has a singularity in the interval t ∈ (0, 1).
It is easy to see that when b1 = 1.5 and b−1 = −2, solutions (39) are unbounded. Such unbounded
solutions develop singularity at a finite time, i.e. for any fixed n = n0, there always exists t = t0 at
which these solutions “blow-up”. In view of the physical significance, they do not exist after “blow-up”.
In the actual experimental physical system, there is no “blow-up”, but a sharp spike [43]. Thus, the finite
time “blow-up” can provide an approximation to the corresponding physical phenomenon.

5. Conclusions

In summary, we have improved the exp-function method [20] for solving non-linear lattice equations
by modifying its exponential function ansätz. In order to show the advantages of the improved method,
the variable-coefficient mKdV lattice equation (28) is considered. As a result, kink-type solutions (38)
and bell-kink-type solutions (39) are obtained. To the best of our knowledge, they have not been reported
in the literature. Solutions (38) and (39) contain arbitrary function α(t) and arbitrary constants b1 and
b−1, which provide enough freedom for us to describe rich spatial structures of these obtained solutions.
Applying the improved exp-function method to some other non-linear lattice equations with variable
coefficients are worthy of study. This is our task in the future.
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