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Abstract: We consider the probability distributions, spin (qudit)-state tomograms and
density matrices of quantum states, and their information characteristics, such as Shannon
and von Neumann entropies and q-entropies, from the viewpoints of both well-known
purely mathematical features of nonnegative numbers and nonnegative matrices and their
physical characteristics, such as entanglement and other quantum correlation phenomena.
We review entropic inequalities such as the Araki–Lieb inequality and the subadditivity
and strong subadditivity conditions known for bipartite and tripartite systems, and recently
obtained for single qudit states. We present explicit matrix forms of the known and some
new entropic inequalities associated with quantum states of composite and noncomposite
systems. We discuss the tomographic probability distributions of qudit states and
demonstrate the inequalities for tomographic entropies of the qudit states. In addition,
we mention a possibility to use the discussed information properties of single qudit states
in quantum technologies based on multilevel atoms and quantum circuits produced of
Josephson junctions.
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1. Introduction

Quantum states are characterized by entropies, which have the properties associated with well-known
purely mathematical properties of nonnegative Hermitian matrices (see, for example, [1,2]). A review
of some entropic and information theoretic inequalities is presented in [3]. Quantum correlations
reflected in a phenomenon, such as the state entanglement in composite bipartite or multipartite
systems are known to provide the resource for quantum technologies like quantum computing, quantum
teleportation, etc. [4]. To characterize quantum correlations, one can employ the entropic and
information characteristics given in terms of von Neumann entropies of the states of multipartite
systems and their subsystems. The von Neumann entropy is determined by the quantum-state density
matrix [5,6]. The notion of the density matrix was introduced in [7]; for mixed states of composite
systems, the density matrix provides the density matrices of the subsystem states, which can be obtained
using the partial tracing procedure. The qudit state can be described by the spin tomogram [8,9]. There
exist q-entropies determined by the density matrices like Rényi [10] and Tsallis [11] entropies, which
depend on the parameter q.

For diagonal density matrices, the von Neumann entropy and q-entropies provide the entropies
associated with classical probability distributions, such as, for example, Shannon entropy [12]. The
Shannon entropy determined by the probability distribution is a characteristic of the order in the system.
The entropy takes a maximum value for a complete disorder in the system and is equal to zero for the
complete order. In the limit q → 1, the q-entropies under discussion become the Shannon entropy
for classical probability distributions and are equal to the von Neumann entropy for quantum density
matrices. The development of experimental techniques like quantum tomography [13] provided a
possibility to measure the density matrices of quantum states and obtain, as the results of the experiments,
numerical values of the matrix elements of the density matrices for qudits. Since the entropic and
information characteristics of quantum states used in the experiments with superconducting circuits
discussed, for example, in [14–16] are expressed in terms of the density matrix elements, it is desirable
to have explicit formulas for the entropic inequalities containing the matrix elements. In this connection,
we express some entropic inequalities known for multipartite systems in an explicit form to be applied
for studying the states of the systems without subsystems. It is worth pointing out that all inequalities
considered in this paper like the subadditivity and strong subadditivity conditions, as well as the relative
entropy nonnegativity, are well known. In this paper, we focus on the fact that the same inequalities can
be applied in experiments where the noncomposite systems are studied.

Entropic and information inequalities exist for both classical and quantum entropies, including the
q-entropies [3,17–23]. These inequalities are related to correlations in the systems. For classical random
variables, the entropic inequalities are related to classical correlations, and for quantum observables
the inequalities are related to quantum correlations in the systems. On the other hand, it was pointed
out in [24] that all entropies and informations are expressed only either in terms of the probability
distributions for classical random variables, which present a set of nonnegative numbers satisfying
the normalization condition, or in terms of nonnegative trace-class Hermitian matrices in the case of
quantum states.
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The known entropic inequalities, from the viewpoint of purely numerical relations, are the formulas
containing either expressions with nonnegative numbers only or the expressions containing the matrix
elements of nonnegative Hermitian matrices with unit trace. The inequalities written in the form of
purely numerical relations for the nonnegative numbers and nonnegative matrices are valid per se and
do not depend on the interpretation of these numbers as the probability distributions or the matrices
as the density matrices of quantum states. Nevertheless, in quantum interpretation applications, the
numerical properties can be translated as specific properties of quantum systems. In this context, the
known inequalities have a new physical interpretation.

The aim of this paper is to review a recent approach employed in [25–34] to study the possibility
of finding such new entropic inequalities like the subadditivity and strong subadditivity conditions
for noncomposite quantum systems and obtaining some other entropic and information equalities and
inequalities for conditional and relative entropies and q-entropies known for composite systems, which
can be also introduced for the systems without subsystems like, e.g., a single qudit. We analyze
which aspects of known quantum and classical entropic inequalities depend only on the properties of
nonnegative numbers and matrices and which aspects depend on the interpretation of the numbers and
matrices as probability distributions and density matrices of physical system states.

The other goal of this paper is to discuss which aspects of the entropic inequalities depend on the
interpretation of the probability distributions and nonnegative matrices given in the form of a set of
nonnegative numbers or a set of complex numbers organized in a table with columns and rows, as the
joint probability distributions for composite classical systems or as the density matrix corresponding to
the density operator acting in the Hilbert space of a tensor-product form H = H1 ⊗ H2 ⊗ · · · ⊗ Hn

associated with the multipartite system states. We show that the known entropic inequalities valid for
multipartite systems are also valid for the systems without subsystems; they characterize correlations of
the degrees of freedom of, e.g., only one single qudit state. We illustrate this statement considering
a two-qubit system (composite system) and qudit with spin j = 3/2 (noncomposite system) and
demonstrate the same entropic subadditivity condition known for two-qubit states on an example of
the state of the single qudit system.

This paper is organized as follows.
In Section 2, we review the approach where the bijective map of integers 1, 2, . . . , N onto pairs of

integers, triples of integers, etc. is used to interpret sets of nonnegative numbers ps, s = 1, 2, . . . , N

as the joint probability distributions describing random variables in bipartite, tripartite, etc. systems. In
Section 3, we discuss the use of the map to interpret a N×N matrix (table of complex numbers) that is
a Hermitian nonnegative matrix ρ with unit trace as the density matrix of the system without subsystems
or the density matrix of the bipartite, tripartite, etc. quantum system state. In Section 4, we present
the entropic subadditivity and strong subadditivity conditions in the form of numerical inequalities; this
provides the subadditivity condition for the single qudit state. In Section 5, we demonstrate the equality
known for bipartite system in the form of a matrix equality, which yields an analogous equality for
the single-qudit pure state. In Section 6, we describe the strong subadditivity condition known for the
tripartite systems in the form of a numerical matrix inequality, which provides the strong subadditivity
condition for a single qudit. We obtain the subadditivity condition for weighted entropy [35] for a single
qudit state in Section 7, discuss the entropic relation for spin tomograms in Section 8, and present relative
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entropy inequalities in Section 9. In Section 10, we give the chain relation for conditional entropy (known
for multipartite systems) for a single qudit state. Finally, we present our conclusions and the prospectives
in Section 11.

2. Set of Nonnegative Numbers as the Probability Distribution

Given N positive numbers, which we denote as ps ≥ 0, where s = 1, 2, . . . , N and
∑N

s=1 ps = 1. Let
the integer N be equal to the product of integers (N = nm). Then we can use the map (or partition)

1↔ 11, 2↔ 12, . . . ,m↔ 1m, m+ 1↔ 21, m+ 2↔ 22, . . . , N − 1↔ nm− 1, N ↔ nm.

This means that we constructed the map of nonnegative numbers ps onto nonnegative numbers Pjk,
where j = 1, 2, . . . , n and k = 1, 2, . . . ,m. The introduced map s ↔ jk means that we constructed a
function of two variables s(jk), which provides the value s(jk) for the pair of integers j and k. The table
of numbers Pjk can be interpreted as a joint probability distribution of two classical random variables.
One has the normalization condition

∑n
j=1

∑m
k=1 Pjk = 1.

The set ps can be interpreted as the probability distribution of one random variable. The interpretation
of the set Pjk as a joint probability distribution opens the possibility to introduce other sets of
nonnegative numbers, which correspond to marginal probability distributions P(1)

j =
∑m

k=1 Pjk and
P(2)
k =

∑n
j=1 Pjk.

For example, if N = 4, then p1 = P11, p2 = P12, p3 = P21, p4 = P22 and P(1)
1 = p1 + p2,

P(1)
2 = p3 + p4, P(2)

1 = p1 + p3, P(2)
2 = p2 + p4.

On the other hand, the conditional probability distributions known for bipartite systems with joint
probability distributions Pjk can be presented as sets of nonnegative numbers expressed in terms of
nonnegative numbers ps.

For N = 4, one has the pairs of nonnegative numbers PA(1|1) =
p1

p1 + p3
, PA(2|1) =

p3
p1 + p3

and PA(1|2) =
p2

p2 + p4
, PA(2|2) =

p4
p2 + p4

. The notation PA(j|k) corresponds to the conditional

probability related to the joint probability distribution of the bipartite system state Pjk given by the
Bayes formula for subsystem A. Thus, we introduce artificial subsystems A and B to associate sets of

nonnegative numbers, which we denote as PA(j|k) = Pjk∑n
j′=1 Pj′k

and PB(k|j) = Pjk∑n
k′=1 Pjk′

, with the

set of numbers ps. In view of the used map s↔ jk, the numbers PA(j|k) and PB(k|j) are expressed in
terms of nonnegative numbers ps.

The other possibility to label numbers ps takes place for N = n1n2n3, where n1, n2, and n3 are
integers. Then we employ the bijective map s ↔ jkl, where j = 1, 2, . . . n1, k = 1, 2, . . . n2, and
l = 1, 2, . . . n3.

For N = 8, one has the map

1↔ 111, 2↔ 112, 3↔ 121, 4↔ 122, 5↔ 211, 6↔ 212, 7↔ 221, 8↔ 222.

This means that we introduced a function of three variables s(jkl), which provides the integer value
s(jkl) for the triple of integers j, k, and l. The map provides the possibility to interpret the set of
N nonnegative numbers ps as the joint probability distribution Pjkl of tripartite classical system with



Entropy 2015, 17 2880

three random variables. Such an interpretation provides the possibility to construct a set of nonnegative
numbers using numbers ps, and the numbers constructed correspond to marginal probability distributions
and conditional probability distributions known for tripartite classical systems.

Thus, one has “marginals” PAj =
∑n2

k=1

∑n3

l=1 Pjkl, PBk =
∑n1

j=1

∑n3

l=1 Pjkl, PCl =
∑n1

j=1

∑n2

k=1 Pjkl,
PABjk =

∑n2

l=1 Pjkl, and PBCkl =
∑n1

j=1 Pjkl. We use the notation corresponding to the interpretation of
the set of numbers ps ↔ Pjkl as joint probability distributions corresponding to the description of the
statistics of composite systems containing three subsystems A, B, and C. One can point out that there
exist purely numerical relations of the numbers in the set of nonnegative numbers ps. In view of different
labeling of the numbers, the possibility to interpret the numbers as the probability distribution arises, but
available numerical relations are valid per se independently of the interpretation.

3. Density Matrices of Quantum States

Given N×N -matrix ρ with matrix elements ρss′ , where s, s′ = 1, 2, . . . , N , such that ρ∗ss′ = ρs′s

and Tr ρ = 1 with nonnegative eigenvalues. The matrix can be interpreted as the density matrix of a
quantum state of the qudit with j = (N − 1)/2. In this case, the matrix ρ can be considered as a matrix
representing the density operator ρ̂ acting in the Hilbert space H of the qudit (spin) states.

On the other hand, if N = nm, one can use the discussed map of integers s ↔ jk, s′ ↔ j′k′, where
jj′ = 1, 2, . . . , n and kk′ = 1, 2, . . . ,m, and identify the matrix elements ρss′ with the matrix elements
ρjk,j′k′ of the nonnegative matrix, which we denote as ρ(AB), representing the density operator ρ̂ acting
in the Hilbert space of bipartite system states H = H1 ⊗H2. This interpretation induces the possibility
to introduce new matrices ρA with matrix elements ρAjj′ =

∑m
k=1 ρjk,j′k and ρBkk′ =

∑n
j=1 ρjk,jk′ .

Since matrix ρ(AB) is nonnegative Hermitian matrix with unit trace, matrices ρA and ρB are the
n×n-matrices and m×m-matrices, respectively, such that (ρA)∗j′j = (ρA)jj′ , (ρB)∗k′k = (ρB)kk′ ,∑n

j=1 ρ
A
jj = 1,

∑m
k=1 ρ

B
kk = 1, and the eigenvalues of matrices ρA and ρB are nonnegative numbers.

The numerical matrices obtained can be interpreted as density matrices of two qudit states, respectively,
corresponding to partial tracing of the matrix ρ(AB). Numerical properties of the matrices ρss′ , ρAjj′ , and
ρBkk′ do not depend on the interpretation of these matrices as the density matrices of quantum system
states. In view of this fact, the relations like equalities and inequalities valid for matrix elements of the
matrices ρ, ρA, and ρB can be applied, if the matrix ρ is a nonnegative Hermitian matrix with nonnegative
eigenvalues or if this matrix is interpreted as the density matrix of a single qudit state, or if the matrix
is interpreted as the density matrix of a bipartite system state. This simple observation provides the
possibility to extend the matrix relations known for density matrices of bipartite systems (systems of two
qudits) to the case of a single qudit system.

Following the same approach, in which the map s ↔ jkl is used, one can consider the numerical
N×N -matrix ρss′ as a matrix with matrix elements ρjkl,j′k′l′ . This can be done if the integerN = n1n2n3,
where n1, n2, and n3 are integers. Thus, the same matrix ρ can be interpreted as the density matrix of a
three-partite quantum system; in this case, we denote this matrix as ρ(ABC) and the matrix elements as
ρss′ ↔ ρjkl,j′k′l′ .
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Similar to the case where we considered this matrix as the matrix corresponding to the bipartite system
state, now we can consider this matrix as the density matrix of a tripartite quantum system, and there is
a prescription how to obtain other nonnegative matrices by the partial tracing procedure.

Thus, one has the nonnegative matrices with unit trace denoted as ρ
(AB)
jk,j′k′ =

∑n3

l=1 ρjkl,j′k′l, ρ
(BC)
kl,k′l′ =∑n1

j=1 ρjkl,jk′l′ , and ρBkk′ =
∑n1

j=1

∑n3

l=1 ρjkl,jk′l. Here, we introduce the notation corresponding to the
notation we used in the case where the matrix ρ was the density matrix of the state of a composite
system with three subsystems A, B, and C. Then the matrices ρ

(AB)
jk,j′k′ , ρ

(BC)
kl,k′l′ , and ρBkk′ are the density

matrices of the states of subsystems ρ(AB), ρ(BC), and ρB, respectively. However, if the matrix ρ is not
associated with any density matrix of a tripartite quantum system, we simply have numerical matrices
with unit traces and nonnegative eigenvalues, and their properties do not depend on the interpretation of
the matrices as the density matrices of quantum states.

4. Entropic Subadditivity and Strong Subadditivity Conditions

For any probability distribution ps, one has the Shannon entropy

H = −
N∑
s=1

ps ln ps (1)

and q-entropy

Hq = −
N∑
s=1

pqs
p1−qs − 1

1− q
. (2)

In the limit q → 1, the entropy Hq → H .
For any density matrix ρ, one has the von Neumann entropy

S = −Tr ρ ln ρ (3)

and q-entropy

Sq = −Tr ρq
ρ1−q − 1

1− q
. (4)

Using the map (discussed in Section 2) of the probability distribution ps on the table Pjk, we can
write the inequality known as the subadditivity condition for bipartite system, which in terms of numbers
ps reads

−
n∑
j=1

(
m∑
k=1

ps(jk)

)(
ln

m∑
k′=1

ps(jk′)

)
−

m∑
k=1

(
n∑
j=1

ps(jk)

)(
ln

n∑
j′=1

ps(j′k)

)
≥ −

N∑
s=1

ps(jk) ln ps(jk). (5)

Here, we use the notation ps(jk) that shows what integer s corresponds to the pair jk according to the
map we consider. Inequality (5) is the subadditivity condition for the probability distribution ps (or for a
set of nonnegative numbers ps).
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If N = n1n2n3, we have the strong subadditivity condition for nonnegative numbers ps or the
probability distribution associated with these numbers; the inequality reads

−
n1∑
j=1

n2∑
k=1

n3∑
m=1

ps(jkm) ln ps(jkm) −
n2∑
k=1

(
n1∑
j=1

n3∑
m=1

ps(jkm)

)
ln

(
n1∑
j′=1

n3∑
m′=1

ps(j′km′)

)

≤ −
n1∑
j=1

n2∑
k=1

(
n3∑

m′=1

ps(jkm′)

)
ln

(
n3∑
m=1

ps(jkm)

)
−

n2∑
k=1

n3∑
m=1

(
n1∑
j′=1

ps(j′km)

)
ln

(
n1∑
j=1

ps(jkm)

)
. (6)

If N 6= n1n2n3, we can consider a set of Ñ numbers p̃s = (p1, p2, . . . , pN , 0, . . . , 0), with the number
of added zeros k such that Ñ = N + k = n1n2n3. For this new set p̃s, all the inequalities constructed
are valid.

5. Projector Density Matrices and New q-Entropic Equalities for Pure Qudit States

Given the N×N matrix ρ in a block form

ρ =


ρ11 ρ12 · · · ρ1n

ρ21 ρ22 · · · ρ2n

· · · · · · · · · · · ·
ρn1 ρn2 · · · ρnn

 , (7)

where N = nm and the blocks ρjk are m×m matrices. We construct matrices ρ1 and ρ2, using the
numerical tool [24–26,28,30,31]; the n×n matrix ρ1 reads

ρ1 =


Tr ρ11 Tr ρ12 · · · Tr ρ1n
Tr ρ21 Tr ρ22 · · · Tr ρ2n
· · · · · · · · · · · ·

Tr ρn1 Tr ρn2 · · · Tr ρnn

 , (8)

and the m×m matrix ρ2 is

ρ2 =
n∑
k=1

ρkk. (9)

The matrices ρ1 and ρ2 obtained from the matrix ρ (7) and given by Equations (8) and (9), respectively,
corresponds to the partial tracing procedure. In fact, if the numerical matrix ρ coincides with the density
matrix ρ(1, 2) of a two-qudit system with n = 2j1+1 andm = 2j2+1, one can check that the matrices ρ1
and ρ2 coincide with the matrices obtained by partial tracing, i.e., ρ1 = Tr2 ρ(1, 2) and ρ2 = Tr1 ρ(1, 2).
This observation provides the possibility to use all known entropic relations for the density matrices
of two-qudit systems ρ(1, 2) and density matrices of its first subsystem ρ1 and second subsystem ρ2

and apply these numerical relations to an arbitrary matrix ρ, which has the properties ρ = ρ†, ρ ≥ 0,
and Trρ = 1 characterizing the density matrices. This observation explains the principle and method
of artificial subpartitioning. Once this is understood, all multipartite inequalities can immediately be
applied. For example, the known inequality given by the nonnegativity property of mutual information
I = Tr1 ρ(1, 2) ln ρ(1, 2)− Tr ρ1 ln ρ1 − Tr ρ2 ln ρ2 ≥ 0 provides the inequality for matrices (7)–(9), i.e.,
Tr ρ ln ρ ≥ Tr ρ1 ln ρ1 + Tr ρ2 ln ρ2. Also the other entropic relations known for bipartite-system density
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matrices ρ(1, 2) can be extended to the matrices ρ (7). For example, specific equalities for entropies are
available in the case of Hermitian nonnegative matrices ρ with unit trace and extra condition ρ2 = ρ.
The equalities follow from the Araki–Lieb inequality extended to a single qudit state [33]. The matrices
ρ1 and ρ2 obtained by means of the rules (8) and (9) satisfy the following entropic equality:

Tr




Tr ρ11 Tr ρ12 · · · Tr ρ1n
Tr ρ21 Tr ρ22 · · · Tr ρ2n
· · · · · · · · · · · ·

Tr ρn1 Tr ρn2 · · · Tr ρnn

 ln


Tr ρ11 Tr ρ12 · · · Tr ρ1n
Tr ρ21 Tr ρ22 · · · Tr ρ2n
· · · · · · · · · · · ·

Tr ρn1 Tr ρn2 · · · Tr ρnn




= Tr

[(
n∑
k=1

ρkk

)
ln

(
n∑
k=1

ρkk

)]
. (10)

This equality can be easily obtained using the same observation. If we identify the matrix ρ with the
density matrix ρ(1, 2) of the pure state of a bipartite quantum system and ρ1 and ρ2 as the density matrices
of the subsystem states of the bipartite quantum system (composite system), equality (10) means that the
von Neumann entropies of the subsystem states are equal. The nonzero eigenvalues of matrices ρ1 and
ρ2 coincide. These properties of pure states of bipartite systems are well known. Thus, we obtain this
equality for the pure state of noncomposite system.

There exists the other q-entropic equality valid for such matrices ρ1 and ρ2, which can be easily
checked, namely,

Tr




Tr ρ11 Tr ρ12 · · · Tr ρ1n
Tr ρ21 Tr ρ22 · · · Tr ρ2n
· · · · · · · · · · · ·

Tr ρn1 Tr ρn2 · · · Tr ρnn


q



Tr ρ11 Tr ρ12 · · · Tr ρ1n
Tr ρ21 Tr ρ22 · · · Tr ρ2n
· · · · · · · · · · · ·

Tr ρn1 Tr ρn2 · · · Tr ρnn


1−q

− 1




= Tr


(

n∑
k=1

ρkk

)q
( n∑

k=1

ρkk

)1−q

− 1

 . (11)

If we take into account the limit q → 1 in the expression for q-entropy, equality (11) converts to (10).
Equality (11) is valid for Tsallis entropies of two density matrices ρ1 and ρ2 of the subsystem states

in the case where the matrix ρ is the density matrix of the bipartite-system quantum state. It is clear that
this equality is valid for the noncomposite-system state as well.

Such the equality can also be applied for the qutrit state,

Tr


(
ρ11 + ρ−1−1 ρ10

ρ01 ρ00

)
q

(ρ11 + ρ−1−1 ρ10

ρ01 ρ00

)1−q

− 1


= Tr

{(
ρ11 + ρ00 ρ1−1

ρ−11 ρ−1−1

)q [(
ρ11 + ρ00 ρ1−1

ρ−11 ρ−1−1

)
1−q − 1

]}
. (12)

The difference of the left and right hand sides of equality (12) can characterize the degree of coherence
of the qutrit state, in addition to the purity parameter µ = Tr ρ2. Analogously, for a mixed state of a
single qudit, the difference (Tr ρ1 ln ρ1 − Tr ρ2 ln ρ2) is a characteristic of the state purity.
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The test of purity in Equation (10) is certainly not useful if one already knows the entire density
matrix but, if one obtains from the experiment the matrices ρ1 and ρ2 only, equality (10) witnesses that
the matrix ρ corresponds to the pure state. This fact is a motivation to discuss such entropic equality both
for composite and noncomposite (qudit) systems.

If N 6= nm, one can introduce the matrix ρ̃ =

(
ρ 0

0 0

)
, using Ñ = N + k = nm, analogously to the

tool we employed in the case of the set of numbers; all the matrix relations obtained above are valid for
the matrix ρ̃.

6. The Strong Subadditivity Condition for a Single Qudit State

If N = n1n2n3, one can use the notation ρjkl,j′k′l′ for matrix elements of the matrix ρss′ , where
j′, j = 1, 2, . . . , n1, k′, k = 1, 2, . . . , n2, and l′, l = 1, 2, . . . , n3. This means that we apply the map of
integers 1, 2, . . . onto the triples of integers, i.e., the integer s(s′) is considered as a function of three
variables s(jkl) [s′(j′k′l′)]. Thus, one has the nonnegative matrix ρ = ρ† with unit trace and matrix
elements ρs,s′ ≡ ρs(jkl),s′(j′k′l′). If this matrix is the density matrix of a tripartite quantum system (e.g., a
system of three qudits), it satisfies the strong subadditivity condition for von Neumann entropies of the
system S(A,B,C) and three its subsystems S(AB), S(BC), and S(B), where

S(A,B,C) = −
N∑
s=1

(
ρ(A,B,C) ln ρ(A,B,C)

)
ss
≡ −

n1∑
j=1

n2∑
k=1

n3∑
l=1

[(
ρ ln ρ

)
s(jkl),s(jkl)

]
, (13)

with the density matrices of the subsystems

ρ(A,B) = TrC ρ(A,B,C), ρ(B,C) = TrA ρ(A,B,C), ρ(B) = TrAC ρ(A,B,C). (14)

The interpretation of an arbitrary nonnegative matrix ρs(jkl), s′(j′k′l′) as the density matrix of tripartite
system provides the possibility to write the strong subadditivity condition for the matrix elements of this
matrix even in the case where this N×N -matrix is the density matrix ρss′ of a single qudit state. An
explicit form of the strong subadditivity condition for the N×N -matrix ρss′ reads

− Tr ρ ln ρ− Tr ρ2 ln ρ2 ≤ −Tr ρ12 ln ρ12 − Tr ρ23 ln ρ23, (15)

where the matrices ρ12, ρ23, and ρ2 have the matrix elements

(ρ12)jk,j′k′ =

n3∑
l=1

ρs(jkl),s′(j′k′l),

(ρ23)kl,k′l′ =

n1∑
j=1

ρs(jkl),s′(jk′l′), (16)

(ρ2)k,k′ =

n1∑
j=1

(ρ12)jk,jk′ =

n3∑
l=1

(ρ23)kl,k′l.

For example, if the matrix ρ is the density matrix of the qudit state with j = 3, we obtain the strong
subadditivity condition

− Tr ρ ln ρ−
2∑

k=1

(
ρ2 ln ρ2

)
kk
≤ −

4∑
s=1

(
ρ12 ln ρ12

)
ss
−

4∑
s=1

(
ρ23 ln ρ23

)
ss
, (17)
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using the 8×8-matrix ρ̃ of the form ρ̃ =

(
ρ 0

0 0

)
and employing the equality Tr ρ ln ρ = Tr ρ̃ ln ρ̃. Here,

the 8×8-matrix ρ̃ reads

ρ̃ =



ρ11 ρ12 ρ13 ρ14 ρ15 ρ16 ρ17 0

ρ21 ρ22 ρ23 ρ24 ρ25 ρ26 ρ27 0

ρ31 ρ32 ρ33 ρ34 ρ35 ρ36 ρ37 0

ρ41 ρ42 ρ43 ρ44 ρ45 ρ46 ρ47 0

ρ51 ρ52 ρ53 ρ54 ρ55 ρ56 ρ57 0

ρ61 ρ62 ρ63 ρ64 ρ65 ρ66 ρ67 0

ρ71 ρ72 ρ73 ρ74 ρ75 ρ76 ρ77 0

0 0 0 0 0 0 0 0


, (18)

and 4×4-matrices ρ12 and ρ23 and 2×2-matrix ρ2 are

ρ12 =


ρ11 + ρ22 ρ13 + ρ24 ρ15 + ρ26 ρ17

ρ31 + ρ42 ρ33 + ρ44 ρ35 + ρ46 ρ37

ρ51 + ρ62 ρ53 + ρ64 ρ55 + ρ66 ρ57

ρ71 ρ73 ρ75 ρ77

 , (19)

ρ23 =


ρ11 + ρ55 ρ12 + ρ56 ρ13 + ρ58 ρ14

ρ21 + ρ65 ρ22 + ρ66 ρ23 + ρ67 ρ24

ρ31 + ρ75 ρ32 + ρ76 ρ33 + ρ77 ρ34

ρ41 ρ42 ρ43 ρ44

 , (20)

ρ2 =

(
ρ11 + ρ22 + ρ55 + ρ66 ρ13 + ρ24 + ρ57

ρ31 + ρ42 + ρ75 ρ33 + ρ44 + ρ77

)
. (21)

Thus, we presented the strong subadditivity condition for the qudit density matrix ρmm′ ↔ ρss′ in the
case of j = 3, where the notation for spin projections m,m′ = −3,−2,−1, 0, 1, 2, 3 is mapped as
mm′ ↔ ss′ = 1, 2, 3, 4, 5, 6, 7.

Inequality (17) can be checked in the experiments with superconducting circuits where the states of
the seven-level systems can be constructed.

7. The Subadditivity Condition for Quantum Weighted Entropy of a Single Qudit State

Recently [35], the notion of weighted entropy was introduced for quantum states. For the density
matrix ρ, the entropy is defined as

Sϕ(ρ) = −Tr (ϕρ ln ρ), (22)

where ϕ is called the weight, being the Hermitian positively definite matrix.
The subadditivity condition for entropy of the bipartite-system state with the density matrix ρ(A,B)

has been proven in [35].
When the subadditivity condition is formulated for a bipartite system, the weight matrix ϕAB is chosen

in the product form corresponding to the density matrix ρ(AB). There are two conditions for the weight
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matrix, namely, ϕAB = ϕA ⊗ ϕB and TrϕABρ(A,B) ≥ TrA
(
ϕAρ(A)

)
TrB

(
ϕBρ(B)

)
. Then one has

the inequality
SϕAB

ρ(A,B) ≤ SψA
ρ(A) + SψB

ρ(B), (23)

where
ψA ρA = TrB

(
ϕAB ρAB

)
, ψB ρB = TrA

(
ϕAB ρAB

)
. (24)

The inequality for ϕAB = 1 yields the standard subadditivity condition for bipartite system.
Now we extend this inequality to the case of a single qudit state using the map of integers onto pairs of

the integers, N = nm. In this approach, the weighted subadditivity condition is formulated as a matrix
inequality for given N×N -matrices, where ϕ, ρ, and N = nm are as follows. We take a specific matrix
ϕ = ϕ1 × ϕ2, where ϕ1 and ϕ2 are the n×n-matrix and m×m-matrix, respectively. Then an analog of
the weighted subadditivity condition (23) for the single-qudit density matrix (7), presented in the block
form with blocks ρjk, reads

− Tr (ϕ1⊗ϕ2 ρ ln ρ) ≤ −Tr (ϕ̃1ρ1) ln ρ1 − Tr (ϕ̃2ρ2) ln ρ2. (25)

Here, ϕ̃1ρ1 =


Tr ρ̃11 Tr ρ̃11 · · · Tr ρ̃1n
Tr ρ̃21 Tr ρ̃22 · · · Tr ρ̃2n
· · · · · · · · · · · ·

Tr ρ̃n1 Tr ρ̃n2 · · · Tr ρ̃nn

, ϕ̃2ρ2 =
∑n

k=1 ρ̃kk, matrices ρ1 and ρ2 are given by

Equations (8) and (9), respectively, and the matrix ϕ1 ⊗ ϕ2 ρ is presented in a block form analogous to
Equation (7) with m×m blocks ρ̃jk.

We point out that the N×N -matrix ϕ, in general, is not obligatory expressed as ϕ = ϕ1 ⊗ ϕ2. To
formulate inequality (25) for the single-qudit state, we employ weights ϕ having the product form only.

For unit matrix ϕ, the weighted inequality (25) becomes an inequality, which is the subadditivity
condition for the matrix ρ, e.g., for the single qudit state.

The weighted subadditivity condition for the single qudit state (25) can be checked experimentally.

8. Spin Tomography Inequality

The density operators ρ̂ of qudit states can be described by tomographic-probability-distribution
functions (spin tomograms) [8,9,36].

For a single qudit with j = (N − 1)/2, the tomogram w(m|u) reads

w(m|u) = Tr Û(m,u)ρ̂, (26)

where dequantizer operator Û(m,u) = (u | m〉〈m | u†) with m = −j,−j + 1, . . . , j − 1, j and u the
unitary N×N -matrix. The matrix can be considered also as the matrix of irreducible representation of
the SU(2) group. In this case, the tomogram is the function w(m | ~n), where ~n is unit vector (~n2 = 1)

defined by two angles, i.e., ~n = (sin θ cosϕ, sin θ sinϕ, cos θ).
The physical meaning of the tomogram is that it is equal to the probability distribution to get in

the state ρ̂ the spin projection m on the direction ~n. The tomogram w(m|~n) can be interpreted as the
conditional probability distribution [33] to obtain the projection m on a given direction ~n.
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If the qudit is associated with N -level atom, the qudit tomogram w(m|u) is the probability to get
the population of the levels in a reference frame in the atomic-state Hilbert space rotated by the global
unitary transform matrix u. In this case, we map the indices m = −j,−j + 1, . . . , j − 1, j to integers
s = 1, 2, . . . , N which label the atomic levels; the integers s are functions s(jk).

Now we are in the position to obtain a new entropic inequality for the quantum qudit state applying
the approach discussed in Section 4 to spin tomograms.

Thus, for tomogram of the qudit state with j = (N − 1)/2, where N = nm, a new subadditivity
condition for Tsallis entropy reads

−
n∑
j=1

m∑
k=1

wq
(
s(jk)|u

) w1−q(s(jk)|u)− 1

1− q

≤ −
n∑
j=1

(
wq1
(
s(j)|u

) w1−q
1

(
s(j)|u

)
− 1

1− q

)
−

m∑
k=1

(
wq2
(
s(k)|u

) w1−q
2

(
s(k)|u

)
− 1

1− q

)
, (27)

where

w1

(
s(j)|u

)
=

m∑
k=1

w
(
s(jk)|u

)
, w2

(
s(k)|u

)
=

n∑
j=1

w
(
s(jk)|u

)
. (28)

In the limit q → 1, one has the subadditivity condition for Shannon entropies of the form (5) associated
with the tomogram. Inequality (27) can be checked experimentally.

As an example of this inequality, we consider the state of spin with j = 3/2. The tomogram of this
state is the probability distribution with values

w
(
+ 3/2|u

)
≡ w

(
s(11)|u

)
, w

(
+ 1/2|u

)
≡ w

(
s(12)|u

)
,

(29)
w
(
− 1/2|u

)
≡ w

(
s(21)|u

)
, w

(
− 3/2|u

)
≡ w

(
s(22)|u

)
,

where the function s(11) = 1, s(12) = 2, s(21) = 3, and s(22) = 4.
The subadditivity condition for this qudit-state tomogram written in terms of tomographic Shannon

entropic inequality reads

−
[
w
(
+ 3/2 |~n

)
lnw

(
+ 3/2 |~n

)
+ w

(
+ 1/2 |~n

)
lnw

(
+ 1/2 |~n

)
+w
(
− 1/2 |~n

)
lnw

(
− 1/2 |~n

)
+ w

(
− 3/2 |~n

)
lnw

(
− 3/2 |~n

)]
≤ −

{[
w
(
+ 3/2 |~n

)
+ w

(
+ 1/2 |~n

)]
ln
[
w
(
+ 3/2 |~n

)
+ w

(
+ 1/2 |~n

)]
+
[
w
(
− 1/2 |~n

)
+ w

(
− 3/2 |~n

)]
ln
[
w
(
− 1/2 |~n

)
+ w

(
− 3/2 |~n

)]}
−
{[
w
(
+ 3/2 |~n

)
+ w

(
− 1/2 |~n

)]
ln
[
w
(
+ 3/2 |~n

)
+ w

(
− 1/2 |~n

)][
w
(
+ 1/2 |~n

)
+ w

(
− 3/2 |~n

)]
ln
[
w
(
+ 1/2 |~n

)
+ w

(
− 3/2 |~n

)]}
; (30)

this new inequality can also be checked in the experiments with superconducting circuits nuclear
magnetic resonance discussed, e.g., in [37,38].

It is worth noting that other inequalities of the form (30) where one uses the permutation of spin
projections m are valid.

If we interpret the density operator ρ̂ being correspondent to the state of two qudits with j1 and j2, the
tomogram w(m1,m2|u) is given by the formula

w(m1,m2|u) = Tr
(
ρ̂u | m1m2〉〈m1m2 | u†

)
;
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it is the conditional probability distribution to get the spin projections m1 and m2 for given global
transform u. If u = u1 ⊗ u2, where u1 and u2 are local unitary transforms depending on the angles
determined by two directions ~n1 and ~n2, the tomogram w(m1,m2|~n1, ~n2) is the conditional probability
for the given directions to get the corresponding projections m1 and m2, respectively. For such an
interpretation of the matrix ρ, one has inequality (27), where the map m1,m2 ↔ jk ↔ s(jk) is used.

Now we present an analog of inequality (30) for the density matrix ρ of the two-qubit state; in this
case, the density matrix has matrix elements ρm1m2,m′

1m
′
2)

, where m1m2(m
′
1m
′
2) take values ±1/2, and

the tomogram w(m1,m2|~n1, ~n2) satisfies the known entropic inequality:

−
[
w
(
+ 1/2 + 1/2 |~n1~n2

)
lnw

(
+ 1/2 + 1/2 |~n1~n2

)
+w
(
+ 1/2 − 1/2 |~n1~n2

)
lnw

(
+ 1/2 − 1/2 |~n1~n2

)
+w
(
− 1/2 + 1/2 |~n1~n2

)
lnw

(
− 1/2 + 1/2 |~n1~n2

)
+w
(
− 1/2 − 1/2 |~n1~n2

)
lnw

(
− 1/2 − 1/2 |~n1~n2

)]
≤ −

{[
w
(
+ 1/2 + 1/2 |~n1~n2

)
+ w

(
+ 1/2 − 1/2 |~n1~n2

)]
× ln

[
w
(
+ 1/2 + 1/2 |~n1~n2

)
+ w

(
+ 1/2 − 1/2 |~n1~n2

)]
+
[
w
(
− 1/2 + 1/2 |~n1~n2

)
+ w

(
− 1/2 − 1/2 |~n1~n2

)]
× ln

[
w
(
− 1/2 + 1/2 |~n1~n2

)
+ w

(
− 1/2 − 1/2 |~n1~n2

)]}
−
{[
w
(
+ 1/2 + 1/2 |~n1~n2

)
+ w

(
− 1/2 + 1/2 |~n1~n2

)]
× ln

[
w
(
+ 1/2 + 1/2 |~n1~n2

)
+ w

(
− 1/2 + 1/2 |~n1~n2

)]
+
[
w
(
+ 1/2 − 1/2 |~n1~n2

)
+ w

(
− 1/2 − 1/2 |~n1~n2

)]
× ln

[
w
(
+ 1/2 − 1/2 |~n1~n2

)
+ w

(
− 1/2 − 1/2 |~n1~n2

)]}
. (31)

This inequality is the subadditivity condition for the joint tomographic probability distribution of the
two-qubit state. The entanglement property of two-qubit states exists; e.g., in this case, the pure state
reads 2−1/2

(
| +1/2 + 1/2〉+ | −1/2 − 1/2〉

)
. An analogous entanglement property takes place for

the qudit state with j = 3/2, which is the pure state 2−1/2
(
| +3/2〉+ | −3/2〉

)
. The density matrices

of these states are identical numerical matrices; they cannot be presented in the form of convex sum
of tensor products of 2×2-matrices ρ(k)1 ⊗ ρ

(k)
2 , where numerical matrices ρ(k)1 and ρ(k)2 are nonnegative

Hermitian matrices with unit trace.
The entanglement of two-qubit states reflects the presence of strong quantum correlations of the

subsystem degrees of freedom. The analogous entanglement of the single qudit state with j = 3/2

reflects the strong quantum correlations of the degrees of freedom (spin projections m) of the same
noncomposite system. The entanglement of composite system is the resource for quantum technologies.
The strong correlations (analogous to entanglement) of the single-qudit states can also provide an
additional resource for quantum technologies. The presence of strong correlations in the qudit state
with j = 3/2 corresponds to the subadditivity condition (30).

We address the question how the numerical 4×4-matrix ρss′ contains information on correlations in
two different quantum systems. One system is a bipartite system of two qubits, and the other one is a
single qudit with the j = 3/2 state. The answer to this question is related to the interpretation of the
numerical matrix elements.
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For two qubits, the matrix elements are interpreted as the matrix elements of the density operator in
the basis | m,m′〉, m,m′ = ±1/2.

For a qudit, the same matrix elements are interpreted as the matrix elements of the density operator
in the basis | m〉, m = +3/2,+1/2,−1/2,−3/2.

Quantum correlations in two-qubit systems are the correlations between the events where one
measures the spin projection m1 = ±1/2 of the first qubit or m2 = ±1/2 of the second qubit; thus, the
correlations are interpreted as correlations between the degrees of freedom of two different subsystems.

For a qudit with j = 3/2, analogous measurements mean that one measures correlations between the
following events. Analogs of the events, where m1 = ±1/2, are the events, where the spin projections
m = +3/2,+1/2 and m = −3/2,−1/2 are observed, while analogs of the events, where m2 = ±1/2,
are the events, where the spin projections m = +3/2,−1/2 and m = −3/2,+1/2, are observed.

Thus, for a single qudit with j = 3/2, the quantum correlations between such events are described by
the same numerical matrix ρss′ , which describes the quantum correlations between the subsystems (two
qubits) in the composite quantum system.

9. Relative Entropy Inequality for a Single Qudit

The relative entropy for states with the density matrices ρ and σ reads (see, e.g., [37])

S(ρ‖σ) = Tr(ρ ln ρ− ρ lnσ) ≥ 0. (32)

The relative entropy for the bipartite system has the property

S
(
ρ(AB)‖σ(AB)

)
≥ S

(
ρ(A)‖σρ(A)

)
. (33)

We use the map of integers s → s(jk) to write the property of the relative entropy in numerical
form, which can be used to formulate an analog of the property (33) for a single qudit state. In fact,
Equation (33) can be rewritten in the form of inequality

Tr



ρ11 ρ12 · · · ρ1n

ρ21 ρ22 · · · ρ2n

· · · · · · · · · · · ·
ρn1 ρn2 · · · ρnn


ln


ρ11 ρ12 · · · ρ1n

ρ21 ρ22 · · · ρ2n

· · · · · · · · · · · ·
ρn1 ρn2 · · · ρnn

− ln


σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n

· · · · · · · · · · · ·
σn1 σn2 · · · σnn





≥ Tr




Tr ρ11 Tr ρ11 · · · Tr ρ1n
Tr ρ21 Tr ρ22 · · · Tr ρ2n
· · · · · · · · · · · ·

Tr ρn1 Tr ρn2 · · · Tr ρnn


ln


Tr ρ11 Tr ρ11 · · · Tr ρ1n
Tr ρ21 Tr ρ22 · · · Tr ρ2n
· · · · · · · · · · · ·

Tr ρn1 Tr ρn2 · · · Tr ρnn



− ln


Trσ11 Trσ11 · · · Trσ1n
Trσ21 Trσ22 · · · Trσ2n
· · · · · · · · · · · ·

Trσn1 Trσn2 · · · Trσnn



 . (34)

This inequality is valid for an arbitrary N×N -matrix ρ and matrix σ of the block form (7); the matrices
have the matrix elements Tr (ρjk) and Tr (σjk). If matrices ρ and σ are density matrices of the single
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qudit state with j = (N − 1)/2, inequality (34) characterizes quantum correlations in the system under
study. For example, if j = 3/2, the relative entropy inequality for the qudit state with matrices ρmm′ and
σmm′ (mm′ = 3/2, 1/2,−1/2,−3/2) reads

− Tr


ρ3/2 3/2 ρ3/2 1/2 ρ3/2−1/2 ρ3/2−3/2

ρ1/2 3/2 ρ1/2 1/2 ρ1/2−1/2 ρ1/2−3/2

ρ−1/2 3/2 ρ−1/2 1/2 ρ−1/2−1/2 ρ−1/2−3/2

ρ−3/2 3/2 ρ−3/2 1/2 ρ−3/2−1/2 ρ−3/2−3/2


ln


ρ3/2 3/2 ρ3/2 1/2 ρ3/2−1/2 ρ3/2−3/2

ρ1/2 3/2 ρ1/2 1/2 ρ1/2−1/2 ρ1/2−3/2

ρ−1/2 3/2 ρ−1/2 1/2 ρ−1/2−1/2 ρ−1/2−3/2

ρ−3/2 3/2 ρ−3/2 1/2 ρ−3/2−1/2 ρ−3/2−3/2



− ln


σ3/2 3/2 σ3/2 1/2 σ3/2−1/2 σ3/2−3/2

σ1/2 3/2 σ1/2 1/2 σ1/2−1/2 σ1/2−3/2

σ−1/2 3/2 σ−1/2 1/2 σ−1/2−1/2 σ−1/2−3/2

σ−3/2 3/2 σ−3/2 1/2 σ−3/2−1/2 σ−3/2−3/2




≥ −Tr

(
ρ3/2 3/2 + ρ1/2 1/2 ρ3/2−1/2 + ρ1/2−3/2

ρ−1/2 3/2 + ρ−3/2 1/2 ρ−1/2−1/2 + ρ−3/2−3/2

)

×

[
ln

(
ρ3/2 3/2 + ρ1/2 1/2 ρ3/2−1/2 + ρ1/2−3/2

ρ−1/2 3/2 + ρ−3/2 1/2 ρ−1/2−1/2 + ρ−3/2−3/2

)

− ln

(
σ3/2 3/2 + σ1/2 1/2 σ3/2−1/2 + σ1/2−3/2

σ−1/2 3/2 + σ−3/2 1/2 σ−1/2−1/2 + σ−3/2−3/2

)]
. (35)

The inequalities presented are explicit inequalities for density matrices of single qudit states; they can be
checked experimentally.

10. Chain Rule for Conditional Entropy of Single Qudit States

As we discussed in Section 2, the notion of conditional entropy is applied to the system with
subsystems and it is related to the joint probability distributions. In addition, one can introduce it for the
system without subsystems. We use this tool to consider the quantum system, which is a single qudit
with j = (N − 1)/2, where N = nm. Then, one can associate conditional probability distributions with
the qudit-state tomogram w(m|u), where u is unitary N×N -matrix and m = −j,−j + 1, . . . , j − 1, j.

We demonstrate such a procedure on the example of j = 3/2. In this case, the tomographic
probability distribution is given by four nonnegative numbers ps, s = 1, 2, 3, 4, where p1 = w(+3/2|u),
p2 = w(+1/2|u), p3 = w(−1/2|u), p4 = w(−3/2|u), and

∑4
s=1 ps = 1. Using the map discussed in

Section 2, we obtain the entropic chain rule in the form of equality

H(AB) = H(A|B) +H(B), (36)

where the Shannon tomographic entropy of the system state reads

H(AB) = −w(+3/2|u) lnw(+3/2|u)− w(+1/2|u) lnw(+1/2|u)
−w(−1/2|u) lnw(−1/2|u)− w(−3/2|u) lnw(−3/2|u), (37)

and the marginal Shannon tomographic entropy H(B) for the single-qudit state with j = 3/2 is

H(B) = −
[
w(+3/2|u) + w(+1/2|u)

]
ln
[
w(+3/2|u) + w(+1/2|u)

]
−
[
w(−1/2|u) + w(−3/2|u)

]
ln
[
w(−1/2|u) + w(−3/2|u)

]
. (38)
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The conditional tomographic entropy H(A|B) for the single-qudit state with j = 3/2 can be
expressed in terms of the numbers ps ↔ w(u|m); in an explicit form, it is given as follows:

H(A|B) =
[
w(+3/2|u) + w(+1/2|u)

]
ln
[
w(+3/2|u) + w(+1/2|u)

]
+
[
w(−1/2|u) + w(−3/2|u)

]
ln
[
w(−1/2|u) + w(−3/2|u)

]
−w(+3/2|u) lnw(+3/2|u)− w(+1/2|u) lnw(+1/2|u)
−w(−1/2|u) lnw(−1/2|u)− w(−3/2|u) lnw(−3/2|u). (39)

Thus, we introduced the notion of conditional entropy for systems without subsystems. The chain
rule (36) can be extended, if one interprets the probability w(m|u) for the single-qudit state as the joint
probability distribution for an artificial multipartite system.

11. Conclusions

To conclude, we list the main results of our work.
First of all, it is worth pointing out that in this work we did not derive or discover new inequalities but

did use the well-known for bipartite and multipartite systems entropic and information relations to attract
attention of the researchers to the fact that, by employing the subpartition tools, these inequalities can be
also applied to the system which does not contain subsystems, e.g., for a single qudit. For noncomposite
systems, the relations discussed here, like the subadditivity condition, were not discussed in the literature.

The motivation of writing such entropic relations in explicit matrix forms is connected with recent
discussions of experimental studies of qudit density matrices given, for example, in [37–39], where the
information matrix formulas can be checked using the data characterizing the superconducting quantum
circuits realized by Josephson junctions [14–16].

We reviewed the approach to the set of nonnegative numbers and Hermitian nonnegative matrices with
unit trace, in view of the interpretation of the numbers and the matrices as the probability distributions
and the density matrices, respectively, elaborated in [17–26]. We showed that the known entropic
inequalities, which are applied to composite systems, both classical and quantum, can be also applied to
the systems without subsystems. We obtained a new entropic equality, in view of the interpretation of
the density matrix of this state as the density matrix of an artificial bipartite system. The inequalities and
equalities obtained can be checked experimentally. Equalities (10) and (11) can be used to characterize
the purity of mixed states.

In fact, the approach presented provides the possibility to extend all known entropic and information
relations for classical and quantum composite systems to the case of systems without subsystems, and
the relations reflect the presence of correlations either classical or quantum ones of the system degrees of
freedom. Tomographic inequality (30) is a very simple inequality known for the nonnegative numbers
w(m | ~n) but, from the viewpoint of the tomographic analysis of a single qudit state, it is a new relation
that should be satisfied by the experimental data. The quantum correlations of the single qudit states can
be used in quantum technologies, analogously to the usage of entanglement as quantum resource.

We conclude that there are several aspects in the presented approach [32]. One has a set of nonnegative
numbers and numerical relations (equalities and inequalities) for these numbers. Analogously, there exist
sets of complex numbers organized as tables or nonnegative Hermitian matrices with different labeling
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of their matrix elements and the numerical relations for the matrix elements. The nonnegative numbers
and matrices can be interpreted as the probability distributions or density matrices of physical systems.
The same set of numbers and the same matrices can be interpreted as the probability distributions or
density matrices of quantum states of different composite or noncomposite systems. This provides
the possibility to extend the numerical matrix relations known for particular physical systems, e.g.,
composite ones, to the other systems, including noncomposite systems, since the relations do not depend
on the interpretation of the numerical equalities and inequalities. This tool was used in our work.

On the other hand, the interpretation of the mathematical equalities and inequalities as properties of
classical and quantum correlations provides a tool to suggest the experimental check of new equalities
and inequalities for the physical systems and employ the found quantum correlations in single-qudit
states as a possible resource for quantum technologies. The discussed quantum correlations, which can
be employed in quantum technologies, are available in such systems as multilevel atoms and quantum
circuits modeled by Josephson junctions [37]. One can use the approach reviewed in this work in
applications for constructing the Deutsch algorithm [38,39]. We consider these aspects of the presented
approach in a future publication.
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