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Abstract: Identifying influential spreaders in complex networks has a significant impact on 

understanding and control of spreading process in networks. In this paper, we introduce a 

new centrality index to identify influential spreaders in a network based on the community 

structure of the network. The community-based centrality (CbC) considers both the number 

and sizes of communities that are directly linked by a node. We discuss correlations between 

CbC and other classical centrality indices. Based on simulations of the single source of 

infection with the Susceptible-Infected-Recovered (SIR) model, we find that CbC can help 

to identify some critical influential nodes that other indices cannot find. We also investigate 

the stability of CbC. 

Keywords: influential spreaders; community structure; complex networks 

PACS Codes: 89.75.-k; 89.20.Ff; 89.75.Hc 

 

OPEN ACCESS



Entropy 2015, 17 2229 

 

 

1. Introduction 

Fast and accurate identification of influential spreaders in a network is essential to the acceleration of 

information diffusion, inhibition of gossip and spread of a virus. During the two decades from the 

emergence of network science to its current dramatic developments [1–5], the measurement of node 

importance has been the key concern of researchers, and many indicators that are used to describe node 

importance have been successively proposed [6]. 

Previously, node importance ranking measurement indexes based on the structure of the network were 

determined from local and global properties of the network, the position of the network and random 

walks [7]. Various recent studies have shown that the methods for ranking the importance of nodes based 

on community structure characteristics are also of realistic significance, and more interesting “singular 

nodes” can be excavated from the ranking result of influence via the spreading process. 

An index based on the local properties of a network that is represented by the degree of the node 

basically considers the information of the node and its neighbors. The index calculation is simple, and it 

can be used for large-scale networks. Degree is the most intuitive; a node with greater degree can impact 

more neighbors. Meanwhile, as a node in a susceptible state, it is at a higher risk of infection by its 

neighbors [8–10]. Chen et al. [11] considered the degree information of the nearest neighbors and the 

second nearest neighbors, and they also defined the importance ranking of local centrality to the network 

nodes. Centola studied the behavior spreading process of online social networks and found that the 

behavior spreads farther and faster across clustered-lattice networks than across corresponding random 

networks. An influential spreader is associated with the clustering of the nodes [12]; it was found by 

Ugander et al. from the evolution characteristics of friends’ relation networks on Facebook that the 

absolute number of neighbors was not the determinant influencing the importance of a node; rather, the 

determinant was the number of connected components between neighbors [13]. 

A node importance ranking index based on global network properties basically considers the global 

information of the network. The accuracy of this type of index is generally higher, but the time 

complexity of computation is also higher. For example, betweenness is defined as the number of shortest 

paths that pass through the node, so the betweenness of the node represents the “busyness” of the node [14]. 

To some extent, betweenness of the node can reflect the importance of information in the spreading 

process [15]. Closeness [16] is used to measure the capability of nodes in the network to influence other 

nodes through the network. It can also be calculated by the average distance from a given starting node 

to all other nodes in the network. Consequently, it can be considered as a measure of how long it will 

take to spread information from a given node to other reachable nodes in the network. Eigenvector [17,18] 

is an important index evaluating the importance of a node. Eigenvector considers the prestige of a single 

node as the combination of the prestige of all other nodes from the perspectives of the position or prestige 

of nodes in the network. 

In 2010, Kitsak and others [19] studied the application of K-core decomposition in identifying the 

influential spreaders of the network. K-core is the connected component formed by nodes whose degree 

is not less than k in the network. All of the nodes that belong to K-core but do not belong to  

(K + 1)-core are the nodes in K-shell. Therefore, all of the nodes in the network use the index K-shell Ks 

to describe their importance in the spreading process. Obviously, the degree of a node contained in the 

Ks-shell inevitably satisfies k ≥ Ks. The use of Ks to measure the influence of a node on the spreading 
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process is now widely recognized as a measurement method [20]. In recent years, many scholars have 

extended and improved K-core. For example, Zeng et al. [21] considered the information of the Ks 

degree of removed nodes after Ks decomposition, and they proposed the mixed degree decomposition 

method (MMD). Garas et al. [22] developed Ks decomposition for weighted networks. Liu et al. [23] 

comprehensively considered the target node K-shell and its distance from the largest  

K-core of the network, which overcomes the defect that it was unable to accurately measure the 

importance of a node as a result of having the same value of Ks for such a large number of nodes in the 

network after K-shell decomposition. In addition, Hou et al. [24] considered the impact of three different 

indicators, including degree, betweenness and K-core, on the importance of nodes, and they used the 

Euler distance formula to calculate the combined action of these three different indicators. 

The importance ranking method based on random walks is basically based on the PageRank 

technology of link relations between webpages. As the link relationship between webpages can be 

explained as the correlation and support between webpages, so too can the importance of the webpage 

be judged. Typical methods include the Hypertext-Induced Topic Search (HITS) algorithm [25] 

proposed by Kleinberg, the PageRank algorithm [26] used by Google and LeaderRank [27] proposed 

recently by Lv Linyuan et al. Then in 2014, Weighted LeaderRank [28] as an improvement method was 

presented by Li et al. Current research on identifying influential spreaders, many interesting conclusions 

were successively put forward, such as the role of clustering [29] by Chen D-B et al. who also proposed 

to improve the identification of influential spreaders by the path diversity [30]. 

As the actual network usually has a community structure, nodes in each community connect with 

each other closely, while the connection between the communities is relatively scattered [31]. Therefore, 

the community property of a node can be used for the ranking of importance. For example, Hu et al. [32] 

proposed an improved index based on the centrality of K-shell and the community structure and also 

validated it on the SIR Model. The number of communities that can be linked by a node (V-community) 

is defined as the measurement index of the “variety of neighbors” for the node [33]. 

Obviously, only considering the number of communities that are directly linked by the node  

(V-community) is not comprehensive enough. There are two deficient aspects. First, the importance 

measurement method based on the network community structure completely depends on the result of 

community division, while different community division algorithms have different results, especially for 

large-scale networks. Second, the size of each community in the network is significantly different, and 

this is not taken into consideration by V-community. This paper improves on these deficiencies and 

proposes another index, Community-based Centrality (CbC), which is used to identify the influential 

spreaders based on the network community structure. 

2. A Community-Based Centrality Index 

Most natural networks are found and divided naturally into communities or modules [34]. Moreover, 

one of the more intriguing issues prevailing throughout the last decade of network science is how to 

research the topological community structure. The inspiration for considering the importance of nodes 

within the community structure was the theory of “the strength of weak ties” by Mark Granovetter in 

1973 [35]. He surprisingly found that, more often than not, weak connections lead to strong interactions. 

This means a long-range connection may lead to a stronger interaction between two nodes than will short 
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connections of neighboring nodes. Interesting enough, this paper turned out to be one of the most 

important papers with the highest impact in the field of social science today [36]. From the view of 

network science, the network can be presented by a set V of nodes and a set E of edges, connected 

together as a graph denoted by G = (V, E), where the total number of nodes is N = |V| and that of edges 

is M = |E|. Each edge e E∈  is connected to one pair of nodes, one at each end. Clearly,  

(i, j) indicates an edge between two connected nodes i and j. Thus, an adjacency matrix with N nodes 

and M edges is described by A = (aij)N × N. 

2.1. Community-Based Centrality 

We can assume that each node has two different types of links: strong links and weak links. A strong 

link is defined as an edge between nodes that are in the same community, and a weak link is defined as 

an edge that links two nodes belonging to different communities. Because the connections are much 

stronger in a certain community than the ones between different communities, the importance of nodes 

can be calculated by both characteristics of edges and the sizes of communities. For example, in a social 

network, if a person has many friends in different fields, we can assume that he plays an important role 

in his social circle. Furthermore, on one hand, he can gain a variety of information from his friends more 

conveniently, and, on the other hand, he can diffuse information around his circle much more quickly. 

As a side note here, the number of different fields indicates the variety of friends; however, the amount 

of friends in each fields cannot be ignored as well. Thus, an index named community-based centrality 
(CbC) is proposed to calculate the importance of node i via the following formula： 
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where c is the number of communities in the network, diw is the number of links between node i and 

other nodes in community w, Sw is the number of nodes in community w (the size of community w). 

Clearly, we have 
1

c

iw i
w

d d
=

= , where di is the degree of node i. 

The proposed CbC can be viewed as a generalization of the classical degree centrality. In fact, if the 

whole network is viewed as a single community, then the CbC of a node reduces to its degree, i.e.,  

CbCi = di. On the other hand, if we view every single node as a community in the network, then the CbC 

of a node reduces to its normalized degree, i.e., CbCi = di/N. 

In recent years, a variety of community discovery algorithms have been proposed [37–41]. 

Modularity is a commonly used standard to measure the community division quality [41]. A common 

algorithm based on modularity optimization, the CNM algorithm [42] proposed by Clauset, Newman 

and Moore, is adopted in this paper. As an illustration example, we consider a network with 21 nodes 

and 32 edges (Figure 1). Table 1 lists the CbC and some other centrality indices of nodes in the simple 

network. The network is divided via CNM algorithm into four communities (c = 4). 
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Figure 1. Community structure and CbC indices of a simple network. 

Table 1. Centrality indices of nodes in a simple network. 

ID mc S d Betweenness Closeness 
Eigenvector 
Centrality 

K-shell CbC 

1 1 3 2 0 2.4 0 2 0.428571 
2 1 3 6 110.1667 1.75 0.019043 2 1.52381 
3 2 4 4 51 2.4 0.069846 3 0.714286 
4 2 4 3 0 3.25 0.13232 3 0.571429 
5 2 4 3 0 3.25 0.310387 3 0.571429 
6 2 4 3 0 3.25 0.67766 3 0.571429 
7 3 8 5 37.41667 2.15 0.380233 2 1.666667 
8 3 8 1 0 3.1 0.490072 1 0.380952 
9 3 8 2 1 2.9 0.490072 2 0.761905 
10 3 8 6 58.41667 2 0.069846 2 1.952381 
11 3 8 3 2 2.7 0.13232 2 1.142857 
12 3 8 4 19.5 2.7 0.310387 2 1.52381 
13 3 8 1 0 3.65 0.367273 1 0.380952 
14 3 8 3 3.333333 2.75 1 2 1.142857 
15 4 6 3 2.083333 2.75 0.162483 2 0.857143 
16 4 6 7 63.25 2.15 0.079368 2 1.714286 
17 4 6 2 0 3.05 0.386868 2 0.571429 
18 4 6 1 0 3.1 0.162483 1 0.285714 
19 4 6 1 0 3.1 0.162483 1 0.285714 
20 4 6 3 16.83333 2.4 0.519188 2 0.952381 
21 1 3 1 0 2.7 0 1 0.142857 

Through calculation, the average degree (denoted as <k>) of the network is 3.048, while the degree 

of node 16 is the maximum, which is 7. The maximum betweenness is shown for node 2, which is 

110.1667; node 10 has the maximum CbC, CbC(10) = 1.952381. It can be seen that the nodes with the 

maximum CbC, degree or betweenness are not the same. 

2.2. Experimental Datasets  

The experimental data in this paper is conventional datasets [43,44], specific parameters of the 

networks and sources are presented in Table 2. 
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Table 2. Specific statistical parameters for the dataset networks. 

Network N M <k> L Φ ρ Q c CC 
Facebook 324 2218 13.691 3.054 7 0.042 0.597 27 0.466 
Metabolic 453 2025 8.94 2.664 7 0.02 0.416 10 0.655 

Email 1133 5451 9.622 3.606 8 0.009 0.521 68 0.220 
Power 4941 6594 2.669 18.989 46 0.001 0.932 38 0.107 
Router 5022 6258 2.492 6.449 15 0 0.897 62 0.033 

Blogcatalog 10312 333983 64.776 2.382 5 0.006 0.238 6 0.463 

Among them, <k> refers to the average degree of the network, L refers to the average path length, Φ 

refers to the network diameter, ρ refers to the network density, Q refers to the modularity of the current 

community division, c refers to the number of communities obtained from the community division of 

the network through the CNM algorithm proposed in the literature [40], and CC refers to the average 

clustering coefficient of the network. The topological structures of the dataset networks are presented in 

Figure 2, in which communities are described by different colors and the CbC of nodes are indicated by 

the sizes of the individuals. 

 

(a) (b) (c) 

  

(d) (e) (f) 

Figure 2. Community structure (colors) and CbC (size of individuals) of nodes in the  

(a) Facebook network, (b) Metabolic network, (c) Email network, (d) Power network,  

(e) Router network, and (f) Blogcatalog network. 

As schematized in the six subfigures of Figure 2, the large nodes (high CbC) are quite rare in the 

networks, which are almost decentralized into different communities. Thus, the high CbC nodes can be 

considered as the community leaders in a sense. Furthermore, in comparison with the other figures 
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above, because the topological structure is clearer, we chose the Facebook network topology for the 

spreading results presented in the following sections. 

To evaluate the effects by different algorithms of community detection methods, some of the common 

algorithms were used in the supported experiment. It is no doubt that the results of the modularity by 

each algorithm are basically different even though the numbers of communities are similar. (Table 3). 

In this paper, the Pearson correlation coefficient, the most familiar measure of dependence between two 

quantities, commonly called simply “the correlation coefficient” [45], was used to measure the 

correlations between the influence of nodes and the indexes including the CbCs. The Pearson correlation 

coefficient (denoted r) is a measure of the linear correlation (dependence) between two variables X and 

Y, giving a value between +1 and −1 inclusive, where 1 is total positive correlation, 0 is no correlation, 

and −1 is total negative correlation. Thus r is used to measure the degree of correlation between two 

variables. Where |r| > 0.8, it means extremely strong correlation; Where |r| between 0.6 and 0.8, means 

strong correlation; Where |r| between 0.4 and 0.6, means moderately related. 

Table 3. The modularity (Q), the number of communities (c) by different algorithms of 

community detection methods proposed in the literatures [40,42,46–50]. The Pearson 

Correlation Coefficient (r) between spreading capabilities (in the same spreading probability 
β = 0.05） and CbCs calculated by different algorithms of community detection methods. 

Algorithm 
Facebook Metabolic Email 

Q c r Q c r Q c r 

CNM1[42] 0.597 27 0.967438 0.416 10 0.824310 0.521 68 0.720225 

CNM2 0.530 6 0.869004 0.409 10 0.840384 0.529 8 0.889797 

Walk Trap [46] 0.601 25 0.947099 0.349 35 0.869187 0.531 49 0.827893 

Multi-level [47] 0.6292197 8 0.841616 0.437 11 0.833422 0.569 11 0.638531 

Spin-glass [48,49] 0.6292835 10 0.436205 0.443 13 0.839240 0.581 13 0.895838 

LabelPropagation 1 [50] 0.575 11 0.7872296 0.334 5 0.836569 0.528 11 0.770258 

LabelPropagation 2 0.607 13 0.945307 0.313 7 0.830448 0.330 8 0.851228 

LabelPropagation 3 0.598 11 0.820159 0.340 9 0.844415 0.481 16 0.842951 

In which, CNM algorithm, or the Fast Greedy algorithm, tries to find dense subgraph, also called 

communities in graphs via directly optimizing a modularity score. The Walk Trap function tries to find 

densely connected subgraphs, namely communities in a graph via random walks. The algorithm is that 

short random walks tending into the same community. The Multi-level algorithm implements the multi-level 

modularity optimization algorithm based on the modularity measure and a hierarchical approach for 

finding community structure. The Spin-glass algorithm tries to detect communities in graphs by 

simulated annealing via a spin-glass model. Though the Label Propagation algorithm is fast, even nearly 

linear time, but the results of detecting were not the same by each time the algorithm was executed 

independently. The algorithm works by (1) labeling the vertices with unique labels; and (2) updating the 

labels by majority voting in the neighborhood of the vertex. 

Furthermore, in order to present the structures by these methods visually, some representative graphs 

are drawn (Figure 3). 
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(a) Facebook by CNM2 (b) Metabolic by CNM2 (c) Email by CNM2 

 
(d) Facebook by Walk Trap (e) Metabolic by Walk Trap (f) Email by Walk Trap 

 
(g) Facebook by Multi-Level (h) Metabolic by Multi-Level (i) Email by Multi-Level 

 
(j) Facebook by Spin-glass (k) Metabolic by Spin-glass (l) Email by Spin-glass 

Figure 3. The community structures divided by different algorithms of community detection 

methods. 
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Based on the community structures by each algorithm, a series CbCs of each nodes in the network 

can be calculated. Obviously, each set of CbCs would be barely similar to the other set with the basically 

difference between results by community detection algorithms. However, it is unexpected that the 

Pearson correlation coefficient r between those sets of CbCs were extraordinary (Table 4), namely, the 

significance of nodes measured by CbC rarely depended on community detection methods. Furthermore, 

with comparing the Pearson correlation coefficient between CbCs of Facebook network by CNM1  

(c = 27) and CNM2 (c = 6), r = 0.896; Metabolic network by LabelPropagation1 (c = 5) and 

LabelPropagation3 (c = 9), r = 0.999, namely, the number of communities is not the indispensable factor 

in CbC calculating especially by the same algorithm. 

Table 4. The analyses of correlations by different algorithms of community detection methods. 

Varieties of Pearson correlation coefficient Facebook Metabolic Email 

CNM1 and CNM2 0.896228 0.986156 0.866306 
CNM1 and Walk Trap 0.972730 0.967388 0.657566 
LabelPropagation1 and LabelPropagation3 0.990029 0.998585 0.755279 
Multi-level and LabelPropagation1 0.964390 0.984780 0.852465 
CNM2 and LabelPropagation2 0.929233 0.961293 0.891828 

By comparing the experimental results of datasets in Table 3 and Table 4, the qualities of community 

structures on metabolic network by different community detection algorithms, are rarely better than the 

ones on email network. Fortunately, the correlations of CbCs are all extremely strong. Thus it can be 

considered that there is little serious effect by quality of community structure in CbC. 

Above all, beyond expectation, different community detection methods can hardly change the overall 

ranking sorts by CbC. However, as a whole, the results on Facebook network and metabolic network are 

more significant than on Email network. As a suspect, the accuracy for ranking the influence of nodes 

would be limited by the topological structure of the network itself. 

3. The Correlations Between CbC and Other Indices 

3.1. Evaluation With The SIR Model 

For the investigation of the spreading experiment on the actual network, node i, which is used as the 

source of infection, can infect the scale of the other nodes to measure the impact of node i. When 

comparing the impact scale of the node as the initial infection source to other nodes in the network, the 

greater the number of nodes impacted, the greater the impact of the source node. 

We adopt the SIR (Susceptible-Infected-Removed) model for the spreading experiment, i.e., a node 

infects its neighbors with the probability β, and it is assumed that each infected individual is changed to 

the “removed” status at a fixed rate γ. In this paper, it is assumed that γ = 1, i.e., in the process of each 

round of spreading, each infected node only has one chance to infect its neighbors with the probability β, 

and then the node is “removed”. The initial infection method is monophyletic, and the infection threshold 

β is set as small as possible; the purpose of this is to make the infection speed slow, and it can also make 

the selection of the infection source more meaningful. In addition, the number from the experimental 

result is the expectation value. Even when given two sets of identical conditions, the numbers of infected 
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individuals from two groups of experiment are not the same as a result of the randomness and the small 

value of the infection probability β. Therefore, we need to regard each node as the initial infection source 

and take the arithmetic average of 100 independent experiments. 

For the experiment, select different values of β according to the scale of different datasets; the 

selection is based on making the average infected network scale less than 20% and the maximal influence 

less than 50%. The infection threshold values of networks are provided in Table 5. Because the power 

network is quite sparse and the average path length (18.989) is much longer than 6, the results of 

spreading are not as significant as others. 

Table 5. The infection threshold values of networks. 

Network Facebook Metabolic Email Power Router Blogcatalog 

Infection Threshold (β) 0.06 0.07 0.10 - 0.40 0.10 
Average Influence 7.7437% 6.2507% 14.9706% - 10.6013% 7.2571% 
Maximal Influence 25.6173% 25.6071% 41.8358% - 33.8112% 27.4631% 

As shown in Figure 4, the influence of every individual is presented by the size of the corresponding 

node in these topological graphs. 

 

(a) Facebook network β = 0.06 (b) Metabolic network β = 0.07 (c) Email network β = 0.10 

 
  

(d) Power network β = 0.5 (e) Router network β = 0.40 (f) Blogcatalog network β = 0.10 

Figure 4. Influence capability (size of individuals) of nodes in the (a) Facebook network, 

(b) Metabolic network, (c) Email network, (d) Power network, (e) Router network, and  

(f) Blogcatalog network. 
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Take the spreading capability of the source node as a measurement standard of the node importance, 

and compare the importance index between the CbC and other nodes. The results of the experiment are 

described in a temperature figure in Section 3.2; the temperature’s corresponding value is the number of 

other nodes infected by the source node. 

3.2. Experimental Analysis  

With comparing the Pearson correlation coefficient between CbCs (by CNM, Walk trap and Label 

Propagation) and other classic indexes (Table 6), it is clearly reflected that the correlations between 

CbCs and degree are the extremely strong correlations, so as to eigenvector. Meanwhile, the correlations 

between CbCs and Ks are strong ones. 

Table 6. The Pearson Correlation Coefficient (r) between CbCs and other classic indexes. 

Index 
Facebook Metabolic Email 

CNM WT LP CNM WT LP CNM WT LP 

Degree 0.9583 0.9239 0.9404 0.9863 0.9718 0.9962 0.9704 0.8751 0.8809 
Betweenness 0.4316 0.4436 0.5000 0.8369 0.8144 0.8566 0.8531 0.7957 0.7920 

Closeness −0.719 −0.727 −0.752 −0.412 −0.442 −0.416 −0.758 −0.736 −0.702
Eigenvector 0.9849 0.9482 0.9466 0.9290 0.9538 0.9409 0.9106 0.8553 0.8801 

Ks 0.8622 0.7902 0.8087 0.5992 0.6178 0.5942 0.7940 0.7105 0.6918 

The relation between the CbC and degree of the node illustrated in Figure 5 indicates their obviously 

positive correlation. The node with the larger degree has a higher CbC. In the Email network, there are 

quite a number of nodes (as shown in the fourth quadrant of Figure 5b) with high CbC, but its degree is 

not large. It can be seen from the temperature that a node with large degree and high CbC has strong 

spreading capability (e.g., the first quadrant). Compare the spreading capability of a node with the same 

quadrant; it can be seen that, when the degree of the node is close, the node with the high CbC has strong 

spreading capability. Meanwhile, the insufficiency of using degree to measure the importance can also 

be seen; some nodes do not have large degrees but do have strong spreading capability, which is clearly 

shown in Figure 5b. Because calculating CbC (i) requires traversing node i’s neighborhood, the 

computational complexity of our algorithm is O(n<k>), which grows linearly with the size of a sparse 

network. Compared with degree centrality (O(n), where n is the number of nodes in the network), CbC 

can better quantify the influence of nodes, but it has higher computational complexity. 

Compared with V-community ((c) and (d) of Figure 5 through Figure 9 at the following part in this 

paper) presented by the reference [33] in which the graphs in black and white were in the numbers from 

6 to 10, the new measurement demonstrates a more statistically significant result. 
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(a) (b) 

(c) (d) 

Figure 5. The correlation between Degree centrality and CbC in the (a) Facebook network 

and (b) Email network; compared with V-community in the (c) Facebook network and  

(d) Email network. 

Betweenness is a measure of the centrality of a node in a network and is normally calculated as the 

fraction of the shortest paths between node pairs that pass through the node of interest. As shown in 

Figure 6, it can be described from the trend that the CbC and betweenness have a positive correlation. It 

can be seen from the figure that the node with larger betweenness and higher CbC has stronger spreading 

capability. Moreover, CbC can better measure the importance of a node compared to betweenness. When 

the node with higher CbC (e.g., the first and the fourth quadrant), even if the betweenness is small (e.g., 

the fourth quadrant), the node can still have a spectacular range of influence. However, on the contrary, 

when the node has large betweenness but lower CbC (e.g., the second quadrant), the number of nodes 

with strong spreading capability is significantly smaller. In addition, the computational complexity 

degree of CbC is much lower than that of betweenness (calculating the shortest paths between all pairs 

of nodes in a network has the complexity O(n3) when using Floyd’s algorithm [51]; for unweighted 

networks, calculating betweenness centrality requires O(nm) = O(n2<k>) using Brandes’ algorithm [52]). 
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(a) (b) 

 

(c) (d) 

Figure 6. The correlation between Betweenness centrality and CbC in the (a) Facebook 

network and (b) Email network; compared with V-community in the (c) Facebook network 

and (d) Email network. 

The value of closeness in the manuscript was calculated by Gephi0.8 and the formula was not the 

reciprocal of the sum on the geodesic distances on all other nodes in the network, but was calculated by 

the average distance from a given starting node to all other nodes in the network. Consequently, it can 

be considered as a measure of how long it will take to spread information from a given node to other 

reachable nodes in the network. The plots of CbC and the closeness of nodes are given in Figure 7; CbC 

and closeness have a significantly negative correlation. Therefore, the closeness of neighbors with high 

CbC is far less than for a node with low CbC, i.e., the node with high CbC is mostly situated at the 

"bridge" of the communities, but it is not located in the central area of the community. It can be seen 

from the comparison of the spreading capacity of nodes that the node with higher CbC has stronger 

spreading capability. The same as for betweenness centrality, calculating closeness centrality has a 

complexity of O(n3). 
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(a) (b) 

(c) (d) 

Figure 7. The correlation between Closeness centrality and CbC in the (a) Facebook network 

and (b) Email network; compared with V-community in the (c) Facebook network and (d) 

Email network. 

Based on the idea that an actor is more central if it has a relation to actors that are themselves central, 

it can be argued that the centrality of a node does not only depend on its number of adjacent nodes but 

also on their value of centrality. For example, Bonacichin [53] defined the centrality of a node as positive 

multiple of the sum of adjacent centralities. Figure 8 schematizes the correlation between CbC and 

eigenvector centricity of a node in the network; CbC and eigenvector centricity have significant positive 

correlation, i.e., the node with higher CbC has larger eigenvector centricity, and vice versa. The 

computational complexity of eigenvector is O(n2), which is less than betweenness and closeness 

centrality but still larger than the algorithm we have proposed. 
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(a) (b) 

 

(c) (d) 

Figure 8. The correlation between Eigenvector centrality and CbC in the (a) Facebook 

network and (b) Email network; compared with V-community in the (c) Facebook network 

and (d) Email network. 

In contrast to common belief, there are plausible circumstances where the best spreaders do not 

correspond to the most highly connected or the most central people. Thus, [19] suggested that the 

position of the node relative to the organization of the network determines its spreading influence more 

than a local property of a node and defined K-shell. The relation between CbC and K-shell value Ks is 

presented in Figure 9. As Ks in the network is distributed centrally, the positive correlation of CbC and 

Ks is not very obvious. However, as the Ks values of a large number of nodes in the network are the 

same, it is deficient to use as an index to measure the importance of nodes. The experiment conducted 

in this paper will correct to “0.0001” for the CbC of a node. Therefore, it can avoid repetition to the 

greatest extent. Through the spreading capability of a node, Figure 9 shows that, if the Ks values of the 

nodes are the same, the node with the higher CbC has the stronger spreading capability. 
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(a) (b) 

(c) (d) 

Figure 9. The correlation between K-shell and CbC in the (a) Facebook network and  

(b) Email network; compared with V-community in the (c) Facebook network and  

(d) Email network. 

Furthermore, compared with V-community in Figure 9c,d, the measurement we presented is no longer 

a discrete variable. Precisely because of the continuity, the ranking of importance can be described by 

CbC more appropriately in a sense. The details of its advantages will be provided in the next section. 

3.3. The Advantage of CbC  

Firstly, we compared the Pearson correlation coefficient (r) between spreading capabilities (in the 

same spreading probability β = 0.05) and CbCs calculated by CNM, Walk Trap and Label Propagation, 

and further compared the Pearson correlation coefficient (r) between spreading capabilities of nodes and 

other classical centrality indicators (Table 7).  
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Table 7. The Pearson Correlation Coefficient (r) between spreading capabilities and indexes 

including the classic ones and CbCs calculated by CNM (CbCCNM), Walk Trap (CbCWalkTrap) 

and Label Propagation (CbCLabelPropagation). 

Index Facebook Metabolic Email 

Degree 0.918997 0.825063 0.913485 
Betweenness 0.395862 0.57502 0.748359 

Closeness −0.73634 −0.60029 −0.7392 
Eigenvector 0.971692 0.940558 0.951065 

Ks 0.867811 0.82172 0.783794 
CbCCNM 0.967438 0.840384 0.889797 

CbCWalkTrap 0.947099245 0.869187 0.827893 
CbCLabelPropagation 0.945307078 0.844415 0.851228 

By comparing the experimental results in Table 7, the correlations between CbCs and spreading 

capabilities are all the extremely strong correlations. Furthermore, the results show that the Pearson 

Correlation Coefficient (r) for CbC is almost larger than that for other centrality measures except the 

eigenvector. The values of Pearson correlation coefficient on eigenvector centralities are consistently 

higher than others. Furthermore, in our current research on effects of spreading capability depending on 

diverse probabilities of propagation, the fascinating results shows that the Pearson correlation coefficient 

on eigenvector centrality in Email network is declining with the increase of propagation probability. 

However, the value of the Coefficients are no lower than 0.8, namely, the correlations are all extremely 

strong ones between eigenvector and those influence ranking results by varying propagation probabilities. 

For convenience in computation, one may normalize the variables above by dividing them by N (the 

number of nodes), and, in doing so, they also have the meaning of “ranking”. The normalization of the 

indicators (betweenness, degree, eigenvector, CbC and K-shell) is shown in Figure 10. The ordinate axis 

is the average influence of the infection source. According to the curves, the spreading capability of the 

sources and the ranking of selected indicators almost have positive correlations. Totally depending on 

the experimental data results without considering the possible error bars for points, the CbC is the only 

index that the influence of the source is monotone increasing. Meanwhile, the competitors, degree and 

eigenvector, both exist in fluctuation; the average influence of larger indexes is lower than that of smaller 

ones, especially when the indicator has a high level (ranking results of more than 0.4). Nevertheless, the 

differentials are not significant enough to support such a definitive conclusion, even worse, they are 

probably caused by possible error. Furthermore, Figure 10b represents that the influence measured by 

CbC is increasing at a much slower pace. Accordingly, the influence of the source can be ranked by CbC 

more steadily and homogeneously. Comparing between Figure 10a and Figure 10b, it can be seen clearly 

that, the larger the network, the more obvious this performance. 



Entropy 2015, 17 2245 

 

 

(a) (b) 

Figure 10. The curves of the influence result growing by ranking of the indicators in  

(a) the Facebook and (b) Email networks. 

In Figure 10, the average influence of sources with level = 0.4 as ranked by CbC is 24%, compared 

to 35% for those ranked by eigenvector. It is interesting to note that, when the indicators (betweenness 

and degree) are at a lower level (<0.4), the average influence decreases by approximately 30% to 35%. 

Some nodes with ordinary index values have distinguished spreading capability. In other words,  

these “critical influential spreaders” would be neglected by ranking with betweenness, degree or 

eigenvector. Identifying the influential spreaders, especially these “critical nodes”, is the very advantage 

of the CbC method. 

The influences of the top 1% of nodes are listed in Table 8 (the top four nodes in the Facebook 

network with 324 nodes) and Table 9 (the top 12 nodes in the Email network with 1133 nodes). 

Table 8. The influence of the top 1% of nodes as ranked by the chosen indicators of the 

Facebook Network. 

Rank 
CbC Degree Betweenness Eigenvector Ks 

ID Influence ID Influence ID Influence ID Influence ID Influence 

1 263 0.246914 263 0.246914 186 0.101852 263 0.246914 78 0.231481 

2 2 0.246914 78 0.231481 78 0.231481 78 0.231481 33 0.219136 

3 78 0.231481 186 0.101852 153 0.064815 2 0.246914 265 0.169753 

4 211 0.222222 2 0.246914 33 0.219136 33 0.219136 42 0.145062 

Table 8 illustrates that node 211 was identified only by CbC and was neglected by the other indicators. 

However, the average influence of node 211 is more than 22%, which is much larger than the average 

value of the entire network (0.077437, as discussed in Section 3.1 above). It is definitely an influential 

spreader and is 14th when ranked by influential capability. Meanwhile, when ranking by degree or 

betweenness, node 186 is in the top 1%, but it is in 105th place for influential capability, with only a 

10% influential range. Even worse, node 153 is third highest ranking by betweenness but has no more 

than a 6.5% influential result, even less than the average influence of this network. In addition, the 

influence of node 33 is marginally lower than that of node 211. Actually, although node 33 is not in the 



Entropy 2015, 17 2246 

 

 

top 1%, it is ranked 8th place by CbC. As expected, with the increase of the network size, the advantages 

of identifying critical influential spreaders by CbC are more obvious. The results of the Email network 

are shown in Table 9. 

Table 9. The influence of the top 1% of nodes as ranked by the chosen indicators of the 

Email network. 

Rank 
CbC Degree Betweenness Eigenvector Ks 

ID Influence ID Influence ID Influence ID Influence ID Influence 

1 134 0.350397 105 0.379523 333 0.378641 105 0.379523 389 0.37158 
2 205 0.379523 333 0.378641 105 0.379523 16 0.387467 726 0.392763
3 204 0.359223 42 0.377758 23 0.265666 42 0.377758 552 0.383054
4 105 0.379523 23 0.265666 578 0.37158 196 0.27361 299 0.389232
5 219 0.252427 16 0.387467 76 0.383936 333 0.378641 434 0.406002
6 206 0.372462 41 0.38835 233 0.383936 23 0.265666 571 0.262136
7 198 0.416593 196 0.27361 135 0.352162 3 0.381289 788 0.130627
8 196 0.27361 233 0.383936 41 0.38835 41 0.38835 888 0.272727
9 210 0.398941 76 0.383936 355 0.359223 204 0.359223 756 0.37158 
10 201 0.377758 21 0.376876 42 0.377758 49 0.227714 887 0.251545
11 140 0.396293 24 0.39188 378 0.35128 21 0.376876 886 0.130627
12 16 0.387467 355 0.359223 429 0.369815 56 0.377758 885 0.139453

These data depict that nodes 134, 205, 219, 206, 198, 201 and 140 are in the top 1% level ranking by 

CbC but are ignored by all other indicators. However, the influences of these seven nodes are all 

significantly greater than the average of the entire network (0.149706), and the influence of node 198 is 

third highest of all 1133 nodes in the Email network. 

Furthermore, as shown in Table 8 and Table 9, the very top 1% nodes ranking by eigenvector 

centrality, unfortunately, more or less miss some “critical nodes”, which can be explored by CbC. It 

seems that, although the ranking result by eigenvector centrality of entirety is satisfied, at the top level 

it is not precise. 

Above all, CbC plays an important role in identifying the critical influential spreaders. However, the 

influence of source cannot be strictly ranked by any ordered indicators. Given are two scatter diagrams 

plotting out the influence of the top 20 nodes as ranked by the chosen indicators (Figure 11). Even more, 

the first and second spreaders are not found by the indicators above. In the Facebook network, the two 

most influential spreaders are node 16 and node 219 (influences of 0.256173 and 0.253086, 

respectively). In the Email network, the most influential spreaders are node 396 and node 358 (both have 

influences of 0.418358). Our research indicates that CbC can help to identify critical spreaders; however, 

in order to strictly rank these spreaders, further research is needed, which is exactly what we plan to 

focus on for future work. 
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(a) (b) 

Figure 11. Plots of the influence results of the top 20 nodes in (a) the Facebook and  

(b) Email networks. 

4. Stability Analysis of CbC 

SIR spreading experiments in different networks are conducted in this chapter. In the Facebook 

network and Email network, the infection threshold value β should be taken as 0.01~0.10, 0.15, 0.20, 

0.25, 0.30, 0.35, 0.40, 0.45 and 0.50. By comparing the infection scale for different infection threshold 

values in different networks, the stability of the node importance measurement CbC is analyzed. 

4.1. The Impact of CbC on the Spreading Influence  

First, the average infection rate in the Facebook network when the infection threshold value is 0.03, 

0.05, 0.06, 0.10 and 0.50 is investigated (i.e., the arithmetic average of the infection rate obtained from 

all 324 nodes, which are taken as infection sources, separately, in the network). This is presented in 

Figure 12 as the curves Facebook0.03, Facebook0.05, Facebook0.06, Facebook0.10 and Facebook0.50. 

 

Figure 12. The Impact of CbC on the Spreading Influence. 
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It can be seen that, with the increase of the infection threshold value β, the average infection rate in 

the network increases steadily. If a node with higher CbC value is taken as the infection source, the 

average infection rate of the network is larger until the average infection rate of the network is close to 

90%, after which the difference of taking nodes with different CbC values as infection sources is lower. 

This indicates that, in the Facebook network, the CbC value can be taken as an index to measure the 

importance of a node, and it is stable enough. The same conclusion remains valid in the Email network. 

In Figure 12, the curves Email0.05, Email0.10, Email0.25 and Email0.5 are the average infection rates 

of the Email network when the threshold value is 0.05, 0.10, 0.25 and 0.5, respectively. The spreading 

capabilities are indicated by the sizes of individuals in Figure 13. 

(a) Facebook network β = 0.03 (b) Facebook network β = 0.06 (c) Facebook network β = 0.10 

 
(d) Email network β = 0.05 (e) Email network β = 0.10 (f) Email network β = 0.25 

Figure 13. The spreading capability of all of the individuals by different infection thresholds 

β in the Facebook network ((a), (b) and (c)) and Email network ((d), (e) and (f)). 

By comparing the curves, Facebook0.05 and Email0.05, Facebook0.10 and Email0.10, and Facebook0.5 

and Email0.5, it can be found that the description of node importance by CbC is similar under different 

networks, and it further proves the stability of using CbC to measure the importance of nodes. 

4.2. The Stability of CbC by the Influence Threshold  

By comparing the impacts of nodes with different CbC values as infection sources on the entire 

network using different threshold values in the network, it can be concluded that nodes with higher CbC 

values as infection sources have a more significant impact on the network. Therefore, CbC value can be 

used to measure the importance of nodes. Because the CbC values of nodes in the network are different, 
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in order to facilitate comparison, CbC is taken to be an integer in this experiment, and the results are 

presented in Figure 14. 

 

(a) (b) 

Figure 14. The Stability Analysis of CbC in (a) the Facebook network and (b) Email network. 

Figure 14a illustrates that, in the Facebook network, the CbC value interval is 7, namely from 0 to 6, 

which corresponds to the seven curves in the figure, respectively. Figure 14b illustrates that, in the Email 

network, the CbC value interval is 13, namely from 0 to 12, which correspond to the 13 curves of the figure, 

respectively. By contrast, it can be seen that, in the two networks, the node with higher CbC as the infection 

source has a larger range of network infection, i.e., the node with higher CbC is of greater importance. 

5. Conclusions  

A node spreading impact measurement method based on CbC structure is proposed in this paper, and the 

result of key node excavation is compared using traditional measurements (degree, betweenness, closeness, 

eigenvector and K-shell). Based on the ranking of the importance of existing nodes, the method proposed in 

this paper can genuinely identify the nodes that are important to the spreading process in the network: 

(1) When other conditions are the same, the node with higher CbC has greater impact on spreading 

compared with a node with large degree but small CbC. 

(2) CbC can better measure the importance of nodes than betweenness and eigenvector, and its 

computational complexity is much lower. 

(3) The CbC of a node in the network is correct to 0.0001, thus avoiding repetition to the greatest 

extent. Therefore, it can avoid causing the same Ks of a large number of nodes in the network like  

K-shell, which makes it difficult to compare importance. When the Ks values of nodes are the same, the 

node with a higher CbC value generally has stronger spreading capability. 

(4) With the increase of the infection threshold value, the average infection rate of the network 

increases stably; when the node with higher CbC is taken as the infection source, the average infection 

rate of the network is larger until the average infection rate of the network is close to 90%, at which 

point the difference due to nodes with different I-communities being taken as infection sources is not 

high. This shows that CbC can be taken as an index to measure the importance of nodes and that it is stable. 
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(5) If the node with a higher CbC value is taken as the infection source, the scale of the network 

infection is larger, i.e., the node with higher CbC value is of greater importance. 
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