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Abstract: Ground-level ozone concentration is a key indicator of air quality. There may exist

sudden changes in ozone concentration data over a long time horizon, which may be caused

by the implementation of government regulations and policies, such as establishing exhaust

emission limits for on-road vehicles. To monitor and assess the efficacy of these policies, we

propose a methodology for detecting changes in ground-level ozone concentrations, which

consists of three major steps: data transformation, simultaneous autoregressive modelling

and change-point detection on the estimated entropy. To show the effectiveness of the

proposed methodology, the methodology is applied to detect changes in ground-level ozone

concentration data collected in the Toronto region of Canada between June and September

for the years from 1988 to 2009. The proposed methodology is also applicable to other

climate data.

Keywords: change-point detection; Box–Cox transformation; entropy; ozone concentration;

spatial dependence; simultaneous autoregressive modelling
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1. Introduction

Air quality has attracted more attention in the past 50 years. Climate change itself may have a direct

impact on air quality. Air quality change may also be caused by human activities. The quantitative

change of air quality includes its mean change, variance change, quantile change, correlation change,

and so on.

Ground-level ozone concentration is a key indicator of air quality. Exposure to high levels of ozone

can cause problems for people with respiratory and heart problems and agricultural crop loss. For

this reason, specialists, in conjunction with public institutions, have been carrying out investigations

in areas related to ozone and health [1]. Several statistical methodologies have been applied to

model the ground-level ozone concentration data, which include multivariate models [2,3], quantile

regression [4,5], non-linear time series [6–8] and hierarchical Bayesian kriging [9,10]. However, most

of these approaches assume the temporal homogeneity of the stochastic processes involved, which may

not hold over longer time horizons.

Ground-level ozone results from photochemical reactions between oxides of nitrogen and volatile

organic compounds in the presence of sunlight. In many countries, the transportation sector is now the

single largest source of ground-level ozone concentration. Regulations establishing limits for gaseous

and particulate compounds emitted by on-road vehicles were promulgated by different countries. In

order to monitor and assess the efficacy of these and future policies, it is important to develop adequate

statistical methods to measure the impact of the regulations on the dynamics of various pollutants,

especially with regard to the set standards [11].

To address this issue, some authors have modelled the exceedances of air pollution concentrations

using non-homogeneous Poisson processes [11–13]. However a non-homogeneous Poisson process is

only a point process, which does not include the spatial correlation between different areas. In contrast,

entropy can be used to measure the various spatial uncertainties, which include the uncertainties in both

spatial variance and spatial dependence. Thus, in this paper, we consider using entropy to investigate

the spatial properties of the index of air quality. We remark that entropy has been used to predict ozone

observations, e.g., [14], or to design national air pollution monitoring networks in Fuentes [9,15], among

others.

It is noted that functional data analysis and control charts have been proposed to detect outliers in gas

emissions in the literature (e.g., [16,17]). These methods can be used to monitor abnormal air quality due

to a short-term climate change or unusual human activity. However, they are not appropriate for studying

the long-term effect of air quality change caused by some policies and regulations of environmental

agencies, because of their ability to find abnormalities.

The article is arranged as follows: Section 2 presents the methodology for the detection of changes

in ground-level ozone concentrations via entropy. The proposed methodology is applied to a real data in

Section 3. The discussion is given in Section 4.

2. The Methodology

Let Xi,t, i = 1, . . . , N ; t = 1, . . . , T , be the ozone concentration data collected in T days from

N monitoring stations. In general, Xi,t are not normally distributed or even approximately normally
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distributed. To tackle this problem, we can first transform the data by applying the Box–Cox power

transformation,with the parameter λ:

Zi,t(λ) =















Xλ
i,t − 1

λ
, λ 6= 0,

log(Xi,t), λ = 0.

(1)

How to choose λ will be given later.

In order to account for the periodicity and temporal autocorrelation in Zi,t(λ), t = 1, . . . , T , for each

fixed i, it is assumed that Zi,t(λ), t = 1, . . . , T , is an autoregressive time series with period 2L. Thus, to

model the data, we employ the Fourier series expansion to reflect its periodic properties, while using the

autoregressive formulation to describe its autocorrelation structure as follows:

Zi,t(λ) = ai,0(λ) +

p
∑

j=1

[

ai,j(λ) cos

(

jπ

L
t

)

+ bi,j(λ) sin

(

jπ

L
t

)]

+

q
∑

k=1

ci,k(λ)Zi,t−k(λ) + εi,t(λ), (2)

where ai,0(λ), ai,j(λ), bi,j(λ), j = 1, . . . , p, ci,k(λ), k = 1, · · · , q are unknown regression coefficients,

p is the order of the truncated Fourier series, q is the lag order of the autoregressive representation and

εi,t(λ), t = 1, . . . , N , are random errors.

The problem remains how to model {εi,t(λ)}, which should be allowed to vary in space and time. To

tackle this problem, we can borrow the strength of a simultaneous autoregressive (SAR) model, which

is often used in spatial statistics for modelling the spatial correlation of quantities of interest in a region

and the regression relation between quantities of interest and explanatory variables. The parameter

estimation for a SAR model can be given by employing the maximum likelihood method [18] or a

Bayesian method [19]. Put ε·t = (ε1,t, · · · , εN,t)
′. We model {ε·t} by the following SAR model:

(IN − ρtW )ε·t = ǫt, (3)

where IN is an N × N identity matrix, {ρt} are spatial parameters, W is a weight matrix and ǫt =

(ǫ1,t, · · · , ǫN,t)
′ are independently normally distributed random errors with zero means and diagonal

covariance matrix σ2
t IN . Thus, the density function of ε·t is:

f(ε·t) = |2πΣt|−1/2 exp

{

−1

2
ε
′
·tΣ

−1
t ε·t

}

,

where Σt = σ2
t [(IN − ρtW )−1]

′
(IN − ρtW )−1. Following Ahmed and Gokhale (1989) [20], the

differential entropy of the multivariate normal distribution is:

ht = −E {log [f(ε·t)]} =
1

2
log [(2πe)n|Σt|] . (4)

There may exist sudden changes in ozone concentration data over a long time horizon, which may

be caused by the implementation of government regulations and policies, such as establishing exhaust

emission limits for on-road vehicles. To monitor and assess the efficacy of these policies, there is a

need to detect changes in ground-level ozone concentrations, which can be fulfilled by detecting sudden
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changes in the time sequence {ht}. Denote the number of sudden changes by g and denote these g

change-points by k∗
1, · · · , k∗

g , such that 1 < k∗
1 < k∗

2 < · · · < k∗
q < T . Thus, ht can be expressed as:

ht = θ0 +

g
∑

l=1

θlI(k∗
l
,∞)(t), (5)

where IA(t) is an indicator function of the set A, i.e.,

IA(t) =

{

1, if t ∈ A,

0, if t 6∈ A,

and θl 6= 0 for l = 1, . . . , g. The aim of this paper is to estimate g and k∗
1, . . . , k

∗
g , which can be done

by the method given in [21]. Let m = ⌊
√
T ⌋ and p = ⌊T/m⌋, where ⌊c⌋ denotes the largest integer

less than or equal to c. Denote θ = (θ1, . . . , θp)
′. By Jin, Shi and Wu (2013) [21], the estimate of θ is

given by:

θ̂ = argmin
θ







T
∑

t=1



ht −
⌊t/m⌋
∑

j=0

θj





2

/T +

p
∑

j=0

pλT ,γT (|θj|)







, (6)

where λT > 0, γT > 0 are chosen by the Bayesian information criterion (BIC), and the penalty function

pλT ,γT (|u|) satisfies the following assumption:

pλ,γ(u) = λu− u2

2γ
I[0, γλ](u) +

1

2
γλ2I(γλ, ∞)(u).

If θ̂j 6= 0, we test if there is a change-point in [T − (p− j + 2)m+ 1, T − (p− j − 1)m] by the method

of cumulative sum of squares. Let k̂ = argminT−(p−j+2)m+16k6T−(p−j−1)mQk, where:

Qk =
k

∑

t=T−(p−j+2)m+1



ht −
1

k − (j − 1)m+ 1

k
∑

i=T−(p−j+2)m+1

ht





2

+

T−(p−j−1)m
∑

t=k+1



ht −
1

(j + 2)m− k

T−(p−j−1)m
∑

i=k+1

ht





2

.

Let b = (2 log(log(3m)) + log(log(log(3m))))2/(2 log(log(3m))), a =
√

b/(2 log(log(3m))) and D =

3m(Qk̂ −QT−(p−j−1)m)/QT−(p−j−1)m. By Theorem 3.1.1 in [22], we have:

lim
T→∞

P ((D − b)/a ≤ x) = exp(−2e−x/2).

Thus, if (D− b)/a ≥ 2 log(−2/ log(0.95)), it is claimed that there is a change-point located in [T − (p−
j +2)m+1, T − (p− j − 1)m], and k̂ is its estimate that is significant at the 5% level. Otherwise, there

is no change-point in this interval.
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The detailed implementation of the proposed methodology above consists of the following four steps.

Step 1. Select all of the stations, such that at least one pair of ozone concentration observations from any

two of these stations is not missing.

Step 2. For the data from each station, do the following: Fit the temporal model (2) to the data. Since

the data are not normally distributed, we transform the data by using the Box–Cox transformation

given in (1). λ is chosen, such that the residuals obtained by fitting the temporal model are normally

distributed. Test if the residuals are dependent.

Step 3. Compute the sample covariance of the residuals resulting from fitting two temporal models to the

data from two stations. Find the relationship between the covariance and the distance between

the two stations, and then, construct the spatial weights matrix W . For example, if the sample

covariance is decreasing as the distance between the corresponding two stations is increasing, we

can use the inverse of the distance as the corresponding off-diagonal element in the spatial weight

matrix W .

Use the matrix W to establish the simultaneous autoregressive (SAR) model at each time. Estimate

the parameters of the SAR model by using the residuals obtained by fitting N temporal models to

the ozone concentration data.

Step 4. Estimate the entropy ht of the SAR model at each time t and denote it by ĥt. Apply the

change-point detection method given in [21] to the entropy time series
{

ĥt

}

to detect multiple

change-points.

3. Application to Real Ozone Concentration Data

In this section, we use the methodology proposed in the previous section to detect changes in

ground-level ozone concentration data collected in the Toronto region of Canada between June and

September for the years from 1988 to 2009. There are 19 monitoring stations in this region, and the

rate of missing data at each station is below 50%. We primarily focus on the daily time scale in four

consecutive summer months from June to September for the years ranging from 1988 to 2009. Thus, we

have the original data Xi,t, i = 1, . . . , 19; t = 1, . . . , 2684, formed by 2684 (22 years × 122 days) daily

maximum eight-hour moving averages of hourly ozone concentration data recorded in micrograms per

cubic meter from each of the 19 stations, which are displayed in Figure 1. Figure 2 displays the locations

of the 19 stations and their indexes. The numbers of missing data at nine of the stations are under 200,

while the numbers of missing data at the other five stations are between 400 and 800. The remaining

five stations have a number of missing data close to 1000. Figure 3 presents the box-and-whisker plots

of the data collected at each station. It is clear that the data at each station are not normally distributed.

Thus, we apply the Box–Cox power transformation (1) to the data {Xi,t} and obtain the transformed

data {Zi,t(λ)}, for each λ ∈ {0.3, 0.31, 0.32, · · · , 0.6}. The final value of λ will be decided later.
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Figure 1. The ozone concentration data in 2,684 days and from 19 stations.
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Figure 3. The respective box-and-whisker plots of the ozone concentration data from the 19

stations.

Since there are 122 days from 1 June to 31 September in each year, the time period is thus 122, so

that L in the model (2) is 61. Preliminary data analysis shows that we may use the temporal model (2)

with p = 1 and q = 3 to fit the data. We write the model (2) with p = 1 and q = 3 as follows:

Zi,t(λ) = β0,i(λ) + β1,i(λ) cos (tπ/61) + β2,i(λ) sin (tπ/61) + β3,i(λ)Zi,t−1(λ)

+β4,i(λ)Zi,t−2(λ) + β5,i(λ)Zi,t−3(λ) + εi,t(λ). (7)

Let λ ∈ {0.3, 0.31, 0.32, · · · , 0.6}. For each λ and a fixed i, we fit the model (7) to the data {Zi,t(λ)} by

least squares and obtain the estimates β̂j,i(λ), j = 1, . . . , 5, of the parameters βj,i(λ), j = 1, . . . , 5. We

compute the residuals {ε̂i,t(λ)} by:

ε̂i,t(λ) = Zi,t(λ)−
[

β̂0,i + β̂1,i cos (tπ/61) + β̂2,i sin (tπ/61)

+ β̂3,iZi,t−1(λ) + β̂4,iZi,t−2(λ) + β̂5,iZi,t−3(λ)
]

, t = 1, . . . , T.

We remark that the purpose of applying the Box–Cox power transformation to the ozone concentration

data is such that {εi,t(λ)} are approximately normally distributed. Thus, we can choose λ in terms of

p-values of a normality test on {ε̂i,t(λ)} for each fixed pair of λ and i. In this application, the Pearson

chi-squared test (R code: pearson.test) is employed. By applying this test to the residuals

{ε̂i,t(λ)} for fixed λ and i, we obtain the p-value pi(λ). Let p(λ) = Median {pi(λ), i = 1, · · · , 19} for

each λ ∈ {0.3, 0.31, 0.32, . . . , 0.6}. λ = λ̂ is chosen, such that λ̂ = argmaxλ p(λ), which turns out to

be 0.48. Hence, λ̂ = 0.48 is used in the Box–Cox power transformation (1) hereafter.
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Let Yi,t = (X0.48
i,t − 1)/0.48. As discussed above, {Yi,t} for each fixed i are modelled as:

Yi,t = β0,i + β1,i cos (tπ/61) + β2,i sin (tπ/61) + β3,iYi,t−1 + β4,iYi,t−2 + β5,iYi,t−3 + εi,t, (8)

where t = 1, . . . , T . As done previously, we estimate βj,i, j = 0, 1, . . . , 5 by the least squares method.

Denote these estimates by β̂j,i, j = 0, 1, . . . , 5. We can then compute the residuals ε̂i,t for t = 1, . . . , T .
{

β̂j,i

}

and {ε̂i,t} are plotted respectively in Figures 4 and 5. To examine if the model has fitted the

data from each station well, we compute R2
i (the coefficient of determination) obtained by fitting the

model (8) to the data from each of 19 monitoring stations. R2
i , i = 1, . . . , 19 are displayed in Table 1,

which shows that the values of R2
i are all larger than 0.95. We also compute the p-value pi obtained by

performing Pearson chi-square test on {ε̂i,t, t = 1, . . . , T} for i = 1, . . . , 19, which are also displayed

in Table 1. From this table, it can be observed that only three p-values of the Pearson chi-square test

are smaller than 0.01. Further, for each time series {ε̂i,t, t = 1, . . . , 2684}, we compute the Box–Pierce

test statistic ([23])for each of the two null hypotheses H0 : ρ(1) = ρ(2) = ρ(3) = ρ(4) = 0 and H0 :

ρ(1) = ρ(2) = · · · = ρ(7) = 0, where ρ(k) is the autocorrelation at lag k (R code: Box.test).

The box-and-whisker plot of the p-values from the Box–Pierce test is displayed in Figure 6, which

shows that both null hypotheses cannot be rejected, i.e., the residuals can be considered as uncorrelated

at Lags 1 to 7.
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Figure 4. The respective box-and-whisker plots of β̂j,i, j = 0, 1, . . . , 5.
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Figure 6. The respective box-and-whisker plots of p-values of the Box–Pierce test on the

respective two null hypotheses H0 : ρ(1) = ρ(2) = ρ(3) = ρ(4) = 0 and H0 : ρ(1) =

ρ(2) = · · · = ρ(7) = 0.
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Table 1. The respective coefficient of determination, R2
i , and the p-value, pi, for i =

1, · · · , 19.

Station ID

1 2 3 4 5 6 7 8 9 10

R2
i 0.9538 0.9662 0.9662 0.9647 0.96708 0.9641 0.9714 0.9657 0.9716 0.9493

pi 0.3568 0.7291 0.0110 0.0547 0.06204 0.4119 0.5094 0.5559 0.3411 0.3453

Station ID

11 12 13 14 15 16 17 18 19

R2
i 0.9742 0.9711 0.9700 0.9742 0.97906 0.9745 0.9754 0.9752 0.9785

pi 0.4131 0.7438 0.0140 0.4816 0.01905 0.0056 0.1779 0.0001 0.0001

Let ε̂i· = (ε̂i,1, . . . , ε̂i,2684)
′. Figure 7 displays the sample covariance Ci,j = ε̂

′
i·ε̂j·/2684, i, j =

1, . . . , 19 and i 6= j, against the distance di,j =
√

(si,1 − sj,1)2 + (si,2 − sj,2)2, where (si,1, si,2) is the

rectangular coordinate of the location of the i-th station. It can be seen that the covariance decreases as

the distance increases. Thus, we construct the spatial weight matrix W = (wi,j)19×19 in (3) by letting all

of its diagonal elements {wi,i} be zeros and off-diagonal elements {wi,j, i 6= j} be the inverse distances

between the stations i and j, i.e., wi,j = 1/di,j.
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Figure 7. Plot of spatial covariance against the distance between two monitoring stations.
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The data have been assumed to be spatially correlated. To confirm this, Moran’s I is used to test the

dependence at each time, which is computed by:

It =
19

∑19
i=1

∑19
j=1wi,j

×
∑19

i=1

∑19
j=1wi,j(ε̂i,t − ¯̂ε·t)(ε̂j,t − ¯̂ε·t)
∑19

i=1(ε̂i,t − ¯̂ε·t)2

with ¯̂ε·t =
∑19

i=1 ε̂i,t/19. More than 86% of the tests on the data at each time point are significant at the

0.05 level.
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Figure 8. Respective plots of ¯̂ε·t, It, and ρ̂t.
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t and ĥt.

Replace ε·t by ((ε̂1,t − ¯̂ε·t), · · · , (ε̂19,t − ¯̂ε·t))
′ in Model (3). By Ord (1975) [18], we obtain the

maximum likelihood estimates ρ̂t and σ̂2
t of (3), and then, we obtain the estimate of Σ̂t = σ̂2

t (I19 −
ρ̂tW )−2. Thus, we obtain ĥt =

1
2
log

[

(2πe)n|Σ̂t|
]

, an estimate of the differential entropy defined in (4).

As shown in Figure 6, {¯̂ε·t, t = 1, . . . , 2684} can be considered to be independent distributed, and

the same argument is also true for {It}, {σ̂2
t }, {ρ̂t} and {ĥt}. Let S2

t =
∑19

i=1(ε̂i,t − ¯̂ε·t)
2/18 be the

sample variance. The sample mean ¯̂ε·t, Moran’s I It and ρ̂t are respectively displayed in Figure 8. We
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apply the change-point detection method given in [21] to each time series of ¯̂ε·t, It and ρ̂t and cannot

find any change-point. Thus, if we only consider the time series ¯̂ε·t, It and ρ̂t, we have to claim that

there is no change in the ozone concentration in the Toronto region. In contract, by applying the same

method to both time series {S2
t } and {σ̂2

t }, we detect the same change-point at 456 (29 August 1991). If

we also apply the same method to the time series {ĥt}, we find three change-points, 1585 (30 September

2000), 1837 (7 June 2003) and 2183 (17 September 2005). The sample variance S2
t , error variance σ̂2

t

and entropy ĥt are respectively displayed in Figure 9.

By Simmons (2002) [24], each year in Canada, 16,000 people die prematurely as a result of air

pollution. Cars and light trucks are responsible for the majority of transportation emissions, but the

heavy trucks in the trucking industry are also a major contributor, whose emissions have increased

more rapidly than any other element of the Canadian transportation sector. Historically, Canada has

taken a passive approach to the regulation of motor vehicle pollution. The estimated change-points,

1585 (30 September 2000), 1837 (7 June 2003) and 2183 (17 September 2005), are consistent with

the following published regulations. By the 44th Working Party on Pollution and Energy (GRPE)

of the United Nations [25], since 1988, Canadian on-road vehicle emission standards have been,

through a combination of regulations and voluntary agreements, aligned with those of the U.S. EPA

(Environmental Protection Agency). The Canadian Environmental Protection Act 1999 transferred the

responsibility to the Department of the Environment. Environment Canada adopted the Sulphur in

Gasoline Regulations in June, 1999, and proposed the Sulphur in Diesel Fuel Regulations in December,

2001. The Canadian Department of the Environment (Environment Canada) published proposed new

on-road vehicle and engine emission regulations on 30 March 2002. Regulations for each of the five

off-road groups were proposed later in 2002 and during 2003. Sulphur in gasoline was limited to on

average 30 parts per million (ppm) in 2005, with an interim limit of 150 parts per million in 2002. It is

noted that ground level ozone is not emitted directly into the air, but is created by chemical reactions

between oxides of nitrogen and volatile organic compounds, which include sulphur content. Thus,

limiting sulphur in gasoline can help to improve the air quality.

4. Conclusion

In this paper, we propose a methodology for detecting changes in ground-level ozone concentrations

by using entropy. It is shown via a real data example that the entropy ĥt, a function of ρ̂t and σ̂2
t , can

be used for detecting changes in ground-level ozone concentration data. As demonstrated in Section 3,

when the same change-point detection method is applied to each of the time series
{

¯̂ε·t
}

, {It}, {ρ̂t},

{S2
t }, {σ̂2

t } and {ĥt}, the time series that is the best for detection of multiple change-points is {ĥt}. This

may be due to the fact that the entropy can be used to measure various spatial uncertainties, including

both spatial variance and spatial dependence, and is able to extract more information from the data than

some other statistics, e.g., ρ̂t and σ̂2
t . The proposed methodology is also applicable to other climate data.

As shown in the data example, the changes in both the mean and spatial dependence of ozone

concentrations may not be detectable statistically after the regulations of environmental agencies are

proposed. In contrast, the changes in the spatial uncertainties of ground-level ozone concentrations,

measured by entropy, may be detectable statistically. Thus, after a regulation is promulgated,
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environmental agencies may be effective at monitoring the air quality change by employing the

methodology presented in Section 2, which may help them to decide what is the next step for improving

air quality.
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